太阳能光热发电几种创新型储热技术简述

太阳能光热发电几种创新型储热技术简述
太阳能光热发电几种创新型储热技术简述

太阳能光热发电几种创新型储热技术

光热电站相比光伏电站的核心优势即在于光热电站可配置储热系统,与传统的火力发电厂一样,生产出电网友好型的可调度电力,满足连续的用电需求。目前,商业化光热发电项目的储能市场仍然以二元熔盐为工质的熔盐储能技术为主流,但其凝固点过高,易冻堵管道的缺陷也饱受诟病。

2016年下半年接连发生的美国新月沙丘电站熔盐罐熔盐泄露事故以及西班牙Gemasolar光热电站熔盐热罐损毁事故,均造成了熔盐罐维修费用及售电收入方面的巨大损失,熔盐储热系统的安全性、可靠性再次受到行业关注。

那么,有没有一种更先进的储热技术,可替代传统的熔盐储热技术进而成为主流?近年来,创新型储能技术层出不穷,尽管其大多停留在实验室或小型示范阶段,在理论层面已证明了其发展潜力,但其商业化价值仍尚待发掘。

1. 挪威Energy Nest公司新型固态混凝土储能技术

挪威科技公司Energy Nest与德国Heidelberg水泥公司(德国跨国建材公司,全球四大水泥生产商之一)展开合作,耗时五年半研发出一种全新的特殊混凝土HEATCRETE储能技术。HEATCRETE混凝土经国际权威独立第三方实验室测试,具有高比热容和高热导率的特性。与之前最为先进的混凝土储能系统相比,HEATCRETE系统的导热系数提高了70%,比热容值提高了15%,这对电站的热力性能和传热介质来说意义重大。该公司表示,其HEATCRETE混凝土储能系统能使整个光

热电站的成本下降10%,针对熔盐储能系统则能节约60%的成本。HEATCRETE混凝土储能技术还能应用于风电和生产高温设备的工厂,但光热电站是该公司的主要目标市场。

2. 麻省理工学院新型液态金属储能技术

2014年9月,麻省理工学院的研究人员公开一种新型全液态金属电池储能系统。该液态金属储能系统内部没有使用任何固体材料制作,全部的储能元件也都采用融化的液体来制作。该系统造价低廉,且使用寿命较长。研究团队称该储能系统可使风能和太阳能这些可再生能源具备与传统能源相竞争的能力。

3. 瑞典查尔姆斯大学新型含碳化学液体高效储能

2017年3月,瑞典查尔姆斯理工大学研究者成功验证了以一种含碳化学液体作为介质,来高效存储太阳能的新型储能技术的可行性。通过这种化学液体,能够实现能量的自由传输以及随时释放。值得一提的是,该化学液体释放能量时,几乎可以实现能量的零损耗。研究小组将这个过程叫做“分子式太阳能储热系统”。目前,此项新技术已成功登上《能源与环境科学》(英国皇家化学院发行的学术期刊)的封面。

图:“分子式太阳能储热系统”模型

4.瑞典SaltX科技公司新型盐结晶储能技术

瑞典SaltX科技公司推出一种新型储能技术,主要利用盐晶体及其溶液在不同温度作用下,发生化学反应来进行储存与释放能量。可应用于光热发电、太阳能制冷和空调领域,该公司宣称可使能耗及储能成本降低约33%。该公司成立于2001年,一直致力于可再生能源的发展。凭借在欧洲绿色能源领域的快速发展,SaltX科技公司于2016年11月荣获BullhoundConnect大奖。目前,该公司已与美国通用电气、瑞美制造和阿法拉伐等公司建立合作关系,并提供新型储能解决方案。

5.美国新型热化学储能系统

2016年5月,美国俄勒冈州立大学和佛罗里达大学的科研人员合作推出一种新型热化学储能系统,可用于存储和释放太阳能。相比传统储热设备,美科研人员改进后的储能方案新增一种类似电池的热化学储能系统,其内部的转化过程是基于热能而非电流。在“充电”期间,碳酸锶在太阳热能作用下,分解成氧化锶和二氧化碳。当“放电”时,氧化锶和二氧化碳会发生合成,同时释放出储存的热量。该储能系统的材料易获得、不易燃且绿色环保,使用这些材料合成的化合物运行温度高达1200摄氏度,储热效率比现有储热系统高两倍。

图:新型热化学储能系统原理图

6.澳大利亚Solastor高纯石墨储能技术

Solastor是澳大利亚一家研究太阳能储热发电技术的专业公司,其采用高纯石墨作为吸热和储热材料的塔式热发电技术一直领先于世界,其内置式石墨储能技术在十余个国家获得了知识产权的专利保护。该储能技术具有低塔、多塔、环保、安全、高容量储能和24小时热能损失低于5%,以及模块化组合等优点。

2014年,江苏润阳储能技术有限公司引进该公司内置式石墨工质塔式光热发电技术,建设我国首个石墨工质塔式光热发电示范项目。这种以石墨为介质,集吸热、储能、热交换为一体的“三合一”内置式先进技术,填补了我国光热发电领域的又一空白,对在我国开发太阳能塔式光热发电技术具有现实意义。

图:位于江阴的我国首个石墨工质塔式光热发电示范项目

7.阿联酋Masdar理工学院沙子储热技术

2015年12月,阿联酋Masdar理工学院宣布,其研究人员已成功证明沙子可以储存太阳热能用于光热发电,存储温度可达1000℃。该研究项目名为“Sandstock”,目标是寻求开发一种可持续的低成本的依靠重力给料的太阳能接收器和存储系统,即使用沙子作为传热和储热介质。沙漠里的沙子是一种潜在的储热材料,其热稳定性和比热容在高温下的特性已经被研究证明。用廉价的沙子可以降低成本,同时,储热材料工作温度的增加意味着效率提升。

2016年7月,全球首个以沙子作为工质的塔式光热电站在意大利西西里岛正式启动。该项目的核心技术是一种基于沙子流化床的太阳能蒸汽发生技术,是首个在MW级规模对沙子储热工质进行示范的电站,能够吸收和储存太阳能并将热量转化为电力和其他热能使用。

