薄膜电容和铝电解电容在直流支撑应用的换算关系-中文

薄膜电容和铝电解电容在直流支撑应用的换算关系-中文
薄膜电容和铝电解电容在直流支撑应用的换算关系-中文

替代电解电容的薄膜电容技术

DC-Link电容器应用

在过去多年的发展中,使用金属化膜以及膜上金属分割技术的DC滤波电容得到了长足的发展,现在薄膜生产商开发出更薄的膜,同时改进了金属化的分割技术极大的帮助了这种电容的发展,聚丙烯薄膜电容能够比电解电容更加经济地覆盖600VDC 到2200VDC的电压范围。薄膜电容具有的许多优势,使它替代电解电容成为工业和电力电子功率变换市场的趋势。

这些优点包括了:

承受高的有效电流的能力

能承受两倍于额定电压的过压

能承受反向电压

承受高峰值电流的能力

长寿命,可长时间存储

但是,只种替代并非“微法对微法”的替代,而是功能上的替代.

当然,尽管膜电容技术有了长足的进展,但不是所有的应用领域都能替代电解电容。

电解电容技术

典型的电解电容的最大标称电压为500 到600V。所以在要求更高电压的情况下,使用者必须将多只电容串联使用。同时,由于各电容的绝缘电阻不同,使用者必须在每个电容上连接电阻以平衡电压。

此外,如果超过额定电压1.5倍的反向电压被加在电容上时,会引起电容内部化学反应的发生。如果这种电压持续足够长的时间,电容会发生爆炸,或者随着电容内部压力的释放电解液会流出。为了避免这种危险,使用者必须给每个电容并联一个二极管。在特定应用中电容的抗浪涌能力也是考察电容的重要指标。实际上,对电解电容而言,允许承受的最大浪涌电压是VnDC的1.15或1.2倍(更好的电解电容)。这种情况迫使使用者不得不考虑浪涌电压而非标称电压。

直流支撑滤波:高电流设计和电容值设计

a) 使用电池供电的情况

应用为电车或电叉车

在这种情况下,电容被用来退耦。膜电容特别适合这种应用。因为直流支撑电容的主要标准是有效值电流的承受能力。这意味着直流支撑电容能够以有效值电流来设计

以电车为例,要求的数据

工作电压: 120VDC

允许的纹波电压: 4V RMS

有效值电流: 80 A RMS @ 20 kHz

最小容值为

与电解电容比较:

以每μF 20 mA为例,为了承受80A有效值电流,最小容值

b)电网供电的电机驱动

直流母线电压波形:

容值的确定应从电网频率比逆变器频率低入手。使用下述等式确定容值:

流过电容的有效值电流为(近似表示式),该电流没有考虑逆变器侧的电流

通过上述近似式,我们能看出通过电容的有效值电流由负载功率Umax 和U ripple决定。以下用一个具体的例子作解释

直流电压1000V,纹波电压200V

I rms :(P=1MW) = 2468Arms

(P=500kW) = 1234Arms

(P=100kW) = 247Arms

将低频部分放大:

为了方便比较,我们选择电流承受能力为20mA每μF的电解电容

考虑到0.2Arms/μF,有效值电流为2468A时,需要的最小容值为123.4mF。对应图中曲线的值,我们可以看到对频率低于100Hz 的整流器,使用膜电容,该容值同样是需要的。

因此,对于三相,六整流管的整流器,频率为。我们可以看到对应1MW的曲线,需要18.5mF的容值。与电解电容相比,如使用膜电容方案,体积几乎可以缩小4倍,同时有更高的可靠型。

在更低功率的情况下,同样能够给出相同的结果, 对于10kW的功率,虽然容值变得很小,但是膜电容仍然是最好的解决方案。甚至在100Hz整流器频率,只需要555μF的电容,供电电压与纹波电压仍然与前面相同。

替代电解电容的薄膜电容技术

DC-Link电容器应用

过压设计

现在我们来看轻型牵引的应用,如:地铁,轻轨,电车等。

直流支撑电压波形: 在接触断开时,能量来自直流支撑电容,结果,电压降低。因此,只要接触重新被建立过压将出现。

其中

更糟的情况是?V =吊线电压, 因为过压会达到额定电压的几乎2倍。膜电容可以承受这种过压。

电解电容可承受最大1.2倍的额定电压。所以,电解电容可以承受的最低电压为:2X1000V/1.2=1670V需要四支450V的电解电容串联。

考虑部分从网上得到的数据,10mF的电解电容,体积为26升,最大有效值电流为20Arms。而相同容值的膜电容,体积为25 升,最大有效值电流可比500Arms还高。

另外,由于过压的出现,也出现了流过电容的峰值电流。因此我们必须计算因过压产生的能量

I2t =

在几个周期后,电流变为零,那么:

其中:

这种能量的计算也被用于端间短路放电的过程。.这样的放电会产生非常高的峰值电流与振铃,这是电解电容不能承受的。

电压的额定

对于要求高额定电压的场合,膜电容的解决方案无疑很有优势。

但如果要求高容值的场合,膜电容解决方案的竞争力就会减弱。的确,如果没有过压,有效值电流很低,同时需要大容值的场合,在900V以下的应用中,膜电容很难与电解电容竞争。

寿命计算:

膜电容允许有很长的寿命期望,其寿命的长短由负载电压条件(工作电压)与热点温度决定。对于直流滤波电容,其寿命符合下面的曲线:

