混凝土抗腐蚀研究

混凝土抗腐蚀研究
混凝土抗腐蚀研究

混凝土抗腐蚀研究综述

工程造价2班201112079082 宋富阳

引言

混凝土和钢筋作为主要建筑材料,工业、民用、运输和其他建筑物、构筑物的建造中起了很大作用。用混凝土和钢筋混凝土建造的建筑物和构筑物中的很大一部分,在使用期间常常受到腐蚀介质的侵蚀。如果建筑物在建造时对结构材料不采取或不实施防腐措施,则腐蚀性介质就可能损坏建筑结构,甚至使其丧失使用价值。这对于工业构造物尤为密切,因为在工业构筑物中,建筑结构直接与液态、气态等介质接触,或者被产品和生产中排放的废料所污染。在有色冶金、化学、纸浆及其他工业部门中,约有20-70%的构筑物常常受到腐蚀性介质的作用,并由此引起结构材料的腐蚀。同样农业建筑物,它们会受到腐蚀性有机物的腐蚀。外部介质的腐蚀性越强,在建筑物进行设计、建造和使用是对其腐蚀作用考虑的越少,那么由腐蚀引起的结构损坏就越快和越深。据国外专家估计,由混凝土和钢筋的腐蚀造成的经济损失约占国民收入的1.25%。这些经济损失中不仅包括修复和重建建筑物的材料费用和工程造价,而且还包括产量上的损失,这是由于建筑结构不符合生产要求,或者在修理期间引起的正常生产的中断造成的。据调查,我国在五六十年代,由于要求早强或防冻而掺用过量氯盐的钢筋混凝土结构,因钢筋锈蚀引起混凝土顺筋开裂、剥落、构件破坏的事例屡有发生、八十年代,由于混凝上外加剂的应用不当或施工和原材料质量等原因,钢筋混凝士的腐蚀也不断出现。1981年调查的华南地区18座海港钢筋混凝土码头中,钢筋锈蚀破坏或不耐久的就占89 ,基本完好的只有2座。短的只使用七年,如珠江5万吨级油码头建于1974年,到1981己普遍出现顺筋裂缝,如珠江港一区码头建于1956年,到1981年己产生大面积的混凝土剥落,有资料表明,在英国因钢筋锈蚀需要更换钢筋或重建的钢筋混凝土结构占36 。美国仅州际公路网56万多座桥梁中,处于严重失效的就省9万多座,损坏率达16%,一般使用5年后就出现钢筋腐蚀破坏,每年损失数亿美元。混凝上中钢筋腐蚀引起结构过早的破坏,己愈来愈引起全世界工程界的严重关注。为了通过提高建筑结构在各种腐蚀性介质中的抗腐蚀性和耐久性,消除建筑结构局部的修复工作,以减少建筑中腐蚀给国民经济带来的损失。必须对于在各种腐蚀性介质作用卜混凝十的损坏及钢筋腐蚀过程的实质、钢筋混凝土结构的工作特性和受力状以及可以提供的防腐方法及其特性等,进行深入的研究

一混凝土腐蚀机理

与混凝土相接触的周围介质,如空气,水(海水,地下水)活土壤中含有不同浓度的额酸。盐,碱类侵蚀性物质时,当其进入混凝土内部,以之相关成分发生物理化学反应后,混凝土遭受腐蚀,逐渐发生绽裂剥落,进而引起钢筋腐蚀导致结构失效

混凝土腐蚀的原因和机理随侵蚀介质和环境条件而异,一般分为俩类

(1)溶蚀性腐蚀

水泥的水化物生成中,Ca(OH)2最容易被渗入的水溶解,又促使水花硅酸概等多碱性化合物发生水解,随后破坏低碱性水化产物(CaO,SiO2)等,最终完全破坏水泥石结构,某些酸盐溶液渗入混凝土,生成无凝胶型的松软物质,易被水溶蚀。水泥石的溶蚀程度随渗流速度增大溶蚀后,胶结能力减弱,混凝土材料的整体性被破

(2)结晶膨胀性腐蚀

含有硫酸盐的水渗如混凝土中,与水泥水化产物Ca(OH)2的化学作用生成石膏(CaSO4.2H2O)以溶液形式存在。石膏在和水化物铝硫酸盐起作用,形成多个结晶水的水化铝硫酸钙,体积膨胀,导致混凝土开列破坏

二海洋结构中混凝土的腐蚀

(1)机理

海洋工程和滨海工程的混凝土结构,长期受海水或潮湿空气的作用,其中含有大量的氯盐,镁盐和硫酸盐。它们与混凝土中的水泥水化物Ca(OH)2作用后生成CaCl2,CaSO4等都是易溶物质,NaCl又提高其溶解度,增大了混凝土的孔隙率,削弱了材料的内部结构,使混凝土遭受腐蚀

1. Mg2+盐对混凝土的腐蚀机理

Mg2+对混凝土的侵蚀是通过分解水泥石中的Ca (OH)2,或直接分解胶凝物质而使水泥石分解其反应式为:

①mCaO.nSiO2.aq+mMg2+--nSiO2.aq+mMg(OH)2l +mCa2+

②mCaO.nAl2O3.aq+mMg2+--nA1}0,"aq+mMg(OH)2 l +mCa2+

由于反应生成的Mg (OH):溶解度很低(一般为18mg/I左右),当其溶液达到溶解平衡时,

溶液PH=10.5,比饱和的水化硅酸钙稳定所要求的值小,致使水化硅酸钙不断地分解,使混凝十的孔隙率提高,水泥浆硬化结构疏松,结构被削弱甚至解体,并为其它腐蚀组分的渗入创造了条件。特别是Mg2+的含量较高时,混凝土外部Ca (OH)x的数量不够被中和,因此,溶液向混凝土内部迅速扩散,加速水泥石结构的解体。这种现象在流动的海水中更为严重。2. SO42+一对混凝土的侵蚀机理

SO42+一对混凝土的腐蚀是最为常见的,也是最为严重的腐蚀组分之一。在含有33-35g/l

盐类的海水中,SO42+的含量约为2500-2700mg/I,混凝十中的微孔。敞开孔的存在对混凝土111型的发展过程有很大作用。当水中含有硫酸盐时,会提高水泥石某些组分的溶解度,从而加速腐蚀的发展。当S认2一的含量大于2100mg/l时水与混凝土接触形成二水合石膏CaSO4·2H20.石膏可能以溶液形式存在

3.Cl-腐蚀机理

铁道部科学院研究院的研究表明.Cl-对水泥石的水化具有促进作用; 但是当.Cl-含量过

高时,也会使混凝土结构发生种种腐蚀和溃坏的现象。.Cl-对混凝土的作用表现为:

①对于靠近液面以上的混凝土,依靠混凝土毛细管吸收作用,会将含氯盐的溶液吸到液

面以上的部位;当其中的水分蒸发后,或由于液面的下降而变干时,则会析出晶盐,将盐分遗留于混凝土内。如果溶液中的氯盐含量较高,或者反复干湿循环,将会使更多的盐分带进混凝土:这样,晶盐就会在混凝土孔隙中产生很高的结晶压力,使混凝土表面剥蚀或开裂崩碎。

②当CaCl2的浓度较高(>15%)时,它能与Ca0在液相中形成氯氧化钙(3Ca02+CaCl2.15H2O)含有大量结品水的物质会形成极其微小的针状结品状态,该物质积聚较多时就会导致混凝土的隆胀型腐蚀

除上述之外,高浓度氯盐的存在会使混凝土的干缩湿胀现象更加明显:微观研究表明:.Cl-,能渗入托贝莫来石凝胶内部起破坏凝胶内部结构的作用。

4 .多种组分腐蚀的交互作用机理

由于海洋环境条件存在着多种侵蚀组分,当它们同时作用于混凝十时,会相互影响,对混凝十的腐蚀,有时互相加剧,而有时则相互抑制,为了充分利用其有利的方面,消除其不利的影响,必须掌握其本质的规律性。首先,SO42- Mg2+各自都对混凝土有侵害作用,当它们同时渗入混凝土内部时,会相互促进而加剧对混凝土的腐蚀:

从另一个方面来讲,若混凝土质量较均匀,而且比较密实,那么渗入少量的Mg2+和SO42-

对混凝土的结构较为有利。当SO42-与水泥矿物结合的膨胀型矿物较少而且分布均匀时,会

使水泥浆体内部的部分孔隙被堵塞,尤其是对连通孔道有阻隔作用。同样,在密实性较好的混凝土中先期渗入的M扩+与水泥矿物反应生成了Mg(OH)2沉淀。从而堵塞了部分孔隙使后

继的侵蚀性组分较难进入,因此,Mg2+和SO42-的作用既取决于其浓度也取决于混凝土本身。Cl-的存在会使5042"的腐蚀作用得到抑制。由于CI一的渗入速度比SO42-的渗入速度快,

先期渗入的CI一会与水泥中CA反应生成水化氯铝酸钙(3CaO·A1203·Ca CI2·10H20 )-

若Cl-浓度较人时会消耗大量的CA,当5042"渗入时形成的膨胀型钙矾石则相对减少,缓解

了硫酸盐的腐蚀。当然,先期生成的水化氯铝酸钙有可能被后来的SO42-置换生成钙矾石,但是由于这是钙矾石生成的条件发生了变化.因而不可能产生较大的膨胀,也不会造成较大的局部内应力。这种转化一般时在液相中的缓慢转化,因而使得钙矾石的体积膨胀远不及硫酸盐直接与CA 结合生成钙矾石时的大,况且这时混凝十己有足够的强度,能抵抗较小的

膨胀应力。

近年来,许多学者的研究表明:当水泥石孔隙液PH值低于12时,通过液相生成的钙矾石不会膨胀,可以认为:当SO42-渗入到一定的浓度时,随着水化过程的进行,液相中的Ca (OH) 2大部分己被结合成了新的水化产物而使PH值有所卜降.造成钙矾石不会膨胀的条件。Cl-的存在对SO42-的腐蚀具有缓解作用,而且由于氯铝酸钙较多的生成也会使混凝十中的孔隙部分被堵塞,阻碍了其它介质的渗入。

(2)概况

自1824年水泥发明后,水泥就被使用于建筑的各个领域中,其中也包括了分布在沿海的各类混凝土构筑物。在严酷的含盐分的海水、海风作用下,建筑物受到了不同程度的腐蚀,有些构筑物能够长期保持耐久性,使用性能良好,令人惊奇,但也有些构筑物因为各种原因,腐蚀情况严重,发生了各种情况的破坏现象,严重的影响了使用功能。

随着经济建设的发展,分布在沿海的各种建筑越来越多,其在国民经济中起到的作用也越来越大。所以对近海建筑物腐蚀的研究也越来越被建筑领域的研究人员所重视。在近百年中,研究人员对腐蚀的各个影响因素进行了广泛的研究,并取得的大量的研究成果,从而进一步的指导了建筑物的选材,设计以及施工等的各个方面。随着基础材料水泥以及砂等品质、配合比例和管理水平不断提高,人们对海洋建筑物腐蚀情况的进一步了解,各类海洋设施中混凝土构筑物的应用范围日趋广泛,其抗拒海浪、海风的侵蚀性能不断提高,各种使用性能也得到了很大的提高。

在当代,国内外沿海和近海出现了大量混凝土构筑物,如码头、防波堤、跨海桥梁、

人工岛屿和海上飞机场等。作为一种节能、经济、用途极为广泛的人工耐久性材料,混凝土是日前世界上使用最广泛的建筑材料之一,有许多与人民生活和工农业生产有关的结构物都是用混凝土或钢筋混凝土建造的,如房屋建筑、公路及铁路桥梁、港口码头、海岸防波堤、水坝等。但是,如果这些结构长期处于化学腐蚀性介质等恶劣环境中,外部腐蚀介质的影响加上由于设计、施工或使用方法不当,往往会使其寿命没有所预期的那样长,十儿年甚至几年就会因钢筋锈蚀而引起结构开裂破损,甚至崩溃。

三不同混凝土的抗腐蚀性

下表是混凝土与砂浆立方体试件在侵蚀性条件下的抗压强度。可以看出混凝土密实越高,其抗压强度越大,抗腐蚀性越好。

四关于混凝土抗腐蚀的一些解决方法

(1)对混凝土耐久性有较大影响的设计因素中,威胁混凝土结构的最主要形式是氯化物导致的钢筋腐蚀。防止或减缓氯化物侵蚀难度较大,因为它需要以下各方面的结合:

整体的结构和耐久性设计,根据具体情况,确保结构在最大程度上易于接近、易于观察、易于维修、易于更换。

适当的结构和钢筋布置及详细设计,以控制和限制裂缝的宽度。合适的混凝土配料设计。非常可靠的施工操作程序,满足要求的现场施工质量。

在初期结构设计阶段考虑一个有计划的、系统的运行和维护方案。

(2)耐久性措施

1)高性能混凝土通过掺人粉煤灰、高炉矿渣、微硅粉中的一种或多种掺料,来提高混凝

土在特定条件下所需要的特定性能,如高弹性模量、低渗透性以及抵抗某些类型破坏的性能

2)提高混凝土中钢筋的保护层厚度试验显示即使是低水灰比、高质量的混凝土,在暴露

于有氯盐存在的环境中,混凝土表面12ram深度内的氯离子含量远远超过25~50ram深度范围内的氯离子的含量。因此在海洋环境中的工程,混凝土保护层的厚度应比一般的混凝土保护层厚度要大一些