图:位于意大利的全球首个沙子工质塔式光热电站

太阳能光热发电与光伏发电对比分析

传统的火力发电是通过燃烧,把化石中储存的能量,转化为热能,再转化为电能。而太阳能光热发电则是通过数量众多的反射镜,将太阳的直射光聚焦采集,通过加热水或者其他工作介质,将太阳能转化为热能,然后利用与传统的热力循环一样的过程,即形成高温高压的水蒸气推动汽轮机工作,最终将热能转化成为电能,典型太阳能光热发电热力循环系统原理如图所示。 太阳能光热发电热力循环系统原理图 正是通过这样的环节,太阳能光热发电技术和传统技术顺利地集成在一起。由于火力发电技术早已非常成熟,从而降低了太阳能光热发电整体技术开发的风险。 中国产业信息网发布的《》指出:技术主要包括太阳能光伏发电和太阳能光热发电两种,光伏发电的原理是当太阳光照射到上时,电池吸收光能,产生光生伏打效应,在电池的两端出现异号电荷积累。若引出电极并接上负载,便有功率输出。光伏发电是目前太阳能发电产业的主流技术,较为成熟,国家已明确其上网电价(不同地

区在0.9~1 元/度范围变化),发电成本也下降至0.7 元/度左右;光热发电在我国发展时间较短,在太阳能聚光方法及设备、高温传热储热、电站设计等集成以及控制方面,已经取得实质性进展,但商业化业绩较小,上网电价政策尚未落实,发电成本也较高,约为0.9 元/度左右。但太阳能光热发电与光伏发电相比具有以下优点: 1)太阳能光热发电输出电力稳定,电力具有可调节性,易于并网 目前太阳能光热发电系统可以通过增加储热单元或通过补燃或与常规火电联合运行改善出力特性。而受日光照射强度影响较大,上网后给电网带来较大压力,其发电形式独特,和传统电厂合并难度大。 ?通过储热改善光热发电出力特性(槽式和塔式光热发电)。白天将多余热量储存,晚间再用储存的热量释放发电,这样可以实现光热发电连续供电,保证电流稳定,避免了光伏发电与风力发电难以解决的入网调峰问题。根据不同储热模式,可不同程度提高电站利用小时数和发电量,提高电站调节性能。 ?通过补燃或与常规火电联合运行改善光热发电出力特性。太阳能热可利用化石燃料补燃或与常规火电联合运行,使其可以在晚上或连续阴天时持续发电,甚至可以以稳定出力承担基荷运行,从而使年发电利用得到7000 小时左右。 2)太阳能光热发电无污染 光热发电是清洁生产过程,基本采用物理手段进行光电能量转换,对环境危害极小,太阳能光热发电站全生命周期的CO2 排放仅为13~19g/kWh。而技术存在致命弱点为在生产过程中对环境的损耗较大,是高能耗、高污染的生产过程。业内专家认为,太阳能电池在生命周期所能节约的能源与生产太阳能电池本身所要消耗的资源相比,并不经济。 和光热发电对比

太阳能光热发电技术研究综述

太阳能光热发电技术研究综述 摘要:太阳能是一种清洁的可再生能源,充分利用太阳能进行发电发热是我国 能源企业正在研究和使用的有效方式,这种方式有助于提高太阳能的利用率,有 助于减少不必要的自然环境污染和破坏,有助于新能源的开拓,是我国逐步实现 节能减排的有效体现,也符合我国低碳经济的发展要求,欧美一些发达国家已经 开始关注具有更高能源利用率的太阳能光热发电技术,并相继建立了不同型式的 示范装置。本文首先对太阳能光热发电系统进行了介绍,分析了国内外太阳能发 电的现状,指出了太阳能发电的技术发展趋势和研究方向。 关键词:太阳能;光热发电;发电技术 引言 目前,我国由于工业规模扩大和粗放经营导致了严重环境污染和破坏,因此 开发清洁能源是有效解决这一问题的重要途径,目前,世界各国纷纷将目光投向 太阳能的开发和应用,这也是全球经济的低碳化发展方向。太阳能作为一种清洁 的可再生能源,是未来的理想能源之一,是人类最可靠、最安全、最绿色、最持 久的替代能源。目前太阳能光伏发电被炒得如火如荼,而太阳能光热发电技术却 少为人知,在太阳能光伏发电遭遇瓶颈的今天,太阳能光热发电逐渐被人们重视 起来。 一、太阳能光热发电系统简介 1、太阳能发电系统的分类 目前,太阳能发电技术分为两种,一种是太阳能光伏发电,一种就是本文提 到的太阳能光热发电。太阳能光热发电技术又分为槽式太阳能光热发电、塔式太 阳能光热发电、碟式太阳能光热发电。目前槽式和塔式太阳能光热发电技术已经 投入使用,但是碟式发电系统还处于实验和示范状态。 2、槽式太阳能光热发电系统简介 这种太阳能光热发电系统主要是利用槽式抛物面聚光器聚光的太阳能产生的 热量进行发电,是一种分散型系统。这一系统的机构由聚光集热装置、蓄热装置、热机发电装置和辅助能源装置构成。槽式抛物面将太阳光线聚集在一条线上,并 在这条线上的重要位置安装集热器,进而吸收太阳的能量,之后将众多的槽式聚 光器串联或并联形成集热器的排列结构。 一般太阳能发电系统采用的是双回路的设计,集热油的回路与动力蒸汽的回 路是分开的,通过换热器交换热量,使用导热油作为热,低温的导热油从油罐泵 进入槽式太阳能集热场,被加热到391℃,之后经过再热器、过热器、蒸发器、 预热器四个装置,将收集的能量交换给动力回路中的蒸汽,进而产生热量极高的 蒸汽,进入汽轮机中做功,然后产生电能。 如果太阳能供应不足,这时就可以利用辅助加热器,如锅炉进行加热,提高 导热油的热量,进而实现该系统的正常运行,保证该系统连续作业,持续的产生 电能。因为槽式聚光器的集热温度不高,使得槽式太阳能光热发电系统中动力系 统的热能转化为功的效率不高,一般不到40%,因此,残春依靠抛物槽式太阳能 光热发电成本较高。 3、塔式太阳能光热发电系统 塔式太阳能光热发电系统是一种集中式发电系统,主要利用定日镜将太阳光 聚焦在中心的吸热器上,太阳的辐射能量会转变为热能,之后传递给热力循环工质,驱动汽轮做功进而实现发电。这一太阳能发电系统可以分为熔盐系统、空气