我们可以从这些曲线中看出,在工作电压为额定电压并且热点温度为70°C的情况下,膜电容的设计寿命为100,000小时。

寿命结束的标准为2%的电容容值的减少。然而,这是寿命结束的理论值,因为,在到达该点以后,电容仍然能够使用。如果在应用中允许5%的容值减少,寿命将得到显著的增加。

热点温度由下述的表达式决定:

其中,θmax hot spot :最大热点温度

tgδ0:电介质损耗

Rth:热阻

Rs:串联电阻

结论

以上我们为工程师进行设计优化提供了技术参考,在实际应用中仍然需要完整的计算。

然而,如果设计要求为低电压、低有效电流、无反向电压,同时也没有峰值电流,那膜电容技术不合适。

但如果设计要求为高电压、高有效电流、有反向电压和过压,同时也有峰值电流,还有长寿命要求,那么聚丙烯金属化膜电容是最好的选择。

电容器用金属化薄膜

电容器用金属化薄膜 1范围 本标准规定了电容器用金属化薄膜的术语、产品分类、技术要求、试验方法、检验规则、以及标志、包装、运输和贮存。 本标准适用于电容器用金属化聚丙烯薄膜和金属化聚酯薄膜。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/-2003计数检验程序第1部分:按接收质量限(AQL)检索的逐批检验计划 GB/-××××电气绝缘用薄膜第2部分:试验方法 3术语 3.1 3.2基膜base film 电容器用的能在其表面蒸镀一层极薄金属层的塑料薄膜。 3.3 3.4金属化薄膜metallized film 将高纯铝或锌在高真空状态下熔化、蒸发、沉淀到基膜上,在基膜表面形成一层极薄的金属层后的塑料薄膜。 3.5 3.6自愈作用self-healing 金属化薄膜介质局部击穿后立即本能地恢复到击穿前的电性能现象。 3.7

3.8留边margin 为实际制作电容器需要,将金属化薄膜一侧或两侧边缘或中间遮盖而形成不蒸镀金属的空白绝缘条(带)称为留边,其宽度称为留边量。 3.9 3.10方块电阻square resistance 金属化薄膜上的金属层在单位正方形面积的电阻值称为方块电阻,用Ω/□表示,通常用方块电阻来表示金属镀层的厚度。 3.11 3.12金属化安全薄膜metallized safe film 金属层图案含有保险丝安全结构的金属化薄膜。按保险丝安全结构特点可分网格安全膜、T形安全膜和串接安全膜等。 4分类 4.1产品类型 MPPA(MPETA)——单面铝金属化聚丙烯(或聚酯)薄膜,见图1-图3。 图1图2图3 MPPAD(MPETAD)——双面铝金属化聚丙烯(或聚酯)薄膜,见图4和图5。 图4图5 MPPAH(MPETAH)——边缘加厚金属层的单面铝金属化聚丙烯(或聚酯)薄膜,见图6。 图6 MPPAZ(MPETAZ)——单面锌铝金属化聚丙烯(或聚酯)薄膜,见图7。