3)严格控制混凝土水灰比及胶凝材料总量

4)混凝土表面涂层在已施工好的浪溅区混凝土表面及时涂上防腐蚀材料,也包括在PHC

桩表面包覆特殊材料(如玻璃钢等)

5)施工控制:混凝土搅拌确保生产耐久性的混凝土,搅拌设计确保高质量、高密度、永久

性和耐用型混凝土。定时测定骨料中的氯化物。混凝土浇筑在规定的温度范围内进行。

骨料保持在阴暗处,可以使用冷水消除混凝土的温度。如有必要,在大面积浇筑时,可以使用冷却水循环管降低温度。在混凝土施工缝表面不应有影响混凝土或降低接缝表面粘合的碎片、氯化物和任何其他物。浪溅区避免或严格限制使用施工缝。

参考文献

(1)重大市政工程建设中的防腐蚀需求章曾焕。卢永成,张剑英

(上海市政工程设计研究院)

(2)钢筋混凝土原理和分析过镇海时旭东

(3)海水腐蚀下碳纤维增强钢筋混凝土梁柱试验研究与分析左宏斌

(4)20世纪后期海洋混凝土结构抗腐蚀性能的发展周履

(中铁大桥局集团武汉桥科院有限公司,湖北武汉430034)

混凝土结构的腐蚀及防腐措施

混凝土结构一直被认为是一种节能、经济、用途极为广泛的人工耐久性材料,是目前应用较为广泛的结构形式之一.但随着结构物的老化和环境污染的加剧,其耐久性问题越来越引起国内外广大研究者的关注.由于勘察、设计、施工及使用过程中多因素影响,很多混凝土结构都先后出现病害和劣化,使结构出现了各种不同程度的隐患、缺陷或损伤,导致结构的安全性、适用性、耐久性降低,最终引起结构失效,造成资金的巨大浪费.从国外情况来看[1],美国与钢筋腐蚀有关的损失占总腐蚀的40%;前苏联工业建筑的腐蚀损失占工业固定资产的16%,仅混凝土和钢筋的腐蚀损失占GDP的1·25%; 1999年,澳大利亚公布的腐蚀损失为GDP 的4.2%.除此之外,北欧、英国、加拿大、印度、日本、韩国及海湾地区等不少国家都存在以基础结构设施为主的腐蚀.中国面临的问题同样很严峻.根据中国工程院2001~2003年《中国工业和自然环境腐蚀调查与对策》中的统计, 1998年中国建筑部门(包括公路、桥梁建筑)的腐蚀损失为1000亿人民币[2].近年来,中国建筑行业的发展速度突飞猛进,一批批建筑物拔地而起,但钢筋混凝土基础的耐久性问题也逐渐暴露出来.所以,重视和加强钢筋混凝土基础结构的腐蚀性与防腐措施的研究已迫在眉睫. 1 腐蚀机理分析 1·1 混凝土的腐蚀机理 混凝土的腐蚀是一个很复杂的物理的、物理化学的过程.由于混凝土腐蚀机理的复杂性,对混凝土腐蚀的分类还没达成一个共同的认识,但一般都倾向于采用前苏联学者B·M.莫斯克文为代表所提出的分类方法[3].将混凝土的腐蚀分为3类:溶蚀性腐蚀、某些盐酸溶液和镁盐的腐蚀、结晶膨胀型腐蚀. 所以,混凝土的腐蚀机理可从以下3类入手:物理作用、化学腐蚀、微生物腐蚀. 1·1·1 物理作用 物理作用是指在没有化学反应发生时,混凝土内的某些成分在各种环境因素的影响下,发生溶解或膨胀,引起混凝土强度降低,导致结构受到破坏.物理作用主要包括2类:侵蚀作用和结晶作用. (1)侵蚀作用:当环境中的侵蚀性介质(如地下软水,河流、湖泊中的流水)长期与混凝土接触时,将会使混凝土中的可溶性成分(如Ca(OH)2)溶解.在无压力水的环境下,基础周围的水容易被溶出的Ca(OH)2饱和,使溶解作用终止.侵蚀作用仅仅发生在混凝土表面,影响不大.但在

影响混凝土和易性的原因分析)

影响混凝土和易性的原因分析 混凝土拌合物的和易性是一项综合技术性质,它至少包括流动性、粘聚性和保水性三项独立的性能。流动性是指混凝土拌合物在自重或机械力作用下能产生的流动并均匀密实地添满模板 的性能。粘聚性是指混凝土拌合物各组成材料之间有一定的粘聚力,不致在施工过程中产生分层和离析的现象。保水性是指混凝土拌合物具有一定的保水能力,不致在施工过程中出现严重的泌水现象。可见,新拌混凝土的流动性、粘聚性和保水性有各自的内涵,因此,影响它们的因素也不尽相同。下面就影响混凝土和易性的原因谈谈个人的理解。 1、水灰比;水灰比是指水泥混凝土中水的用量与水泥用量之 比。在单位混凝土拌合物中,集浆比确定后,即水泥浆的用量为一固定数值时,水灰比决定水泥浆的稠度。水灰比较小,则水泥浆较稠,混凝土拌合物的流动性亦较小,当水灰比小于某一极限值时,在一定施工方法下就不能保证密实成型; 反之,水灰比较大,水泥浆较稀,混凝土拌合物的流动性虽然较大,但粘聚性和保水性却随之变差。当水灰比大于某一极限值时,将产生严重的离析、泌水现象。因此,为了使混凝土拌合物能够密实成型,所采用的水灰比值不能过小,为了保证混凝土拌合物具有良好的粘聚性和保水性,所采用的水灰比值又不能过大。由于水灰比的变化将直接影响到水泥混凝土的强度,因此在实际工程中,为增加拌合物的流动性