塔式太阳能热发电技术

塔式太阳能热发电技术浅析 14121330 彭启 1.前言 太阳能热发电是利用聚光器将太阳辐射能汇聚,生成高密度的能量,通过热功循环来发电的技术[1]。我国太阳能热发电技术的研究开发工作始于70年代末,一些高等院校和科研所等单位和机构,对太阳能热发电技术做了不少应用性基础实验研究,并在天津建造了一套功率为lkW的塔式太阳能热发电模拟实验装置,在上海建造了一套功率为lKW的平板式低沸点工质太阳能热发电模拟实验装置[2~3]。 目前主流的太阳能热发电技术主要有4种方式:塔式、槽式、碟式和线性菲涅尔式[4],这4种太阳能光热发电技术各有优缺点。 塔式太阳能聚光比高、运行温度高、热转换效率高,但其跟踪系统复杂、一次性投入大,随着技术的改进,可能会大幅度降低成本,并且能够实现大规模地应用,所以是今后的发展方向。槽式技术较为成熟,系统相对简单,是第一个进入商业化生产的热发电方式,但其工作温度较低,光热转换效率低,参数受到限制。碟式光热转换效率高,单机可标准化生产、既可作分布式系统单独供电,也可并网发电,但发电成本较高、单机规模很难做大。线性菲涅尔式结构简单、发电成本低、具有较好的抗风性能,但工作效率偏低、且由于发展历史较短,技术尚未完全成熟,目前处于示范工程研究阶段。 2.发电原理与系统 塔式太阳能热发电系统的基本形式是利用独立跟踪太阳的定日镜群,将阳光聚集到固定在塔顶部的接收器上产生高温,加热工质产生过热蒸汽或高温气体,驱动汽轮机发电机组或燃气轮机发电机组发电,从而将太阳能转换为电能[5]。 塔式太阳能热发电系统,也称集中型太阳能热发电系统,主要由定日镜阵列、高塔、吸热器、传热介质、换热器、蓄热系统、控制系统及汽轮发电机组等部分组成,基本原理是利用太阳能集热装置将太阳热能转换并储存在传热介质中,再利用高温介质加热水产生蒸汽,驱动汽轮发电机组发电。 塔式太阳能热发电系统中,吸热器位于高塔上,定日镜群以高塔为中心,呈圆周状分布,将太阳光聚焦到吸热器上,集中加热吸热器中的传热介质,介质温度上升,存入高温蓄热罐,然后用泵送入蒸汽发生器加热水产生蒸汽,利用蒸汽驱动汽轮机组发电,汽轮机乏汽经冷凝器冷凝后送入蒸汽发生器循环使用。在蒸汽发生器中放出热量的传热介质重新回到低温蓄热罐中,再送回吸热器加热。塔式太阳能热发电系统概念设计原理系统如图1所示。 图1 塔式太阳能电站系统流程示意图

太阳能光热发电技术

太阳能光热发电技术的应用与发展 摘要:太阳能是一种用之不尽、取之不竭的清洁能源,在能源与环境问题日趋严峻的今天,很多国家都对太阳能发电技术进行了研究和实践,并取得了一些成果。太阳能光热发电是太阳能利用的一种有效方式,目前有槽式、碟式和塔式三种典型的太阳能光热发电方式。比之传统的火力发电方式,太阳能有其环保的优势,但是也存在一些问题需要去克服。随着人类对清洁能源的需求太阳能发电技术将会得到更加深入的发展。 1.太阳能热发电技术概述 能源与环境问题是当今世界面临的两个重要问题,随着化石能源的日趋枯竭,一次能源的利用成本也不断增加,由于大量的燃烧矿石燃料,使环境问题日益严重,温室效应、空气污染越来越引起人们的重视。近年来一些可再生能源受到了人们的推崇,为各国所重视。太阳能是一种取之不尽、用之不竭的清洁能源,利用太阳能直接发电是缓解甚至解决能源问题的一种有效方式,世界各国也都在做积极的努力,已经有很多太阳能发电项目投入运行,太阳能发电技术在未来有着广阔的发展前景。 太阳能是太阳通过辐射的方式想宇宙空间释放的能量,人类所需能量的绝大部分都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代形成的。它们实质上是由古代生物固定下来的太阳能。此外,水能、风能、等也都是由太阳能转换来的。地球轨道上的平均太阳辐射强度为1369W/ m2。地球赤道的周长为40000km,从而可计算出,地球获得的能量可达173000TW。在海平面上的标准峰值强度为1kW/m2,地球表面某一点24h的年平均辐射强度为 0.20kW/m2,相当于有 102000TW的能量,人类 依赖这些能量维持生存, 其中包括所有其他形式的 可再生能源(地热能资源 除外),虽然太阳能资源总 量相当于现在人类所利用 的能源的一万多倍,但太 阳能的能量密度低,而且 它因地而异,因时而变, 这是开发利用太阳能面临 的主要问题。太阳能的这图 1 世界各国太阳能发电装机容量些特点会使它在整个综合能源体系中的作用受到一定的限制。

太阳能光热发电几种创新型储热技术简述

太阳能光热发电几种创新型储热技术 光热电站相比光伏电站的核心优势即在于光热电站可配置储热系统,与传统的火力发电厂一样,生产出电网友好型的可调度电力,满足连续的用电需求。目前,商业化光热发电项目的储能市场仍然以二元熔盐为工质的熔盐储能技术为主流,但其凝固点过高,易冻堵管道的缺陷也饱受诟病。 2016年下半年接连发生的美国新月沙丘电站熔盐罐熔盐泄露事故以及西班牙Gemasolar光热电站熔盐热罐损毁事故,均造成了熔盐罐维修费用及售电收入方面的巨大损失,熔盐储热系统的安全性、可靠性再次受到行业关注。 那么,有没有一种更先进的储热技术,可替代传统的熔盐储热技术进而成为主流?近年来,创新型储能技术层出不穷,尽管其大多停留在实验室或小型示范阶段,在理论层面已证明了其发展潜力,但其商业化价值仍尚待发掘。 1. 挪威Energy Nest公司新型固态混凝土储能技术 挪威科技公司Energy Nest与德国Heidelberg水泥公司(德国跨国建材公司,全球四大水泥生产商之一)展开合作,耗时五年半研发出一种全新的特殊混凝土HEATCRETE储能技术。HEATCRETE混凝土经国际权威独立第三方实验室测试,具有高比热容和高热导率的特性。与之前最为先进的混凝土储能系统相比,HEATCRETE系统的导热系数提高了70%,比热容值提高了15%,这对电站的热力性能和传热介质来说意义重大。该公司表示,其HEATCRETE混凝土储能系统能使整个光

热电站的成本下降10%,针对熔盐储能系统则能节约60%的成本。HEATCRETE混凝土储能技术还能应用于风电和生产高温设备的工厂,但光热电站是该公司的主要目标市场。 2. 麻省理工学院新型液态金属储能技术 2014年9月,麻省理工学院的研究人员公开一种新型全液态金属电池储能系统。该液态金属储能系统内部没有使用任何固体材料制作,全部的储能元件也都采用融化的液体来制作。该系统造价低廉,且使用寿命较长。研究团队称该储能系统可使风能和太阳能这些可再生能源具备与传统能源相竞争的能力。 3. 瑞典查尔姆斯大学新型含碳化学液体高效储能 2017年3月,瑞典查尔姆斯理工大学研究者成功验证了以一种含碳化学液体作为介质,来高效存储太阳能的新型储能技术的可行性。通过这种化学液体,能够实现能量的自由传输以及随时释放。值得一提的是,该化学液体释放能量时,几乎可以实现能量的零损耗。研究小组将这个过程叫做“分子式太阳能储热系统”。目前,此项新技术已成功登上《能源与环境科学》(英国皇家化学院发行的学术期刊)的封面。