铝电解电容器技术应用及发展研究

铝电解电容器技术应用及发展研究 发表时间:2018-09-28T11:19:33.707Z 来源:《防护工程》2018年第10期作者:朱朋勇 [导读] 近年来铝电解电容器产业逐渐向中国内地集中,国内市场有向中高端市场发展的态势,可能会使得我国对高端产品的进口力度有所减弱,贸易逆差会逐渐缩小。 新疆众和股份有限公司电极箔公司新疆 830013 摘要:随着国内铝电解电容器厂商技术的不断进步,其产品与国外产品的性能差距也正在逐步缩小。近年来铝电解电容器产业逐渐向中国内地集中,国内市场有向中高端市场发展的态势,可能会使得我国对高端产品的进口力度有所减弱,贸易逆差会逐渐缩小。 关键词:铝电解电容器;技术应用;发展趋势 引言 根据调研机构对我国整个电容器行业的销售与GDP增长情况进行比对发现,我国电容器行业的销售呈现一定的波动性,但其整体的波动趋势仍与GDP的增长呈正相关。铝电解电容器作为电容器产品的一种,宏观经济形势在很大程度上影响厂行业的发展,这种影响力主要体现在原材料价格和市场需求两大方面。当前的国际形势继续发生深刻复杂变化,世界经济中的不确定因素仍然较多,中国经济增长也面临各种不利因素,这种经济的不确定性给我国铝电解电容器产品的需求构成不利,影响行业未来的发展 一、铝电解电容器的关键技术 1、片式化技术 片式化技术是铝电解电容器领域发展中的关键技术之一,在该技术领域的研究与开发方面较为活跃。在各种不同的片式化电子元件中,开发技术难度最大的就是铝电解电容器的片式化技术,但是片式化的铝电解电容器具有容量大、电容量温度稳定、适合表面组装等优点,并且价格低廉,因此正在逐步取代传统的铝电解电容器,在电子领域内被大范围使用。近年来,随着人们对计算机和数码相机等电子产品的需求不断增加,片式铝电解电容器成为了近几年电容器领域内最值得开发的产品,其片式技术的发展空间较大。但是,当前我国的铝电解电容器片式化技术相对落后,片式化铝电解电容器的生产厂家较少,生产能力相对不足。 2、电解质固体化技术 当前,电解质固体化技术是铝电解电容器技术发展的重要方向。由于固体电解质具有稳定性高、高频低阻抗特性极好、寿命较长、温度特性好、工作温度范围广、耐反向电压力能力强等优点,因此,铝电解电容器技术中的电解质固体化技术被认为是实现大幅度提高铝电解电容器性能和铝电解电容器SMD化的关键技术之一。目前,在铝电解电容器中普遍使用的是液体电解质,其对阀金属表面生成的A1203氧化膜介质层具有自行修复的作用,这就容易导致液体电解质的铝电解电容器进入失效模式。一般来说,铝电解电容器常见的失效模式为短路失效,该模式的发生具有一定随机性,可能导致整个机组电性能的稳定性下降。总之,随着科学技术的不断发展,电解质固体化技术问题的研究也在不断深化。 3、高比容电极的制造技术 高比容电极的制造技术是提高铝电解电容器比率电容量、进一步缩小电容器体积的关键技术。近几年,国内外高比容电极制造的主要研究方向有高比容、高效能化成工艺的开发,高比容电蚀工艺的开发以及低容量衰减率工艺的开发等。目前来说,由于中低压铝电解电容器采用的阳极箔的实际扩面倍率和理论的扩面倍率相差较大,因此提高其工艺技术的空间较大,特别是在高比容电蚀工艺的开发领域、加强光箔的质量控制以及对电蚀前预处理的工艺进行改进等方面非常值得业内人士关注。另外,当前部分国家采用电化学腐蚀的方法让铝箔的扩面工程不断向纳米级靠近,但是在工业领域内,其扩面倍率的提升速度相对较慢,且工艺的研究需要进一步深入以取得突破。 二、铝电解电容器技术的发展趋势 1、缩小体积,扁平化 近十年来,低、中、高压化成铝箔的比容分别提高了50%以上,为缩小体积、降低成本创造了条件,而化成箔强度的提高为电容器扁平化、整机薄型化创造了条件。高比容、高强度是电容器主要原材料——化成铝箔今后发展的技术趋势。 2、低阻抗、耐大纹波电流、长寿命化 随着高电导率材料、离子液体等开发,电解质的电导率不断地提高;新型电解电容器纸的密度、阻抗不断降低;电容器耐高温密封新材料(如丁基橡胶IIR新型橡胶塞)的出现,电容器在低阻抗、耐大纹波、长寿命方面的性能大大改善。低、中、高压在高温(105℃)状态下,已经有了万小时级的产品出现,欧、美电容器制造业能保留并生存的原因主要就是大大改善了电容器在这方面的性能,不断满足了各个工业领域的高技术需求。 3、上限工作温度、寿命迅速提高 根据汽车电子发展的需求,上限工作温度125℃的电容器的寿命已从传统工艺1000~2000h迅速提升到3000~5000h;上限工作温度150℃,寿命1000-2000h的铝电解电容器也已产品化,随着汽车工业的发展,这一市场的潜力十分巨大。 4、固体电解质电解电容器的商品化进程加快 以有机半导体电解质TCNQ为代表的OS-CON和以高分子导电聚合物电解质为代表的SP-CON,PC-CON,POSCAP电容器均已商品化。OS-CON以SANYO公司和NCC公司为主要生产商。POSCAP以Panasonic,Nichicon公司为主要制造商,POSCAP电容器的性能要明显优于OS-CON电容器,是今后发展的主流方向,但目前的该电容器十分昂贵,而近三年来市场的平均售价降低了70%。日立AIC电容器尽管也已成功开发,但成本太高,制约了商品化。 5、V-chip的技术已日渐成熟 片式电容器的专利保护期即将结束,电容器耐压已提高到450V,尺寸也已扩展到20mm,品种已扩展到了低ESR、长寿命、高温125℃等不同要求,设备制造成本和电容器材料成本大幅下降,预期其产量会猛增,是制造商普遍看好的品种。 6、加大产品开发力度 铝电解电容器的未来发展过程中,我国的铝电解电容器制造厂商需要根据自身的发展情况,加大对于新产品的研究和开发力度,争取

薄膜电容器基本构造和分类教学文案

薄膜电容器基本构造 和分类

塑料薄膜电容( Plastic Film Capacitor )往往被简称为薄膜电容( Film Capacitor )或 FK 电容。其以塑料薄膜为电介质。 在应用上薄膜电容具有的一些的主要特性:无极性,绝缘阻抗高,频率特性优异 ( 频率响应宽广 ) ,介质损失小。基於以上的优点,薄膜电容器被大量使用在模拟电路上。尤其是在信号交连的部份,必须使用频率特性良好,介质损失极低的电容器,方能确保信号在传送时,不致有太大的失真情形发生。在所有的塑胶薄膜电容当中,又以聚丙烯 (PP) 电容和聚苯乙烯 (PS) 电容的特性最为显着。 1 基本构造: 薄膜电容内部构成方式主要是:以金属箔片(或者是在塑料上进行金属化处理而得的箔片)作为电极板,以塑料作为电介质。通过绕卷或层叠工艺而得。箔片和薄膜的不同排列方式又衍生出多种构造方式。图 1 是薄膜电容得典型示意图。

2 基本分类: 薄膜电容主要分类法有:按电介质分类;按薄膜(介质)和箔片(电极板)的排列方式分类;按结构分类;按线端方式分类。 从电介材质上分类: 从应用特性角度看,关键特性的表现还是缘于其电介质的不同。按电介质的不同 DIN 41379 对薄膜电容作了如下划分: T 型:即 PE T - Polyethylene terephthalate (聚乙烯对苯二酸盐( 或酯 ) ) P 型:即 P P - Polypropylene (聚丙烯)

N 型:即 PE N - Polyethylene naphthalate (聚乙烯石脑油) 以 M 作前缀表示为金属化薄膜的电容。 MFP 及 MFT 电容由金属箔片和金属化塑料薄膜构成,并不在 DIN 41379 阐述的范围内。