而增加用水量时,必需保证水灰比不变,同时增加水泥用量,否则将显著降低混凝土的质量,决不能以单纯改变用水量的办法来调整混凝土拌合物的流动性。 2、砂率:砂率是指混凝土中砂的质量占砂石总质量的百分 率。砂率表征混凝土拌合。由于砂率变化,可导致集料的空隙率和总表面积的变化。当砂率过大时集料的空隙率和总表面积增大,在水泥浆用量一定的条件下,混凝土拌合物就显得干稠,流动性小;当砂率过小时,虽然集料的总表面积减小,但由于砂浆量不足,不能在粗集料的周围形成足够的砂浆层起润滑作用,因而使混凝土拌合物的流动性降低。更严重的是影响了混凝土拌合物的粘聚性与保水性,使拌合物显得粗涩、粗集料离析、水泥浆流失,甚至出现溃散等不良现象。因此,在不同的砂率中应有一个合理砂率值。混凝土拌合物的合理砂率是指在用水量和水泥用量一定的情况下,能使混凝土拌合物获得最大流动性,且能保持粘聚性。 3、单位体积用水量:单位体积用水量是指在单位体积水泥混 凝土中,所加入水的质量,它是影响水泥混凝土工作性的最主要的因素。新拌混凝土的流动性主要是依靠集料及水泥颗粒表面吸附一层水膜,从而使颗粒间比较润滑。而粘聚性也主要是依靠水的表面张力作用,如用水量过少,则水膜较薄,润滑效果较差;而用水量过多,毛细孔被水分填满,表面张

高性能混凝土的设计研究与发展现状

开题报告 高性能混凝土是在现代高强混凝土的基础上发展起来的。使用新型的高效减水剂和矿物掺和料,是使混凝土达到高性能的主要技术措施,前者能降低混凝土的水胶比,增大坍落度,控制坍落度损失,提高混凝土的密实性和工作性;后者能填充胶凝材料的孔隙,参与胶凝材料的水化,除提高混凝土的密实度外,还改善混凝土的界面结构,提高混凝土的强度和耐久性。粉煤灰高性能混凝土将粉煤灰作为矿物掺和料,既改善了混凝土的技术性能,同时又充分利用了工业废料,有效地节约了资源和能源,减少了环境污染,符合绿色高性能混凝土的发展方向,促进了混凝土技术的健康发展。 高性能混凝土的定义最早在美国提出。1990年5月在美国马里,由美国国家标准与工艺研究院(NIST)和美国混凝土学会(ACI)主办的讨论会上,将HPC定义为具有所要求的性能和匀质性的混凝土。这些性能主要包括:易于浇注捣实而不离析,力学性能好,早期强度高,韧性好,体积稳定性好,在恶劣条件下使用寿命长等。 高性能混凝土概念的提出至今只有十多年的时间,但是由于国际上广泛认识到高性能混凝土具有高工作性、高耐久性和高强度等特性,用其替代传统的混凝土以及建造在严酷环境中的特殊结构物,具有显著的经济效益和技术先进性,因此高性能混凝土的开发和应用得到了各国的很大重视,并且取得了巨大成果。美国、日本、法国、加拿大等国已将高性能混凝土作为跨世纪的新材料,投入了大量的人力、物力和财力进行研究和开发,至今已在不少重要工程中使用。高性能混凝土适应了当今科学技术和生产发展的要求,可以提高混凝土结构的使用寿命,大量利用工业废渣,减少资源耗费和环境污染,便于施工,节约能源,己被各国普遍认为是今后混凝土技术的发展方向,是混凝土可持续发展的出路所在。 从1996年开始,我国国家计委、国家科技部先后2次设立科技攻关项目,进行高性能混凝土的创新研究,由中国建筑材料科学研究院、清华大学、同济大学、中国水利水电科学研究院等几十所科研单位、高等院校承担了“高性能混凝土的综合研究和应用”及“新型高性能混凝土及其耐久性的研究”的研究课题,

普通水泥混凝土配合比参考表

合比没有区分。 2、当掺和掺合料时,釆用内掺法可等量或超量取代,最大取代量应根据掺 合料性能进行强度对比实验结果而定。 3、配制流态性混凝土时,参考配比试验所采用的是减水率在15%以上的高效 减水剂。 4、参考配比试验所有砂石为丨丨区中砂,石子为5-31. 5mm的连续级配的碎 石。 水泥标号 百科名片 水泥的标号是水泥“强度”的指标。水泥的强度是表示单位面积受力的大小,是指水泥加水拌和后,经凝结、硬化后的坚实程度(水泥的强度与组成水泥的矿物成分、颗粒细度、硬化时的温度、湿度、以及水泥中加水的比例等因素有关)。水泥的强度是确定水泥标号的指标,也是选用水泥的主要依据。测定水泥强度的方法用前是“软练法”。目录 展开 基本信息 此法是将1: 3的水泥、(福建平潭白石英砂)及规定的水,按照规定的方法与

水泥拌制成软练胶砂,制成7. 07 X 7. 07 X 7. 07厘米的立方体抗压试块与8字形抗拉试块,在标准条件下进行养护,分别测定其3天、7天及28天的抗压强度和抗拉强度,以分组试块的28天平均抗压强度来确定水泥的标号,但3天、7天的技压强度也必须满足规定的要求。 目前我国生产的水泥一般有225#、325#、425#、525#等儿种标号。生产不同标号的水泥,是为了适应制做不同标号的混凝土的需要。 水泥的标号 标准 水泥的标号是水泥强度大小的标志,测定水泥标号的抗压强度,系指水泥砂浆硬结28d后的强度。例如检测得到28d后的抗压强度为310 kg∕cm2, 则水泥的标号定为300号。抗压强度为300-400 kg∕cm2者均算为300号。普通水泥有:200、250、300、400、500> 600六种标号。200号-300号的可用于一些房屋建筑。400号以上的可用于建筑较大的桥梁或厂房,以及一些重要路面和制造预制构件。 关于水泥标号的用法,其实并没有非常精细的规定,一般来说,设计图纸中会给出明确的规定。 在民用建筑工程中,一般用的比较多的是普通硅酸盐水泥和矿渣硅酸盐水泥。 标号一般常用的有,。 有325的和425的325的250元一300元425的360—450元品牌,地区不一样价格就不一样 关于水泥标号