太阳能热发电技术综述

太阳能热发电技术综述 1:技术和原理 有三种方式,都是用反射镜聚焦阳光加热水产生蒸汽、通过汽轮机带动发电机发电,区别在于蒸汽产生方式上。 1.1:抛物槽型热发电系统 聚光集热系统(由抛物槽式聚光镜+接收器+跟踪装置组成)+换热系统(由予热器+蒸汽发生器+过热器和再热器组成)+发电系统(同常规发电设备)+蓄热系统(显式、潜式、化学储热三种)+辅助能源系统(夜间和阴天用辅助发电设备)。一般建大于350MW电厂 1.2:塔式热发电 平面镜反射阳光到中心接收塔顶收集器,大量能量在高温下熔化一种盐、并将热盐储存罐中、当要发电时打开产生蒸汽驱动透平发电机。产生蒸汽后低温盐回到冷盐储存罐中并用泵打到塔顶再次加热以为下一热循环用(Ⅱ型)。一般建几千MW电厂。 特点:聚光倍数高易达到高温、反射光线一次完成简单高效、光热转换效率高、成本低 1.3:蝶型热发电 蝶型抛物镜/斯特林系统适用边远地区独立电站,光学效率高、启动损失小。用于小型独立电站。2:比较

电站初期投资1.42亿元,其中定日镜52%、发电设备18%、蓄热装置10%、接收器5%、塔3%、管道及换热器8%、其它4%。可以看出定日镜价格贵,但隋制镜技术提高成本大幅下降,预计到2020年发电成本会达到30-60美元/Mwh(即3-6美分/度)。在大规模发电方面,塔式太阳能热发电将是所有太阳能发电中成本最低的一种方式。 太阳能热发电投资成本为煤电的8倍左右,但因其不需燃料则用电成本比煤电低20-40倍,隋技术发展太阳能热发电成本进一步下降,有环保意识的用户更倾向于绿色能源,而煤电将隋通货膨胀而上升 3条件 3.1:土地:建一个200MW(20万KW)太阳能热发电厂需占地3000英亩,但太阳能热发电与光伏和风力发电比较不宜模块化,估计要在100-300MW以上时才比较经济 3.2:光照:太阳光全照射功率大于1kw/m2,每年大于2000kwh/m2才是经济的 3.3:投资:一个中等的100MW发电厂投资成本3-5美元/W,发电成本10-15美分/度 4:国内外发展情况 4.1:国外 至2004年全世界已装太阳能发电系统总收集阳光面积9500万平方米,以光照1kw/m、照射时间50%、平均转化率20%,则差不多可获电能10GW,但大部分是在低温下使用(如水加热等),高温使用(如热电厂等)只有500Mw,不过正地快速增长。 07-08二年中,世界上太阳能热发电的在建装机容量是07年之前20年中的8倍,太阳能热发电技术已进入快速发展期。 太阳能热发电在可再生能源发电技术中具有成本低、节能减排作用显著、无污染等特点而具有明显的市埸前景。 09年6月29日,国际能源署SolarPACES组织、欧洲太阳能热发电协会(ESTELA)和绿色和平组织联合公布了三方共同撰写的《聚光型太阳能热发电展望2009》。报告预测到2030年聚光型太阳能热发电(简称CSP)将能满足全球7%的电力需求,到2050年可提高到25%。报告认为槽式CSP已经是可靠且得到示范证明的技术,在建和运行的发电站装机容量已接近2000 MW,主要位于西班牙和美国。 CSP发电站具有调度能力,并且可以通过结合新的储能技术和其他可再生能源或传统能源的混合运行概念予以加强。这一特点可解决可再生能源存在的一个最重要的缺点:变化大、不可预测且不可调度。 未来十年里CSP在世界一些日照最强的地区有望得到发展。到2014年在建和拟建CSP发电站容量可达到15 000 MW。然而,CSP仍有一些缺陷尚待解决:首先是成本,需要从系统到部件的创新以及制造技术的改进。效率上也仍有很大的提高空间(更高的工作温度,更好的集热器性能等)。发电站的最佳规模应比现有的要大(目前受制于监管和金融因素),与此相关的储能能力还需要从容量、温度和成本等方面加以提高。最后,还需要从建造和降低运营维护成本中产生学习效应。 美国、以色列、澳大利亚、德国等是太阳能利用的技术强国,在阿尔及利亚、澳大利亚、埃及、希腊、印度、以色列、意大利、墨西哥、摩洛哥、西班牙、美国等已建有13个太阳能热电厂。德国将在西班牙建二个50MW并网的太阳能热电,投资4亿美元(8美元/W),用非跟踪式抛物型聚能器。