铝电解电容失效分析报告

400V47电解电容失效分析报告 客户供应商问题发生处 市场反馈品 产品名/型号 400V47uF 部品名铝电解电容器收到反馈 品 时 间 Discipline1 组织成员 ***(技术部长)*** ( 品保部长) *** (工艺工程师) *** (材料工程师)***(制造部长)***(品质主管) 日期/时间:2009年12月29日 Discipline2 问题描述 收到***司400V47uF市场反馈品(14只,见下图1)。 图1 Discipline3 原因分析 一.外观质量: 1.不良品生产年代分类情况: 序号 套管线号 生产时间 数量 NO1 U-5 2006年 1 NO2 V-3 2007年 10 NO3 W-H 2008年 3 从以上不良品套管表面标识可知,反馈产品为本司2006年-2008年生产产品, 与前几次市场反馈品为同时期生产产品。

43.7nF 95.7 837 33.37nF 261.6 1540 测试结论:容量小、损耗及漏电流大。 有引线产品X线图片 断引线产品图片

透视检查结论: 以上X线透视检查结果表明:反馈品除芯包鼓凸外,其他内部结构无异常。 四、解剖电容器内部结构: 解剖电容器内部结构:橡皮塞老化变形、表面局部有电解液残余(图3),芯包发热干 枯、电解液挥发,但铝壳内壁无击穿打火痕迹(图4)。进一步展开检查芯包内部结构,电 解纸发热局部部位呈焦黄色、阳极箔片脆干,但电解纸及箔片表面无击穿点,而且引线与 箔片铆接质量良好(图5)。 图3 图4 图5 五、原因分析: 以上测试、解析结果表明:此次反馈不良品大部分为同时期生产产品,而且不良现象基本相同,均为典型的长时间使用后的发热失效品。根据电容器发热失效机理,以及我们对该产品的材料工艺配套和制程的进一步追溯分析、组织相关部门的多方讨论意见等,我们分析认为造成该产品多次市场失效的可能原因是: 1.该产品生产时间偏长。虽然 08年才开始陆续使用,存在一定的装机、储存、发运或后续

变频器直流母线电容纹波电流计算方法

变频器直流母线电容纹波电流计算方法 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。 使用电解电容器的作用主要有以下几个: (1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差; (2)提供逆变器开关频率的输入电流; (3)减小开关频率的电流谐波进入电网; (4)吸收急停状态时所有功率开关器件关断下的电机去磁能量; (5)提供瞬时峰值功率; (6)保护逆变器免受电网瞬时峰值冲击。 电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。 直流母线电容纹波电流的计算 纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。当工作温度小于额定温度时,额定纹波电流可以加大。但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。 但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。 本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。

电容器用金属化薄膜

1.1.1.1.1.2 电容器用金属化薄膜 Prepared on 22 November 2020

电容器用金属化薄膜 1 范围 本标准规定了电容器用金属化薄膜的术语、产品分类、技术要求、试验方法、检验规则、以及标志、包装、运输和贮存。 本标准适用于电容器用金属化聚丙烯薄膜和金属化聚酯薄膜。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/-2003计数检验程序第1部分:按接收质量限(AQL)检索的逐批检验计划 GB/-××××电气绝缘用薄膜第2部分:试验方法 3 术语 3.1 3.2 基膜base film 电容器用的能在其表面蒸镀一层极薄金属层的塑料薄膜。 3.3 3.4 金属化薄膜metallized film 将高纯铝或锌在高真空状态下熔化、蒸发、沉淀到基膜上,在基膜表面形成一层极薄的金属层后的塑料薄膜。 3.5 3.6 自愈作用self-healing 金属化薄膜介质局部击穿后立即本能地恢复到击穿前的电性能现象。 3.7 3.8 留边margin 为实际制作电容器需要,将金属化薄膜一侧或两侧边缘或中间遮盖而形成不蒸镀金属的空白绝缘条(带)称为留边,其宽度称为留边量。 3.9 3.10 方块电阻square resistance 金属化薄膜上的金属层在单位正方形面积的电阻值称为方块电阻,用Ω/□表示,通常用方块电阻来表示金属镀层的厚度。 3.11 3.12 金属化安全薄膜metallized safe film 金属层图案含有保险丝安全结构的金属化薄膜。按保险丝安全结构特点可分网格安全膜、T形安全膜和串接安全膜等。 4 分类

电容的应用例子

电容的应用例子 1、应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之: 1)旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。 2)去藕 去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。 将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。 3)滤波 从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过,电容越大高频越容易通过。具体用在滤波中,大电容(1000uF)滤低频,小电容(20pF)滤高频。 曾有网友将滤波电容比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。 4)储能 储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150 000uF之间的铝电解电容器(如EPCOS公司的B43504或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW的电源,通常采用体积较大的罐形螺旋端子电容器。 2、应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用: 1)耦合 举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端

电容电流计算(线路,发电机回路)

电容电流的计算书 电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。 1.架空线路的电容电流可按下式估算: I C =(2.7~3.3)U e L×10-3 (F-1) 式中:L——线路的长度(㎞); U e——线路系统电压(线电压KV) I C ——架空线路的电容电流(A); 2.7 ——系数,适用于无架空地线的线路; 3.3 ——系数,适用于有架空地线的线路; 同杆双回线路的电容电流为单回路的1.3~1.6倍。 亦可按附表1所列经验数据查阅。 附表1 架空线路单相接地电容电流(A/km) 2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算 I C=0.1U e L (F-2) 按电容计算电容电流 具有金属保护层的三芯电缆的电容值见附表2。 附表2 具有金属保护层的三芯电缆每相对地电容值(μF/㎞)