混凝土的耐久性研究

混凝土的耐久性研究 摘要:随着城市化建设力度加快,混凝土以价格低廉、性能优越在基础设施中成为了首选的施工材料,具有用量大、用途广等特点。对于混凝土结构,它的耐久性是施工质量以及安全的重要保障[1]。碳化、钢筋腐蚀、冻融及碱-骨料反应等构成混凝土耐久性的主要内容, 而耐久性与强度作为混凝土的两个重要指标,在施工与设计中,受各种因素影响,对混凝土耐久性的重视力度明显缺乏。针对这种情况,为了促进混凝土施工持续发展,必须在环境保护与基础设施上,提高混凝土施工的耐久性。本文从混凝土的抗冻性、混凝土的碳化、碱集料反应、耐磨性、钢筋锈蚀等5个方面对混凝土耐久性影响因素改善措施等方面进行了深度研究和探索,通过从结构形式、原材料、细节构造、工艺措施等方面进行综合对比,从施工、设计与维修上提升施工质量。 关键词:混凝土耐久性;抗冻性;碳化;钢筋锈蚀;碱骨料反应; Abstract:LiFePO4is an important cathode material for lithium-ion batteries. Regardless of the biphasic reaction between the insulating end members, Li x FePO4, optimization of the nanostructured architecture has substantially improved the power density of positive LiFePO4 electrode. The charge transport that occurs in the interphase region across the biphasic boundary is the primary stage of solid-state electrochemical reactions in which the Li concen-trations and the valence state of Fe deviate significantly from the equilibrium end members. Complex interactions among Li ions and charges at the Fe sites have made understanding stability and transport properties of the intermediate domains difficult. Long-range ordering at metastable intermediate eutectic composition of Li2/3FePO4has now been discovered and its superstructure determined, which reflected predomi-nant polaron crystallization at the Fe sites followed by Li+redistribution to optimize the Li Fe interactions. Keywords: cathode material; LiFePO4; lithium ion battery; metastable mesophase; Li2 / 3FePO4; solid material

高强混凝土的抗腐蚀性分析.

高强混凝土的抗腐蚀性分析 摘要众所周知,高强混凝土具有强度高,自重轻,抗渗抗冻性能好等优点,广泛地用于高层和大跨度工程,还大量用于海洋和港口工程。但是高强混凝土的抗腐蚀性能到底怎么样,针对特定的自然环境,配制了普通、高强和高性能混凝土,同时进行了不同混凝土的卤水腐蚀单因素试验。结果表明,普通混凝土的耐久性很差,高强混凝土的抗腐蚀性不尽人意,高性能混凝土具有优良的抗腐蚀性能,钢纤维和高强高****聚乙烯纤维增强高性能混凝土在双因素功能下抗腐蚀性更好。 关键词:高强混凝土高强混凝土高性能混凝土抗腐蚀性干湿循环 高强混凝土必须具有满足高耐久性的要求。为了提高高强混凝土的抗碳化、抗渗性、抗冻性、耐磨性和抗化学腐蚀性等,要求高强混凝土必须具有高耐久性。所以高强混凝土的抗腐蚀性能的探究非常有必要。 一、试件制作 按一定的配比,制作100mm ×100mm ×100mm 立方体试件若干。移入标 准养护室进行养护28天,然后再分别进行力学性能测试和抗腐蚀试验。 二、抗腐蚀性试验 将标养28d 的混凝土试件分别浸泡在盐卤水和水中,分别在不同时间测定一定量混凝土试件的抗压强度。混凝土的抗腐蚀系数根据试件在盐湖卤水中浸泡一定时间后的抗压强度和在水中相同龄期抗压强度之比值求出。 由实验可知摘要:普通混凝土的反抗盐卤水腐蚀性能力很差,随着浸泡时间的延长,其抗压强度逐渐降低,当浸泡时间达到80天后,抗腐蚀系数只有0.35 。 三、原因分析 普通混凝土在盐卤水中抗腐蚀性差的主要原因是由其易受腐蚀的水化产物特征、疏松多孔的结构特征和界面特征所决定[1 ,其水化产物中的氢氧钙石和水化铝酸钙是混凝土内易受腐蚀的水泥水化产物,混凝土的孔隙和界面是外界侵蚀性离子扩散、渗透进入内部的通道和发生腐蚀反应的场所[2 。 盐卤水中的侵蚀性离子进入混凝土的孔隙中发生一系列的物理化学反应,导致混凝土结构发生膨胀性破坏,其破坏机理如下摘要:混凝土的水泥水化产物氢氧钙石和水化铝酸钙发生了高浓度的南极石CaCl2·6H2O 氢氧化镁Mg(OH) 2 氯氧化镁Mg2(OH)3Cl·4H2O 氯铝酸钙C3A·CaCl2·10H2O 石膏 CaSO4·2H2O 复合型腐蚀,水化硅酸钙CSH 凝胶发生了镁离子和碱金属离子取代钙离子的含水硅酸钙镁CMSH 凝胶碱硅NCSH 凝胶腐蚀。在腐蚀过程中,当氢

高性能混凝土产生的背景和研究现状

摘要 随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注。在众多的土木工程建设中,混凝土的应用面之广,使用次数之多是很少见的。尤其中近年来,一种较新的混凝土技术正在快速发展并且运用到许多实际工程项目中,那就是高性能混凝土。 高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。 本文主要介绍了高性能混凝土发展的历史背景及目前国外的研究现状,阐明了高性能混凝土的特性,列举了高性能混凝土在国外研究应用中的重要成果,并对其发展趋势作出展望。随着我国建筑向高层化、大型化、现代化的发展,HPC必将成为新世纪的重要建筑工程材料。 关键词:高性能混凝土;耐久性;体积稳定性

目录 引言 (1) 1 高性能混凝土产生的背景和研究现状 (1) 1.1 背景 (1) 1.2 研究现状及发展方向 (2) 2 高性能混凝土的性能研究和应用分析 (2) 2.1 高性能混凝土的概念 (2) 2.2 高性能混凝土的性能 (3) 2.3 高性能混凝土发展和应用中所面临的问题 (3) 3 高性能混凝土质量与施工控制 (4) 3.1 高性能混凝土原材料及其选用 (4) 3.2 配合比设计控制要点 (6) 3.3 高性能混凝土的施工控制 (7) 4 高性能混凝土的特点 (8) 4.1 高耐久性能 (8) 4.2 高工作性能 (8) 4.3 其它 (8) 5 绿色高性能混凝土 (9) 5.1 研发绿色高性能混凝土的必要性 (9) 5.2 绿色高性能混凝土的可行性 (9) 5.3 绿色高性能混凝土的发展 (10) 6 高性能混凝土的发展前景 (10) 结论 (11) 致词 (12) 参考文献 (13)