太阳能光热发电特点、类型与前景分析

太阳能光热发电特点、类型与前景分析 发表时间:2017-12-01T09:58:43.030Z 来源:《电力设备》2017年第22期作者:杨阳 [导读] 摘要:太阳能光热发电虽在我国起步较晚,但随着国家对可再生能源的日益重视,光热发电产业呈迅猛发展的趋势。 (全球能源互联网集团有限公司北京 100031) 摘要:太阳能光热发电虽在我国起步较晚,但随着国家对可再生能源的日益重视,光热发电产业呈迅猛发展的趋势。作为一种新型的能源开发利用模式,光热发电极有可能发展为新的投资热点。本文介绍了太阳能光热发电的特点,分析了光热发电系统的主要类型,探讨了光热发电的前景。 关键词:太阳能;光热发电;应用前景 引言 随着全球气候温升变化、自然灾害频繁发生,环境污染和能源利用问题成为制约世界经济发展的关键因素。当前中国经济社会发展过程中同样面临能源问题的严峻挑战,电能作为经济发展的基础动力,其经济性与合理性影响着全社会的发展。太阳能是一种取之不尽、用之不竭的可再生能源,据统计,全世界每年的能源消耗量仅为太阳40分钟内照射到地球上所释放的能量。太阳能光热发电逐渐成为当今能源利用的一个新热潮。 一、光热发电的特点 太阳能光热发电是通过聚集太阳辐射的能量,将热能转变成高温蒸汽驱动蒸汽轮机来发电,这种发电方式叫做聚光式发电。美国从1984就已经开始利用太阳能光热进行发电,后来由于石化能源的价格下跌,美国取消了该方面的项目支持,直到2006年,随着能源危机的爆发,发达国家开始大面积的规划和建设光热发电项目。 (1)光热发电是通过“光--热--功”的转化过程实现发电的一种技术。光热发电在原理上和传统的化石燃料电站类似,两者最大的区别在于输入的能源不同。光热发电利用的能源为太阳能,通过聚光器将低密度的太阳能聚集成高密度的能量,经由传热介质将太阳能转化为热能,通过热力循环做功实现到电能的转换。 (2)太阳能光热发电从其发电原理上来看,是一种绿色能源的绿色利用方式,且太阳能资源是世界上分布最广泛的、取之不尽、用之不竭的可再生能源。从这个意义上看,太阳能光热发电技术的发展对于人类经济社会可持续发展具有重要意义。 二、光热发电系统主要类型 1、槽式发电系统 所谓槽式太阳能光热发电系统,其全称为槽式抛物面反射镜太阳能光热发电系统,其主要是把若干个槽型抛物面聚光集热器实施串并联形式的排列,通过太阳能来针对热管当中的工质进行加热,使得内部生成高温蒸汽,以此来推动汽轮发电机组来实现发电的功能。槽式太阳能聚光系统的聚光比通常在10~100之间,其以油为导热流体(工质)的聚热温度最高能够到达400℃,而以混合硝酸盐(工质)为导热流体最高能使集热温度达到550℃。相对来说,后者的发电效率较高[2]。除此之外,因为太阳光照存在时间不均匀的特征,这就需要应用其他措施或是构建蓄热系统来进行有效的补充。 2、线性菲涅耳反射器系统 最近几年以来,线性菲涅耳反射器系统开始逐渐兴起,这种系统主要是从最早的槽式太阳能发电系统不断改进优化后研发的。线性菲涅耳反射聚光器主要包括跟踪装置、反射镜场以及接收器这三个部分。所谓主反射镜场,主要是依靠若干个平面镜条共同组成的一种平面镜阵列,平面镜自身的转动轴(长轴)处在相同的平面中,通过跟踪装置的设定,使得平面镜能够绕着转动轴转动,达成跟随太阳转动的目的。当平面镜接受的发射光聚集在接收器的受光口以后,接收器则主要接受主反射镜当中的反射光,通过针对吸收钢管流动工质进行加热,就能够将光热转化成热能。线性菲涅耳反射器系统主要是利用菲涅耳结构当中的聚光镜来代替传统的抛物面镜,而其结构当中的集热管也具备二次反射的作用,聚光效率能够达到常规抛物面型集热器的3倍左右,而建设费用则能够减少一半。 3、塔式发电系统 塔式太阳能光热发电系统主要包括发电系统、主控系统、蓄热槽、接收器以及定日镜群这几个结构。通过在地面上建设一定数量的定日镜(自动跟踪太阳进行转动的球面镜群),而在这个定日镜群当中选择合适的位置构建一座高塔,在高塔的定点位置建设接收器,下面的定日镜群能够让太阳光汇聚成点状,集中照射到锅炉上面,能够让接收器当中的传热介质到达对应的温度,同时利用管道传递到地面的蒸汽发生器,生成高温蒸汽,最终实现发电的目的。相较于槽式太阳能发电系统而言,塔式太阳能发电系统的聚光比要更高,一般为300~1500之间,而运行温度也达到了1000~1500℃之间。塔式太阳能发电系统当中,接收器是至关重要的部分,依照导热介质的类型,现在主要包含空腔型与外部受光型。 4、碟式发电系统 碟式太阳能光热发电系统又可以称为盘式太阳能发电系统,属于世界上最早开发的太阳能动力系统。其主要是由若干个镜子共同组成的抛物面反射镜构成,通过接收在抛物面当中的焦点,具有非常高的聚光比,通常都能够达到3000以上,在焦点位置生成的温度非常高,通常可以达到750~1500℃之间,所以碟式太阳能发电系统具有非常高的热机效率。最近几年以来,碟式太阳能发电系统的发展主要集中在开发单位功率质量比更小的空间电源。 三、光热发电的前景 太阳能光热发电比光伏发电、风力发电更加有助于电网的稳定;并且避免了光伏发电中成本较大的硅晶光电转换过程,降低了成本,免除了污染,将作为新能源开发利用的主要角色。我国的太阳能资源非常丰富,特别是西部与北部地区,广阔的土地及丰富的太阳能资源能够适合光热发电大范围发展的需求。 太阳能光热发电产业的未来发展可从两方面阐述,一方面是建立配置储能装置的大型光热电站和建立光热与天然气联合型电站等,另一方面采取光热发电的分区布置式应用,包含在海岛、偏僻地区运用光热发电促成供电、供热以及海水淡化,在具备工业用热所需领域推广建立光热热电联合产业等。 结语 太阳能光热发电拥有广阔的发展前景,应加大对太阳能光热发电相关技术的研究,并在太阳能较为丰富的地区重点展开光热发电产

太阳能热利用论文:太阳能热利用技术概述

太阳能热利用论文:太阳能热利用技术概述【摘要】太阳能是一种洁净和可再生的能源,太阳能热利用技术发展迅速。本文对太阳能利用成熟技术、先进技术和当前研究的热点技术进行了简要介绍。在发电过程中使用矿物燃料,从而减轻空气污染及全球暖化的问题,环境保护的发展趋势。成熟技术部分主要包括集热器、热水系统、太阳灶、太阳能暖房等传统的太阳能热利用技术;先进技术部分主要阐述了尚处于研究试验阶段的高品位太阳能热利 用技术,包括太阳能空调降温/制冷、太阳能制氢、太阳能热发电等;在当前研究的热点问题部分,主要论述太阳能建筑热利用的技术问题。 【关键词】太阳能热利用;太阳能建筑;太阳能热发电;太阳能集热器 1.引言 太阳能的利用已日益广泛,它包括太阳能的光热利用,太阳能的光电利用和太阳能的光化学利用等。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能热利用是一种较成熟的可再生能源利用方式。太阳能热利用是可再生能源技术领域商业化程度最高、推广应用最普遍的技术之一。现代的太阳能热技术将阳光聚合,并运用其能量产生热水、蒸汽和电力。除了运用适当的科技来收集太阳能外,