将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。单相接地电容电流可由下式求出: I C = 3 U e ωC ×10-3 (F-3) 其中 ω=2πf e 式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz ); C —— 厂用电系统每相对地电容(μF ); 2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。 6kV 电缆线路 = I C 6S 22002.84S 95++U e (A ) (F-4) 10kV 电缆线路 =I C 0.23S 22001.44S 95++U e (A ) (F-5) 式中 S —— 电缆截面 (㎜2) U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。 附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞) 2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。 前述各公式主要用于油浸纸绝缘电力电缆,而目前广泛采用的交联聚乙烯绝缘电力电 缆,由于其结构特点,其单独接地电容电流比同截面的纸绝缘电缆的电容电流大,根据厂家提供的参数和现场实测数据,大约增大20%左右,其值见附表4。 附表4 6~10 kV 交联聚乙烯绝缘电缆的接地电容电流

电容器用金属化薄膜

电容器用金属化薄膜 Final revision by standardization team on December 10, 2020.

电容器用金属化薄膜 1 范围 本标准规定了电容器用金属化薄膜的术语、产品分类、技术要求、试验方法、检验规则、以及标志、包装、运输和贮存。 本标准适用于电容器用金属化聚丙烯薄膜和金属化聚酯薄膜。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/-2003 计数检验程序第1部分:按接收质量限(AQL)检索的逐批检验计划GB/-××××电气绝缘用薄膜第2部分:试验方法 3 术语 3.1 3.2 基膜base film 电容器用的能在其表面蒸镀一层极薄金属层的塑料薄膜。 3.3

3.4 金属化薄膜metallized film 将高纯铝或锌在高真空状态下熔化、蒸发、沉淀到基膜上,在基膜表面形成一层极薄的金属层后的塑料薄膜。 3.5 3.6 自愈作用self-healing 金属化薄膜介质局部击穿后立即本能地恢复到击穿前的电性能现象。 3.7 3.8 留边margin 为实际制作电容器需要,将金属化薄膜一侧或两侧边缘或中间遮盖而形成不蒸镀金属的空白绝缘条(带)称为留边,其宽度称为留边量。 3.9 3.10 方块电阻square resistance 金属化薄膜上的金属层在单位正方形面积的电阻值称为方块电阻,用Ω/□表示,通常用方块电阻来表示金属镀层的厚度。 3.11 3.12 金属化安全薄膜metallized safe film

低ESR铝电解电容器及其应用

低ESR铝电解电容器及其应用 北京航空航天大学教授方佩敏 铝电解电容器是常用的元件,主要用于滤波、去耦及低频信号耦合等场合。一般的 铝电解电容器其电解质是二氧化锰或其它电解液组成的,它的等效串联电阻(ESR) 较高,温度特性较差,允许纹波电流较小。近年来开发出一种新型有机半导体铝固 体电解电容器,它采用高性能的电解质材料(有机半导体),其导电性高,ESR值低,并 且有良好的频率特性、温度特性及允许通过更多的纹波电流等特点。 本文介绍日本三洋(SANYO)公司研究开发的有机半导体铝固体电解电容器,商标为 OS-CON,以下简称此类电容器为OS-CON。 OS-CON的电解质 OS-CON的构造与一般的铝电解电容器基本相同,电容芯采用铝箔卷绕结构(如图1所 示),所不同的是采用有机半导体材料代替电解液,采用特殊的工艺:经加热、熔解 、冷却固化后形成的多结晶组成的高导体。它的成份是TCNQ复合盐半导体。它主 要的特点是:它是固体电解质,不会因电解液干涸而造成容量减少、tan 增加的问 题,另外,因为电解液是用离子传导,TCNQ复合盐是用电子传导,电子传导要比离子 传导快得多,所以导电性比电解液的电容约高100倍(即电阻值低)。高导电性有利 于温度的稳定。

OS-CON的电气特性

OS-CON虽然是电解电容器但却有与薄膜电容器相同的高频特性,这是由于 高导电性 电解质的ESR低,从而大幅度提高高频特性。其谐振点在100kHz~10MHz之 间,820μ F的OS-CON在100kHz时,其ESR约为10mΩ,在10MHz时其ESR约为20mΩ。 OS-CON的温度特性(随温度变化而引起ESR变化)极好,并且随温度变化而引起的电 容量变化也较小。OS-CON的ESR温度特性如图2所示,OS-CON的电容量的温度特性如 图3所示。由图可以明显看出:一般铝电解电容器在低温时ESR值更大,电容量变得 更小,不适于低温使用,而OS-CON较适合用于要求低温特性好的场合,如室外使用的 电子设备或车载电子设备等。 滤波电容的主要指标之一是允许纹波电流的大小,ESR大的电容引起发热大则允许 纹波电流小,三种不同电容器[铝低阻抗电解电容器、钽低阻抗电解电容器、OS-C ON(SA系列)]的比较如图4所示。可以看出OS-CON允许纹波电流最大,即同样的纹波 电流时,可以用容量更小的OS-CON来代替。 OS-CON有极好的消除纹波电压(或干扰)的能力。例如,三洋公司做的实验:在5V直 流电压上叠加一个正弦波交流1Vp-p(频率100kHz~20MHz)的纹波电压,用四种不同 的电容器来滤波消除纹波电压,另用一种22μH及47μF铝电解电容并联 0.022μF陶 瓷电容组成LC滤波器,其滤波后剩余的纹波电压如图5所示。