混凝土结构耐久性研究

混凝土结构耐久性 1.1 混凝土结构耐久性问题的重要性 钢筋混凝土结构结合了钢筋与混凝土的优点,造价较低,且一直被认为是一种非常耐久性的结构形式,其应用范围非常广泛。 然而,从混凝土应用于建筑工程至今的150年间,大量的钢筋混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限。这其中有的是由于结构设计的抗力不足造成的,有的是由于使用荷载的不利变化造成的,但更多的是由于结构的耐久性不足导致的。特别是沿海及近海地区的混凝土结构,由于海洋环境对混凝土的腐蚀,尤其是钢筋的锈蚀而造成结构的早期损坏,丧失了结构的耐久性能,已成为实际工程中的重要问题。早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。耐久性失效是导致混凝土结构在正常使用状态下失效的最主要原因。 国内外统计资料表明,由于混凝土结构耐久性病害而导致的损失是巨大的,并且耐久性问题越来越严重。结构耐久性造成的损失大大超过了人们的估计。国外学者曾用“五倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元,那么就意味着:发现钢筋锈蚀时采取措施将追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时采取措施将追加维修费125美元。 因此,钢筋混凝土结构耐久性问题是一个十分重要也是迫切需要加以解决的问题,通过开展对钢筋混凝土结构耐久性的研究,一方面能对已有的建筑结构物进行科学的耐久性评定和剩余寿命预测,以选择对其正确的处理方法;另一方面可对新建项目进行耐久性设计,揭示影响结构寿命的内部与外部因素,从而提高工程的设计水平和施工质量。因此,它既有服务于服役结构的现实意义,又有指导待建结构进行耐久性设计的理论意义,同时,对于丰富和发展钢筋混凝土结构可靠度理论也具有一定的理论价值。 正因为混凝土结构耐久性的问题如此重要,近年来世界各国均越来越重视混凝土结构的耐久性问题,众多的研究者对混凝土结构耐久性展开了研究,取得了系列研究成果,而材料层面的成果尤为显著。迄今为止,已经形成了混凝土结构耐久性研究框架,如图1-1所示。本章将着重介绍混凝土结构耐久性研究中成熟的相关研究成果。 图1-1 混凝土结构耐久性研究框架 ?????????????????????????????????????????????????耐久性评估耐久性设计结构层次构件承载力的变化粘结性能衰退模型混凝土锈胀开裂模型构件层次钢筋锈蚀碱-集料反应冻融破坏氯盐腐蚀混凝土碳化材料层次工业环境土壤环境海洋环境大气环境环境层次混凝土结构耐久性

混凝土耐久性的主要因素与其提高的措施

混凝土耐久性的主要因素与其提高的措施 混凝土耐久性是指混凝土构件在长期使用条件下抵抗各种破坏因素作用而保持其原有性能的性质。近年来,随着混凝土技术的发展,高性能混凝土的研究与应用普遍得到人们的重视,混凝土耐久性的研究则是其核心的研究内容。 标签:混凝土耐久性;主要因素;提高措施 1.影响混凝土耐久性的主要因素 1.1混凝土的抗渗性 混凝土的抗渗性是指混凝土在压力水的作用下抵抗渗透的能力。如果混凝土的抗渗性不好、溶液性的物质能浸透混凝土、与混凝土的胶结材料发生化学反应而使混凝土的性能劣化。在钢筋混凝土中、由于水分与空气的渗透、会引起钢筋的锈蚀。钢筋的锈蚀导致其体积增大、造成钢筋周围的混凝土保护层的开裂与剥落、使钢筋混凝土结构失去其耐久性。渗透性对混凝土的抗冻性也有重要的影响。因为渗透性决定了混凝土可能为水饱和的程度。渗透性高的混凝土、其内部孔隙为水分充满、在水的冰冻压力作用下、混凝土内部结构更易于产生损伤与破坏。因此可以说、混凝土的抗渗性是其耐久性的第一道防线。混凝土与其微观结构的劣化和侵蚀性介质的传输有关、混凝土的渗透性取决于其自身的微结构和饱和水程度、是决定混凝土性能劣化的关键因素。因此可能通过检测混凝土的渗透性来评估其耐久性。 1.2混凝土的抗冻性 混凝土的抗冻性决定于水泥石的抗冻性和骨料的抗冻性。从冰冻对水泥石和骨料的作用可以看出诸多因素影响混凝土的抗冻性。这些因素包括:水分迁移路径的距离、混凝土的孔结构、混凝土的饱和度、混凝土的抗拉强度以及冷却速度等。提高混凝土的抗冻性可以采用以下措施; (1)引气:这是因为在水泥石受到冻融作用时、水分迁移所引起的压力、可以由引入的微细气泡得到释放。一般说来、混凝土的抗冻性随着阴气量的增加而增加。而当含气量一定时、气泡尺寸、气泡数量和气泡的间距都会影响混凝土的抗冻性能。 (2)控制水灰比:水泥石内的大孔隙量与水灰比和水化程度有关。一般说来、水灰比小、水化程度高则水泥石中的孔隙越少。由于表面张力的原因、大孔隙内的水比小孔隙内的水更易于結冰、因此、在同等条件下、水灰比大的水泥石内可结冰的水更多、发生冻融破坏的几率更大。 (3)降低饱和度:混凝土的饱和度对冻融破坏有很大的影响、干燥的或部分干燥的混凝土不容易受到冻融破坏。一般存在一个临界饱和度、当混凝土的含