建筑物亦可利用太阳的光和热能。太阳能资源总量相当于现在人类所利用的能源的一万多倍,太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。但是太阳能有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。太阳能热利用研究和开发方兴未艾,随着常规能源供给的有限性及地球环保压力的增加,世界上许多国家掀起开发利用太阳能的热潮,开发利用太阳能成为各国可持续发展战略的重要内容,太阳能先进技术已成为世界当前及未来研究、开发和利用的主要方向。 2.太阳能热利用技术 太阳能热利用的基本原理是用集热器将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的集热器,主要有平板型集热器、真空管集热器、热管式集热器和聚焦型集热器等4种。通常太阳能热利用可分为:低温(80℃以下)、中温(80-350℃)和高温(350℃以上)三类热利用方式。低温热利用包括最简单的地膜、塑料大棚以及干燥器、蒸馏、供暖、太阳热水器。中温热利用有太阳能建筑、空调制冷、制盐以及其它工业用。热高温热

太阳能热发电技术现状

i太阳能热发电技术现状 李强 衢州学院机械工程学院 4140113038 摘要:介绍了槽式、塔式和盘式太阳能热利用发电站的发展史和技术现状。指出槽式太阳能热发电站的功率可至 1000MW,是所有太阳能热发电站中功率最大的,其年收益也最高。塔式太阳能热利用发电站的功率可至1000MW,与槽式系统相比,在商业上还不成熟。但高温型塔式系统和燃气轮机混合发电或和混合发电站联合发电最具市场化前景。盘式太阳能热发电系统功率5-1000kW,它用在流动场所,应用范围大,除可满足用电需求,还可代替柴油机组。 关键词:太阳能热发电,进展。 Abstract:Groove is introduced, and disc tower solar thermal power plant's development history and the status quo of the technology. Points out that the trough type solar thermal power plants to 1000 mw of power, is the largest solar power in the thermal power plant, its annual revenue is the highest. Tower solar thermal power plant to 1000 mw of power, compared with the groove system, in business is not yet mature. But high temperature type tower systems and gas turbine hybrid power generation or joint power and hybrid power plants the most market prospects. Disc solar thermal power generation system power 5-1000 - kw, it is used in flow, application scope is big,

太阳能光热发电的技术优势

太阳能光热发电的技术优势 具体来说,太阳能光热发电的优势表现在以下几个方面: 优势一:电能质量优良,可直接无障碍并网。 太阳能光热发电与常规化石能源在热力发电上原理相同,都是通过Rankine 循环、Brayton循环或Stirling 循环将热能转换为电能,直接输出交流电,不必像光伏或风电一样还需要逆变器转换,电量传输技术相对较为成熟,稳定性高,因此更方便与目前国内的电网对接,且电力品质好。 优势二:可储能,可调峰,实现连续发电。 电网的负荷曲线形状在白天与太阳能发电自然曲线相似,上午负荷随时间上升,下午随时间下降,因此太阳能发电是天然的电网调峰负荷,可根据电网白天和晚上的最大负荷差确定负荷比例,一般可占10-20%的比例; 受益于热能的易储存性,所有太阳能光热发电电站都有一定程度的调峰、调度能力,即通过热的转换实现发电的缓冲和平滑,并可应对太阳能短暂的不稳定状况; 储能是可再生能源发展的一大瓶颈,实践证明储热的效率和经济性显著优于储电和抽水蓄能。配备专门蓄热装置的太阳能光热发电电站,不仅在启动时和少云到多云状态时可以补充能量,保证机组的稳定运行,甚至可以实现日落后24 小时不间断发电,同时可根据负载、电网需求进行电力调峰、调度。

优势三:规模效应下成本优势突出。 因热电转换环节与火电相同,太阳能光热发电也与火电同样具备显著的规模效应,优于风电和光伏等。随着技术进步和产业规模扩大,太阳能光热发电的成本将很快接近甚至低于传统化石能源发电成本。 优势四:清洁无污染,助力碳减排。 光伏尽管是清洁发电,但硅片生产环节却高耗能高污染,而太阳能光热发电不需要提炼重金属、稀有金属和硅,生产与发电环节均无污染,是真正的清洁能源。 据测算在整个生命周期中,太阳能光热发电的碳排放量仅为19g/kWh,而传统火电则高达270g/kWh。 光伏取用的太阳能尽管是可再生,但光伏电池材料是硅,电池寿命有限,对硅片及稀有金属消耗量大,而太阳能光热发电的材料更为普遍且廉价,如导热材料等可以循环使用。 太阳能光热发电对传统能源的逐步替代可大幅降低碳排放。每平方米聚光器表面吸收的热量,可以避免200-300kg二氧化碳排放。在光照条件符合的区域,利用光热发电技术,1km2的土地每年可以产生100-130GWh 的太阳电能,相当于50MW 的常规煤炭或天然气中等负荷电站,在太阳能光热发电整个运行寿命中,产生的能量将等同于500 万桶石油。 根据世界能源理事会(World Energy Council,WEC)的测算,假设未来20 年煤炭和天然气仍然是发电的主导能源,而且天然气将逐渐替代煤炭,那么太阳能发电可实现的单位二氧化碳减排将达

碟式太阳能热发电技术综述_一_

5  碟式太阳能热发电技术综述(一) 许 辉,张 红,白 穜,丁 莉,庄 骏 南京工业大学能源学院,南京 210009 [摘 要] 介绍碟式太阳能热发电技术的原理及特性,并对聚光器、接收器等关键技术进行了分 析。结果表明,热管式接收器和混合式接收器具有较好的研究开发前景。 [关 键 词] 太阳能;热发电;碟式聚光器;斯特林发动机;接收器;辐射强度;热换[中图分类号] T K511[文献标识码] A [文章编号] 100223364(2009)0520005205 [DOI 编号] 10.3969/j.issn.100223364.2009.05.005 AN OVERVIEW OF DISH SOLAR THERMAL POWER TECHNOLOG Y XU Hui ,ZHAN G Hong ,BA I Tong ,DIN G Li ,ZHUAN G J un College of Energy ,Nanjing University of Technology Abstract :In t his paper ,t he p rinciple and characteristic of dish t hermal power is introduced ,also ,t he critical technique of dish solar t hermal system such as concentrators ,receivers ,heat engine etc.are de 2scribed in detail.Especially ,an overall analysis of receiver for dish solar t hermal power system is giv 2en ,and t he result s show t hat t he heat pipe receivers have good develop ment prospect s. K ey w ords :solar energy ,t hermal power generation ,parabolic dish concent rator ,stirling engine ,receiv 2er ,radiation ,heat exchange 基金项目: 国家863高技术研究发展计划资助项目(2006AA05Z419) 作者简介:  许辉(19812),男,安徽萧县人,南京工业大学博士研究生,研读方向为高效传热传质设备与新能源开发技术。 碟式太阳能热发电技术是太阳能热发电中光电转 换效率最高的一种方式,它通过旋转抛物面碟形聚光器将太阳辐射聚集到接收器中,接收器将能量吸收后传递到热电转换系统,从而实现了太阳能到电能的转换。从上世纪80年代起,美国、德国、西班牙、俄罗斯(前苏联)等国对碟式太阳能热发电系统及其部件进行了大量的研究。我国对于碟式太阳能热发电技术的研究仍处于起步阶段,许多关键技术需要逐一研究或解决。 1 系统概述 碟式太阳能热发电系统包括聚光器、接收器、热 机、支架、跟踪控制系统等主要部件。系统工作时,从聚光器反射的太阳光聚焦在接收器上,热机的工作介质流经接收器吸收太阳光转换成的热能,使介质温度升高,即可推动热机运转,并带动发电机发电。 由于碟式太阳能热发电系统聚光比可达到3000以上[1],一方面使得接收器的吸热面积可以很小,从而达到较小的能量损失,另一方面可使接收器的接收温度达800℃以上[2]。因此,碟式太阳能热发电的效率非常高,最高光电转换效率可达29.4%[3]。碟式太阳能热发电系统单机容量较小,一般在5~25kW 之间[4~6],适合建立分布式能源系统,特别是在农村或一些偏远地区,具有更强的适应性。