薄膜电容器选型与应用

薄膜电容器选型与行业应用 ————光伏逆变器行业 变频器行业 风电行业 交流滤波电容 其他场合 一、光伏行业DC-link电容 DC-link电容(大功率27μF-30μF/KW 薄膜电容) 二、变频器行业DC-link电容 输入电压等级 DC-Link 电容 吸收电容 LC 交流滤波电容 220V.AC-440V.AC 薄膜电容电压 Un=700V.DC 0.1-2μF/1200V.DC Un=450V.AC 660V.AC-690V.AC 薄膜电容电压 Un=1100V.DC 0.47-2.5μF/1600V.DC Un=850V.AC 1140V.AC 薄膜电容电压 Un=2000V.DC 0.47-3μF/3000V.DC Un=1140V.AC 2000μF/1200VDC SVG客户的选型 420/470 uf –1100/1200V .DC 500/1200/2000/3000 uf –1200V .DC 功率P DC-Link 电容 吸收电容 交流滤波电容 500KW 园柱SCREW 型 400μF-500μF/1100V .DC 27-30只并联 采用6只 方块铜片型 0.47-1.5μF/1600V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 250KW 园柱SCREW 型 200-420 多只并联总容量在6000uf 采用3只 方块铜片型 0.47-1.5μF/1600V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 100K 园柱SCREW 型 420uf 6只并联 方块铜片型 1μF/1200V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 50K 方块导针型 10μF-50μF 多只并联 方块铜片型 0.47μF/1200V .DC 20μF/450V .AC (自己采用三角接法),会选园柱SCREW 型的 备注 采用容量小,多只并联,这样同等容量流过DC-LINK 电容有效电流大, I 总rms≥nI 输出电流 容量选取不是容量越大越好,主要通过IGBT 开关频率和功率选取容量 选择交流电容设计电容的有效电流多少,这主要载波频率有关系

片状铝电解电容项目可行性研究报告评审方案设计发改委标准案例范文

片状铝电解电容项目可行性研究报告评审方案设计(2013年发改委标准案例 范文) 【编制机构】:博思远略咨询公司(360投资情报研究中心) 【研究思路】: 【关键词识别】:1、片状铝电解电容项目可研 2、片状铝电解电容市场前景分析预测 3、片状铝电解电容项目技术方案设计 4、片状铝电解电容项目设备方案配置 5、片状铝电解电容项目财务方案分析 6、片状铝电解电容项目环保节能方案设计 7、片状铝电解电容项目厂区平面图设计 8、片状铝电解电容项目融资方案设计 9、片状铝电解电容项目盈利能力测算 10、项目立项可行性研究报告 11、银行贷款用可研报告 12、甲级资质13、片状铝电解电容项目投资决策分析 【应用领域】: 【片状铝电解电容项目可研报告详细大纲——2013年发改委标准】: 第一章片状铝电解电容项目总论 1.1 项目基本情况 1.2 项目承办单位

1.3 可行性研究报告编制依据 1.4 项目建设内容与规模 1.5 项目总投资及资金来源 1.6 经济及社会效益 1.7 结论与建议 第二章片状铝电解电容项目建设背景及必要性 2.1 项目建设背景 2.2 项目建设的必要性 第三章片状铝电解电容项目承办单位概况 3.1 公司介绍 3.2 公司项目承办优势 第四章片状铝电解电容项目产品市场分析 4.1 市场前景与发展趋势

4.2 市场容量分析 4.3 市场竞争格局 4.4 价格现状及预测 4.5 市场主要原材料供应 4.6 营销策略 第五章片状铝电解电容项目技术工艺方案 5.1 项目产品、规格及生产规模 5.2 项目技术工艺及来源 5.2.1 项目主要技术及其来源 5.5.2 项目工艺流程图 5.3 项目设备选型 5.4 项目无形资产投入 第六章片状铝电解电容项目原材料及燃料动力供应

电容电流计算

Y型时的电流: I相=Qc/(1.732×U相) △型时的电流: I线=Qc/(1.732×U线) (Qc=三相电容额定总量,单位:KVAR,U=电容额定电压,单位:KV) 公式:I=P/(根3×U),I表示电流,单位“安培”(A);P表示功率,单位:无功“千乏”(Kvar),有功“千瓦”(KW);根3约等于1.732;U表示电压,单位“千伏”(KV)。 I=40/(1.732×10)…………(10KV的电容) I=2.3(A) I=40/(1.732*0.4)…………(0.4KV的电容) I=57.7(A)。 回答人的补充 2009-11-30 16:54 计算单台电容器额定电流注意要点 一、当单台电容器为三相时,其标注的额定电压如6.6KV/√3和6.6KV。这两种标注方式主要区别在于说明此三相电容内部接线方式分为星型Y和三角型Δ两种。而加在三相电容器三个接线端电压均为线电压6.6KV。计算其额定电流时和标注中6.6KV/√3分母上的√3无关,不管是Y接法Δ接法, U均为6.6KV。而不是6.6KV/√3。根据三相电功率P=√3IU得出I=P/√3U(不论星型Y和三角型Δ接法。不考虑COSΦ。)。P为电容器额定容量Karv ,U为电网线电压。 二、当单台电容器为单相时,其标注的额定电压如6.6KV/√3和6.6KV,这两种标注方式主要区别在于说明: 1、标称6.6KV /√3的单台电容当组成电容器组接在三相电网时只能接成Y,电网线电压为6.6KV时,此时电容两个接线柱实际电压为6.6KV/√3即3.8KV。