混凝土抗腐蚀研究

混凝土抗腐蚀研究综述 工程造价2班201112079082 宋富阳 引言 混凝土和钢筋作为主要建筑材料,工业、民用、运输和其他建筑物、构筑物的建造中起了很大作用。用混凝土和钢筋混凝土建造的建筑物和构筑物中的很大一部分,在使用期间常常受到腐蚀介质的侵蚀。如果建筑物在建造时对结构材料不采取或不实施防腐措施,则腐蚀性介质就可能损坏建筑结构,甚至使其丧失使用价值。这对于工业构造物尤为密切,因为在工业构筑物中,建筑结构直接与液态、气态等介质接触,或者被产品和生产中排放的废料所污染。在有色冶金、化学、纸浆及其他工业部门中,约有20-70%的构筑物常常受到腐蚀性介质的作用,并由此引起结构材料的腐蚀。同样农业建筑物,它们会受到腐蚀性有机物的腐蚀。外部介质的腐蚀性越强,在建筑物进行设计、建造和使用是对其腐蚀作用考虑的越少,那么由腐蚀引起的结构损坏就越快和越深。据国外专家估计,由混凝土和钢筋的腐蚀造成的经济损失约占国民收入的1.25%。这些经济损失中不仅包括修复和重建建筑物的材料费用和工程造价,而且还包括产量上的损失,这是由于建筑结构不符合生产要求,或者在修理期间引起的正常生产的中断造成的。据调查,我国在五六十年代,由于要求早强或防冻而掺用过量氯盐的钢筋混凝土结构,因钢筋锈蚀引起混凝土顺筋开裂、剥落、构件破坏的事例屡有发生、八十年代,由于混凝上外加剂的应用不当或施工和原材料质量等原因,钢筋混凝士的腐蚀也不断出现。1981年调查的华南地区18座海港钢筋混凝土码头中,钢筋锈蚀破坏或不耐久的就占89 ,基本完好的只有2座。短的只使用七年,如珠江5万吨级油码头建于1974年,到1981己普遍出现顺筋裂缝,如珠江港一区码头建于1956年,到1981年己产生大面积的混凝土剥落,有资料表明,在英国因钢筋锈蚀需要更换钢筋或重建的钢筋混凝土结构占36 。美国仅州际公路网56万多座桥梁中,处于严重失效的就省9万多座,损坏率达16%,一般使用5年后就出现钢筋腐蚀破坏,每年损失数亿美元。混凝上中钢筋腐蚀引起结构过早的破坏,己愈来愈引起全世界工程界的严重关注。为了通过提高建筑结构在各种腐蚀性介质中的抗腐蚀性和耐久性,消除建筑结构局部的修复工作,以减少建筑中腐蚀给国民经济带来的损失。必须对于在各种腐蚀性介质作用卜混凝十的损坏及钢筋腐蚀过程的实质、钢筋混凝土结构的工作特性和受力状以及可以提供的防腐方法及其特性等,进行深入的研究 一混凝土腐蚀机理 与混凝土相接触的周围介质,如空气,水(海水,地下水)活土壤中含有不同浓度的额酸。盐,碱类侵蚀性物质时,当其进入混凝土内部,以之相关成分发生物理化学反应后,混凝土遭受腐蚀,逐渐发生绽裂剥落,进而引起钢筋腐蚀导致结构失效 混凝土腐蚀的原因和机理随侵蚀介质和环境条件而异,一般分为俩类 (1)溶蚀性腐蚀 水泥的水化物生成中,Ca(OH)2最容易被渗入的水溶解,又促使水花硅酸概等多碱性化合物发生水解,随后破坏低碱性水化产物(CaO,SiO2)等,最终完全破坏水泥石结构,某些酸盐溶液渗入混凝土,生成无凝胶型的松软物质,易被水溶蚀。水泥石的溶蚀程度随渗流速度增大溶蚀后,胶结能力减弱,混凝土材料的整体性被破 (2)结晶膨胀性腐蚀 含有硫酸盐的水渗如混凝土中,与水泥水化产物Ca(OH)2的化学作用生成石膏(CaSO4.2H2O)以溶液形式存在。石膏在和水化物铝硫酸盐起作用,形成多个结晶水的水化铝硫酸钙,体积膨胀,导致混凝土开列破坏

【混凝土】结构耐久性研究现状

混凝土结构耐久性研究现状 由于钢筋混凝土结构结合了钢筋抗拉与混凝土抗压的优点,表现出良好的受力性能,成为应用最普遍最广泛的结构形式,近年对水工结构、港工结构、桥梁结构、建筑结构的大量工程调查显示,钢筋混凝土结构表现出了严重的耐久性问题,许多既有钢筋混凝土结构工程往往达不到设计使用年限就需要进行加固修复,其中耐久性的降低是一大影响因素。钢筋混凝土结构耐久性问题的日益突出,引起了世界各国对加强钢筋混凝土结构耐久性研究的重视。 耐久性是指在确定的环境和维修、使用条件下,构件在设计使用年限内保持适用性、安全性的能力。钢筋混凝土结构在其使用过程中经常会受到各种各样的腐蚀和损伤,降低了构件的耐久性和结构的可靠度,导致工程的实际使用寿命往往短于设计使用年限。 影响耐久性的因素,混凝土的碳化,钢筋锈蚀,混凝土的冻融,碱-骨料反应等。 我国在钢筋混凝土耐久性问题上尚缺少全国性的系统资料,但从一些调查资料和发表的有关文献来看,钢筋混凝土耐久性问题也是极其严重的。中国建筑科学研究院的调查表明,我国现役工业建筑物损坏严重,其结构的使用寿命一般不能保证50年,多数在25-30年左右就必须进行大修或加固。1994年铁路部门的统计表明,我国铁路存在有病害的钢筋混凝土桥2675座,其中的722座发生裂损;仅使用20年的北京西直门立交桥,由于长期在冬季使用化冰盐,部分梁柱锈蚀严重,现己拆除重建。从发达国家所取得的经验来看,钢筋混凝土耐久性问题造成的损失己是惊人的。美国标准局(NBS)1975年的调查表明,美国每年因腐蚀造成的各种损失为700多亿美元,蚀破坏的修复费,1998年度就需要2500亿美元。英国为解决海洋环境下钢筋混凝土结构的腐蚀与防护问题和修复已损伤的钢筋混凝土结构,每年耗资将近200亿英镑,而日本引以为自豪的新干线,在运行10年后也出现大面积的混凝土开裂、剥蚀现象,日本运输省曾检查了其103座混凝土港口码头,发现使用20年以上的都有大量的顺筋裂缝,目前日本每年用于房屋结构维修的费用就达400亿日元。 混凝土结构耐久性降低首先起源于材料性能劣化,继而引起混凝土构件强度、刚度衰减,最后影响整个结构安全。由于客观条件,很多研究基于一般假设,如先钢筋锈蚀后加载试验,忽略荷载对混凝土力学性能劣化影响。在实际工程中绝大多数混凝土结构经受荷载和环境因素同时作用,混凝土在承受荷载时,混凝土本身力学性能退化;同时对钢筋保护作用降低,加速钢筋锈蚀,有效钢筋截面面积减小致使构件承载力降低,钢筋与混凝土黏结性能退化使得钢筋塑性不能充分发挥,降低结构延性。混凝土结构经受荷载和环境因素共同作用,荷载与环境等各因素产生的交互作用使得实际服役混凝土结构破坏过程复杂。研究荷载与环境综合作用下混凝土结构耐久性问题对实际工程更具有意义。 混凝土结构在荷载与一般大气环境综合作用下,荷载对混凝土碳化影响不容忽视,混凝土碳化与荷载大小(应力水平)和荷载形式(拉、压应力)等有关。当荷载应力抑制混凝土内部微裂缝发展时,混凝土碳化减缓; 而当荷载应力扩展混凝土内部微裂缝时,混凝土碳化加速。 荷载与特定大气环境( 如人工气候环境、盐雾大气环境、海洋大气环境等) 综合作用下构件耐久性研究成果甚少。张俊芝等试验研究了人工气候环境下承受荷载作用混凝土梁受压