太阳能光热利用的基本原理是将太阳辐射能收集起来

太阳能光热利用的基本原理是将太阳辐射能收集起来,将光能转换成热能加以利用,目前主要应用在太阳能热水器和光热发电两大领域。中国太阳能光热产业发轫于20世纪80年代,由于当时能源紧张局面的出现,各大专院校和科研院所开始了太阳能光热利用的研究工作。随着国家“863”计划的实施,一批科研成果迅速转化成生产力,全面推动了我国太阳能光热利用的产业化进程。 目前,我国已成为世界上最大的太阳能光热应用市场,也是世界上最大的太阳能集热器制造中心。到2009年我国集热器累计推广总面积约1.45亿平方米,占世界总量的76%左右;年产量达4000多万平方米,接近世界总产量的60%。2009年我国太阳能热水器总销售额约578.5亿元,同比增长34.5%。太阳能光热技术不仅在民用领域,还在造纸、饮料、机械、纺织、食品、养殖等工农业生产方面得到广泛应用。 我国太阳能光热产业之所以能快速发展并跃居世界第一,关键因素是掌握了核心技术。我国太阳能光热产业自有技术占95%以上,在太阳能集热、高温发电集成系统、采暖制冷、海水淡化、建筑节能、设备检测等方面,拥有国际领先的技术。 太阳能光热发电是太阳能光热技术应用的一个新领域,在光热利用产业中后来居上,发展势头十分迅猛。“十一五”期间,国家对光热发电技术研发的投资力度不断加大。从2006年到2010年,仅科技部投入光热发电的经费就超过4750万元,重点技术领域取得了突破性进展。 随着中高温太阳能热水器的开发以及太阳能与建筑一体化技术的日益完善,太阳能热水器的应用领域不再局限于提供热水,正逐步向取暖、制冷、烘干和工业应用方向拓展,市场潜力巨大。 “十二五”发展规划中,首次明确提出将在未来5年内,政府直接投资4 万亿元用于新能源、节能环保技术等9大行业的发展。作为同时横跨“新能源”和“节能环保”两大产业的太阳能光热,已然成为各级政府和产业政策中的焦点。 中投顾问发布的《2010-2015年中国太阳能光热产业投资分析及前景预测报告》共八章。首先介绍了太阳能热利用的概念、利用方式、发展现状,然后详细介绍了太阳能热水器、太阳能光热发电、太阳能建筑、太阳能空调、太阳能灶、太阳能海水淡化、太阳能干燥技术的发展。随后,报告分析了太阳能光热产业重点企业的运营状况。最后,报告对太阳能热利用产业的前景趋势做出了科学的预测。您若想对太阳能光热产业有个系统的了解或者想投资太阳能光热相关产业,本报告是您不可或缺的重要工具。