否则当接成Δ时电容器就会过电压,当单只电容接电源时只能接在3.8KV电网中而不是6.6KV电网。这时计算单台电容器电流时I=P/U, P为电容器额定容量Karv , U为6.6KV/√3即3.8KV也就是电网电压的相电压而不是线电压6.6KV。 2、标称6.6KV的单台电容当组成电容器组接在三相电网时只能接成Δ,如果接成Y时,由于电容器两端实际电压降成相电压6.6KV/√3即3.8KV,他就达不到它的标称 Karv 值。如果三只这样的电容器组成电容器组按Δ型可直接接在线电压为6.6KV的三相电网中。单只电容可直接接在三相6.6KV其中两相上。计算电流时I=P/U,P为电容器额定容量Karv ,U为电网线电压。 信息来源: https://www.360docs.net/doc/317633951.html, 三、综上所述单台电容器计算电流时分以下三种情况: 1、电容器为三相电容时:(不论星型Y和三角型Δ接法,不考虑COSΦ)。 I=P/√3U P为电容器额定容量Karv ,U为电网线电压KV。 2、电容器为单相时: a、当标称电压为U/√3时 I=P/(U/√3)即I=√3(P/U) P为电容器额定容量Karv ,U为电网线电压KV。 b、当标称电压为U时 I=P/U P为电容器额定容量Karv ,U为电网线电压KV。

EACO直流支撑电容技术参数

GENERAL TECHNICAL CHARACTERISTICS Reference standards : IEC 61071-60068 Dielectric : Polypropylene film Construction : Dry construction, filled by solid resin, Non-inductive type Case : Aluminium case ELECTRICAL CHARACTERISTICS Operating temperature range(case) : - 40 to + 85 ℃ Capacitance : 270 μF Rated Voltage : 700 Vdc Tolerance : ± 10% Dissipation factor: ≤2.0×10-3 Measured at 1000 Hz and 25℃ Life expectancy : 100,000 hours at Un and 70℃ TEST METHODS AND PERFORMANCES Test voltage between terminals : 1.5xUn for 10s at 25 ℃ Test voltage terminal to case : 3 KV 50Hz for 2sec Insulation resistance (C*Ri) : ≥ 5000 s DESIGN Stud mounting Out put Stud mounting Case F Torque P S Torque D=60 M5×8 2.5 N.M Max 28.6 M12×16 8.0 N.M Max Output

铝电解电容器爆炸分析

1简介 动力电池系统的安全性问题不仅局限在电池本身,电源管理系统(Battery Management System, BMS)安全性也需要认真考虑。相对于电池来说,虽然BMS出现安全事故的可能性小,但是一旦出现问题将很有可能引发电池着火、爆炸,给整个系统将带来灾难性影响。跟其它电子电路一样,BMS主要由电感、电容、电阻等按照特定功能搭建而成。在这些基本电子元器件中,铝电解电容器相对于其它电力电子设备失效的可能性最大,给电子器件带来较大的安全隐患。研究分析铝电解电容器存在的可能失效爆炸机制,对于提高BMS、乃至整个动力电池系统的安全性具有重要的意义。 常用铝电解电容器的结构由电容器芯、保护装置和引线组成。其中功能部分为电容器芯,其组成结构包括:阳极金属铝箔、电解质阴极和阴极集流体铝箔。阳极铝箔经过电化学腐蚀形成一层0.01-1μm厚的Al2O3薄膜作为电容器的电介质,该膜具有类似PN结的单向导流特性,因此电解电容器具有极性,如反接,将导致内部发热使电容器失效。根据其物理状态,电解质阴极分为液体电解质、凝胶(或糊状)电解质和固体电解质。 铝电解电容器由经过腐蚀和形成氧化膜的阳极铝箔、经过腐蚀的阴极铝箔、中间隔着电解纸卷绕后,再浸渍工作电解液,然后密封在铝壳中而制成。 2 研究内容 欲分析个别电子器件爆炸事件的可能机制,需要对铝电解电容器进行多方面的测试和研究,包括:爆炸模拟实验、计算机模拟红外成像、气体成分与来源分析、电容器电解质组分分析等。 2.1 电容器电解质组分分析 对于液体铝电解电容器,液体电解质是有电解纸吸附电解液形成的,电解纸是一种纤维素,起到吸附电解液和隔离阴阳铝箔电极的作用;常见的电解液中溶剂采用乙二醇、丙三醇或?-丁内酯等,溶质为五硼酸盐、癸二酸铵等,还含有各种功能添加剂如柠檬酸、次亚磷酸、硝基苯酚等。将结合化学分析方法和光谱法如红外光谱、质谱法解析电解质中的主要成分,从而推导在电容器正常使用、爆炸前期和爆炸过程中可能存在的化学反应。由于添加剂含量十分少,可以忽略不计。主要考察溶剂、溶质,以及残余水的影响。常用的溶剂为乙二醇,溶质常用五硼酸盐。 表1 FTIR谱图比较 Table 1 Comparison of FTIR spectra

薄膜电容和铝电解电容在直流支撑应用的换算关系-中文

替代电解电容的薄膜电容技术 DC-Link电容器应用 在过去多年的发展中,使用金属化膜以及膜上金属分割技术的DC滤波电容得到了长足的发展,现在薄膜生产商开发出更薄的膜,同时改进了金属化的分割技术极大的帮助了这种电容的发展,聚丙烯薄膜电容能够比电解电容更加经济地覆盖600VDC 到2200VDC的电压范围。薄膜电容具有的许多优势,使它替代电解电容成为工业和电力电子功率变换市场的趋势。 这些优点包括了: 承受高的有效电流的能力 能承受两倍于额定电压的过压 能承受反向电压 承受高峰值电流的能力 长寿命,可长时间存储 但是,只种替代并非“微法对微法”的替代,而是功能上的替代. 当然,尽管膜电容技术有了长足的进展,但不是所有的应用领域都能替代电解电容。 电解电容技术 典型的电解电容的最大标称电压为500 到600V。所以在要求更高电压的情况下,使用者必须将多只电容串联使用。同时,由于各电容的绝缘电阻不同,使用者必须在每个电容上连接电阻以平衡电压。 此外,如果超过额定电压1.5倍的反向电压被加在电容上时,会引起电容内部化学反应的发生。如果这种电压持续足够长的时间,电容会发生爆炸,或者随着电容内部压力的释放电解液会流出。为了避免这种危险,使用者必须给每个电容并联一个二极管。在特定应用中电容的抗浪涌能力也是考察电容的重要指标。实际上,对电解电容而言,允许承受的最大浪涌电压是VnDC的1.15或1.2倍(更好的电解电容)。这种情况迫使使用者不得不考虑浪涌电压而非标称电压。 直流支撑滤波:高电流设计和电容值设计 a) 使用电池供电的情况 应用为电车或电叉车 在这种情况下,电容被用来退耦。膜电容特别适合这种应用。因为直流支撑电容的主要标准是有效值电流的承受能力。这意味着直流支撑电容能够以有效值电流来设计 以电车为例,要求的数据 工作电压: 120VDC 允许的纹波电压: 4V RMS 有效值电流: 80 A RMS @ 20 kHz 最小容值为

确定版的50个典型经典应用电路实例分析

电路1简单电感量测量装置 在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。 一、电路工作原理 电路原理如图1(a)所示。 图1简单电感测量装置电路图 该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频 值,测量精度极高。 率信号,可间接测量待测电感L X BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X 时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L 值。 X 电路谐振频率:f0=1/2π所以L X=1/4π2f02C LxC 式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。 为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。 附表振荡频率(MHz)98766253433834

辅助变流器支撑电容的设计选型及分析

支撑电容的设计选型及分析 1. 支撑电容的设计选型 图1 地铁牵引系统主电路原理示意图 辅助逆变器(简称SIV )中支撑电容的应用见图1,支撑电容器C 作为一个能量缓冲器,对直流电路的电压进行滤波,并保持其相对的稳定。其主要功能如下: a ) 与电感L 形成LC ,对输入端的电压剑锋进行滤除。 b ) 为斩波模块的提供瞬变电流 支撑电容器主要技术参数包括直流额定电压NDC U 、额定电流N I (有效值,连续)、电容值、电感值、耐压、损耗角、工作温度。耐压与工作温度由牵引变流器系统应用条件可确定;电感值与损耗角由电容器本身的结构决定。因此对支撑电容器的选型而言,主要是确定其额定工作电流及工作电压。 支撑电容器容量越大对直流回路的纹波电压抑制能力越强,但过大将增加系统的成本与体积,同时还会带来一些负面影响,如变流器开关桥臂短路时故障的危险程度也增大,因此支撑电容器的取值得控制在合适的范围之内。 1.1 额定电压的选择: 支撑电容额定电压是指直流标称电压,是设计电容时,考虑连续运行状态所采用的但不能改变方向的任一极性的最高工作峰值电压。 电容器的损耗与其电压平方成正比,过电压会使电容器发热严重,电容器绝缘会老化,寿命缩短。所以电容器的工作电压一般低于电容器本身的标称电压,对于机车环境中使用的电力电子电容器的工作电压是电容器标称电压的80%-90%。系统的额定电压为1500V ,系统的最高电压为1800V ,因此该支撑电容额定工作电压选择2000V 。 1.2 额定电流的选择: 按将DC600~1800V 斩波降压到600V 计算。斩波频率f 取1.5kHz ,T=667uS 。 1800V 升压到600V 模式,ton=600/1800T=0.3333T=222uS

电容器用金属化薄膜

范围 本标准规定了电容器用金属化薄膜的术语、产品分类、技术要求、试验方法、检验规则、以及标志、包装、运输和贮存。 本标准适用于电容器用金属化聚丙烯薄膜和金属化聚酯薄膜。 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/—2003计数检验程序第1部分:按接收质量限(AQL检索的逐批检验计划 GB/ — XXXX 电气绝缘用薄膜第2部分:试验方法 术语 基膜base film 电容器用的能在其表面蒸镀一层极薄金属层的塑料薄膜。 金属化薄膜metallized film 将高纯铝或锌在高真空状态下熔化、蒸发、沉淀到基膜上,在基膜表面形成一层极薄的金属层后的塑料薄膜。 自愈作用self-healing 金属化薄膜介质局部击穿后立即本能地恢复到击穿前的电性能现象。 留边margin 为实际制作电容器需要,将金属化薄膜一侧或两侧边缘或中间遮盖而形成不蒸镀金属的空白绝缘条称为留边,其宽度称为留边量。(带) 方块电阻square resistance 金属化薄膜上的金属层在单位正方形面积的电阻值称为方块电阻,用Q 示金属镀 层的厚度。 / □表示,通常用方块电阻来表 金属化安全薄膜metallized safe film 金属层图案含有保险丝安全结构的金属化薄膜。按保险丝安全结构特点可分网格安全膜、T形安全膜和串接安全膜等。 分类 产品类型 MPPA(MPETA——单面铝金属化聚丙烯(或聚酯)薄膜,见图

相关文档
最新文档