太阳能光热发电技术的发展 王永胜

太阳能光热发电技术的发展王永胜 发表时间:2017-09-07T16:04:20.560Z 来源:《电力设备管理》2017年第7期作者:王永胜 [导读] 近年来一些科学家提出光热发电技术用于煤的气化与液化,形成气体或液体燃料,进行远距离的运输。 神华国华准格尔发电有限责任公司 010300 摘要:太阳能自开始进行研究和使用以来,一直被认为是21世纪最环保和利用效率高的新能源发电技术,其是一种可以再生的光发电技术,能够最大程度的将太阳能转化为电能,且其在进行实际发电技术应用时,也非常的环保和便捷。随着我国对太阳能发电技术的不断研究和深入,目前在我国太阳能发电技术使用,最为成熟的发电技术主要为太阳能光伏发电技术和太阳能热发电技术两种,这两种中包含了几种使用较为广泛的太阳能发电技术,且这些太阳能发电技术在发电利用中有着较大的发展前景。 关键词:太阳能;光热发电技术;发展 1光热发电主要类型分析 1.1 槽式太阳能发电系统 所谓槽式太阳能发电系统,其全称为槽式抛物面反射镜太阳能热发电系统,其主要是把若干个槽型抛物面聚光集热器实施串并联形式的排列,通过太阳能来针对热管当中的工质进行加热,使得内部生成高温蒸汽,以此来推动汽轮机发电机组来实现发电的功能。 槽式太阳能聚光系统的聚光比通常在10~100之间,其以油为导热流体(工质)的聚热温度最高能够到达400℃,而以混合硝酸盐(工质)为导热流体最高能使集热温度达到550℃,相对来说,后面这种方式的发电效率显然较高[2]。除此之外,因为太阳光照存在时间不均匀的特征,这就需要应用其他染料亦或是构建蓄热系统来进行有效的补充。 1.2 线性菲涅耳反射器系统 最近几年以来,线性菲涅耳反射器系统开始逐渐兴起,这种系统主要是从最早的槽式太阳能发电系统不断改进优化后研发的。线性菲涅耳反射聚光器主要包括跟踪装置、反射镜场以及接收器这三个部分。所谓主反射镜场,其主要是依靠若干个平面镜条共同组成的一种平面镜阵列,平面镜自身的转动轴(长轴)处在相同的平面中,通过跟踪装置的设定,使得平面镜能够绕着转动轴进行转动,达成跟随太阳转动的目标。当平面镜接受的发射光聚集在接收器的受光口以后,而接收器则主要接受主反射镜当中的反射光,通过针对吸收钢管流动工质进行加热,就能够将光热转化成热能。线性菲涅耳反射器系统主要是利用菲涅耳结构当中的聚光镜来代替传统的抛物面镜,而其结构当中的集热管也具备二次反射的作用,聚光效率能够达到常规抛物面型集热器的3倍左右,而建设费用则能够减少一半。 1.3 塔式太阳能发电系统 塔式太阳能发电系统主要包括发电系统、主控系统、蓄热槽、接收器以及定日镜群这几个结构。通过在地面上建设一定数量的定日镜(自动跟踪太阳进行转动的球面镜群),而在这个定日镜群当中选择合适的位置构建一座高塔,在高塔的定点位置建设接收器,下面的定日镜群能够让太阳光汇聚成点状,集中照射到锅炉上面,能够让接收器当中的传热介质到达对应的温度,同时利用管道传递到地面的蒸汽发生器,生成高温蒸汽,最终实现发电的目的。相较于槽式太阳能发电系统而言,塔式太阳能发电系统的聚光比要更高,一般为300~1500之间,而运行温度也达到了1000~1500℃之间。塔式太阳能发电系统当中,接收器是至关重要的部分,依照导热介质的类型,现在主要包含空腔型与外部受光型。 1.4 碟式太阳能发电系统 碟式太阳能发电系统又可以称为盘式太阳能发电系统,其属于世界上最早开发的太阳能动力系统。其主要是由若干个镜子共同组成的抛物面反射镜构成,通过接收在抛物面当中的焦点,具有非常高的聚光比,通常都能够达到3000以上,在焦点位置生成的温度非常高,通常可以达到750~1500℃之间,所以碟式太阳能发电系统具有非常高的热机效率。最近几年以来,碟式太阳能发电系统的发展主要集中在开发单位功率质量比更小的空间电源。相较于许多光伏发电系统而言,盘式太阳能热发电系统具备运行费用低、气动阻力小以及发射质量小等优势。 与槽式发电系统的区别在于,碟式太阳能发电系统当中的热点转化装置通常都是应用斯特林机来当作原动机。而斯特林机属于一种活塞式的外染机,在内部分别配有一个动力活塞与一个配气活塞。通过在气缸侧壁位置设置连接配气活塞上下室的旁路,而内部的循环工质则充分利用这个旁路来分别在配气活塞上下室进行交替式的运动。 2太阳能热发电技术 塔式太阳能热发电系统和槽式太阳能热发电系统以及碟式太阳能热发电系统是太阳能热发电的主要技术其在进行太阳能发电运行时的主要参数如图1: 表1三种太阳能热发电系统的运行参数比较 2.1塔式太阳能热发电系统 塔式光热发电系统也称为集中式系统,其主要是通过在发电站中安装较多的太阳能反射镜,将太阳能光反射到独立进行跟踪的定日镜群中,而每天定日镜都配有自动跟踪的结构,其可以自动将太阳光反射到塔顶部的接收器中。当塔顶部的接收器接收到的聚光倍率高于1100倍后,其会将吸收到的太阳光转化为热能,并传输给塔式太阳能的热发电系统中的工质,工质经过系统的蓄热流程后会自动进入热动力机中,而膨胀做工可以则带动发电机进行工作,这使得热能在经过环节处理后转化为电能。 2.2槽式太阳能热发电系统 槽式太阳能热发电系统主要是在并联的顺序上安装多个槽式抛物面,使得其能够通过反射镜将直射的太阳集聚在聚光集热器中,而集热器在接受太阳光直射达到一定程度时,其会对集热管中的工作进行自动的加热,在加热后集热管会出现高温的情况。槽式太阳能热发电

太阳能热发电技术的现状及发展趋势

太阳能热发电技术的现状及发展趋势 在全球可持续发展的大背景下,“绿色能源”和“低碳生活”的概念正受到越来越多的关注,各国竞相开展以风能、太阳能、生物能、地热能、海洋能等可再生绿色能源为主的研究和应用.同时从国家能源局获悉,我国首轮太阳能光热发电特许权招标项目,已于2010年6月底至7月初正式开始.此政策的颁布,打破了常规化石燃料发电占据整个发电行业的局面,意味着太阳能因其储量的无限性、利用的清洁性等特点一跃成为最热门的新能源之一,太阳能热发电技术将迅速进入商业化成长时期,成为解决当前能源、资源、环境等一系列问题的新兴产业.人们最早对太阳能热发电的研究,可以追溯到18世纪70年代在巴黎建立的第一个小型点聚集太阳能热交互蒸汽机,自此之后,各国对太阳能热发电技术的研究从未终止.在1981年至1991年间,全世界建造了多种不同形式的兆瓦级太阳能热发电试验电站20余座(塔式为主);另外在1985至1991的6年间,在美国加州沙漠建成的9座槽式太阳能发电站,更是将发电成本降至8美分/kWh,太阳能热发电项目已成为各国建立新能源系统的方向之一.经过近30年的发展,部分太阳能热发电技术已完成试验和示范阶段,正向低成本、高产业化迈进.本文以目前研究最为广泛的聚光式太阳能热发电技术为对象,对各种聚光式太阳能热发电技术进行介绍、分析和比较,希望能得出对我国太阳能热发电行业具有建设性的意见. 1太阳能热发电技术的概念与分类 太阳能热发电主要是将聚集到的太阳辐射能,通过换热装置产生蒸汽,驱动蒸汽轮机发电.太阳能热发电与常规化石能源在热力发电方式上的原理是相同的,都是通过Rankine 循环、Brayton循环或Stirling循环将热能转换为电能,区别在于热源不同,太阳能发电的热源来自太阳辐射,因而如何用聚光装置将太阳能收集起来是大多数太阳能热发电的关键技术之一.此外,考虑到太阳能的间歇性,需要配置蓄热系统储存收集到的太阳能,用以夜间或辐射不足时进行发电,因此成熟的蓄热技术成为太阳能热发电中的另一关键技术.直接光发电和间接光发电是太阳能热发电中最常用的分类方式.直接光发电可分为太阳能热离子发电、太阳能温差发电和太阳能热磁体发电;间接光发电可分为聚光类和非聚光类,其中聚光类按照太阳采集方式可分为太阳能塔式发电、太阳能槽式发电和太阳能碟式发电;非聚光类主要有太阳能真空管发电、太阳能热气流发电和太阳能热池发电等.通常所说的太阳能热发电,主要指间接光发电,直接光发电尚在实验阶段.目前主流的太阳能热发电技术集中在塔式、槽式和碟式,它们因开发前景巨大而受到极大的关注. 2聚光式太阳能热发电技术 2.1塔式太阳能热发电

相关文档
最新文档