混凝土配合比

混凝土配合比 轻混凝土是指表观密度小于1950kg/m3的混凝土。可分为轻集料混凝土、多孔混凝土和无砂大孔混凝土三类。轻混凝土的主要特点为: 1.表观密度小。轻混凝土与普通混凝土相比,其表观密度一般可减小1/4~3/4,使上部结构的自重明显减轻,从而显著地减少地基处理费用,并且可减小柱子的截面尺寸。又由于构件自重产生的恒载减小,因此可减少梁板的钢筋用量。此外,还可降低材料运输费用,加快施工进度。 2.保温性能良好。材料的表观密度是决定其导热系数的最主要因素,因此轻混凝土通常具有良好的保温性能,降低建筑物使用能耗。 3.耐火性能良好。轻混凝土具有保温性能好、热膨胀系数小等特点,遇火强度损失小,故特别适用于耐火等级要求高的高层建筑和工业建筑。 4.力学性能良好。轻混凝土的弹性模量较小、受力变形较大,抗裂性较好,能有效吸收地震能,提高建筑物的抗震能力,故适用于有抗震要求的建筑。 5.易于加工。轻混凝土中,尤其是多孔混凝土,易于打入钉子和进行锯切加工。这对于施工中固定门窗框、安装管道和电线等带来很大方便。 轻混凝土在主体结构的中应用尚不多,主要原因是价格较高。但是,若对建筑物进行综合经济分析,则可收到显著的技术和经济效益,尤其是考虑建筑物使用阶段的节能效益,其技术经济效益更佳。 一、轻骨料混凝土 用轻粗骨料、轻细骨料(或普通砂)和水泥配制而成的混凝土,其干表观密度不大于1950kg/m3,称为轻骨料混凝土。当粗细骨料均为轻骨料时,称为全轻混凝土;当细骨料为普通砂时,称砂轻混凝土。 (一)轻骨料的种类及技术性质 1.轻骨料的种类。凡是骨料粒径为5mm以上,堆积密度小于1000kg/m3的轻质骨料,称为轻粗骨料。粒径小于5mm,堆积密度小于1200kg/m3的轻质骨料,称为轻细骨料。 轻骨料按来源不同分为三类:①天然轻骨料(如浮石、火山渣及轻砂等);②工业废料轻骨料(如粉煤灰陶粒、膨胀矿渣、自燃煤矸石等);③人造轻骨料(如膨胀珍珠岩、页岩陶粒、粘土陶粒等)。 2.轻骨料的技术性质。轻骨料的技术性质主要有松堆密度、强度、颗粒级配和吸水率等,此外,还有耐久性、体积安定性、有害成分含量等。

普通混凝土耐久性研究

摘要 从上个世纪中期,混凝土结构因耐久性不良造成过早失效及崩塌破坏的事故在国内外都屡见不鲜,世界各国为此付出的代价十分沉重。由于工程安全因素更由于耗费巨资的经济因素,混凝土结构日益突出的耐久性问题,越来越受到世界各国学术界和工程界的广泛重视。提高混凝土的耐久性,对节约资源、能源及资金均有重大的意义。 通过阅读大量关于混凝土耐久性方面的文献资料,总结了国内外混凝土结构的耐久性状况和研究动态,明确了混凝土结构耐久性的意义和重要性。 本论文探讨了混凝土的腐蚀类型和腐蚀机理,包括了混凝土基材水泥的腐蚀类型和机理,钢筋的锈蚀机理和混凝土结构的腐蚀机理,总结了混凝土耐腐蚀性能的主要影响因素以及它与抗渗性能和抗冻性能之间的关系;讨论了原材料的选择,包括水泥品种、集料性质、拌合及养护用水的水质情况、外加剂的种类和掺合料对混凝土耐腐蚀性能的影响。 关键词:混凝土;耐久性;耐腐蚀性

目录 一、绪论 (2) (一)混凝土耐久性的含义 (2) (二)国内外混凝土耐久性研究动态 (2) 二、混凝土的腐蚀类型和腐蚀机理 (3) (一)腐蚀 (3) (二)水泥类材料的腐蚀机理 (3) (三)混凝土的耐腐蚀性与抗渗性和抗冻性之间的关系 (5) 三、原材料对混凝土耐腐蚀性能的影响 (5) (一)水泥 (5) (二)集料 (6) 四、普通混凝土高性能化 (6) (一)提高性能的技术途径 (6) (二)提高混凝土耐久性 (7) 五、结论与展望 (8) (一)结论 (8) (二)展望 (8)

普通混凝土耐久性研究 一、绪论 从19世纪20年代波特兰水泥价而成为土建工程中不可缺少的材料,广泛用于桥梁、大坝、高速公路、工业与民用建筑等结构中。据不完全统计,当今世界每年消耗的混凝土量不少于45亿立方米,并且随着逐步增长的城市化建设,年消耗量在不断增长。 混凝土材料经历了低强度、中等强度、高强度乃至超高强度的发展历程,似乎人们总是乐于追求强度的不断提高。但是近四五十年来,混凝土结构因材质劣化造成过早失效以及崩塌破坏的事故在国内外都屡见不鲜,并有愈演愈烈之势。这些混凝土工程的过早破坏,其原因不是强度不够,而是由于混凝土耐久性不良所造成。 (一)混凝土耐久性的含义 所谓的混凝土耐久性,是指其抵抗环境介质的作用,并长期保持良好的使用性能和外观完整性,从而维持混凝土结构的安全和正常使用的能力。 影响混凝土结构耐久性的因素很多,可分为内在因素和外在因素两大类。内在因素是指混凝土结构抵御环境的能力,由结构的设计形状和构造形式、选用的水泥和骨料的种类、外加剂的品种,钢筋保护层的厚度和直径的大小、混凝土的水灰比、浇注和养护的施工工艺等多种因素所决定。外在因素是环境对混凝土结构的物理和化学作用,包括干湿和冻融循环、碳化、化学介质侵蚀、磨损破坏等诸多方面,不同环境对混凝土结构耐久性的影响程度不尽相同,外在因素是通过内在因素而起作用的混凝土耐久性具体包括抗渗、抗冻、耐腐蚀、碳化、碱骨料反应及混凝土中的钢筋锈蚀等性能。虽然混凝土在遭受压力水、冰冻或侵蚀作用时的破坏过程各不相同,但影响因素却有许多相同之处。混凝土的密实度是最为关键的因素,其次是材料的性质、施工质量等。 (二)国内外混凝土耐久性研究动态 混凝土结构耐久性问题的日益突出,引起了世界各国学术机构、学者和工程技术人员对加强钢筋混凝土结构耐久性研究的重视,表现在各种结构耐久性学术

抗硫酸盐腐蚀型混凝土.

混凝土抗硫酸盐侵蚀研究 作者 摘要:本文介绍了混凝土硫酸盐侵蚀破坏的机理和分类以及混凝土硫酸盐侵蚀的影响因素。主要综合说明了5种判断硫酸盐侵蚀混凝土的检验方法:快速法;膨胀法;干湿循环法I;干湿循环法II;氯离子渗透试验。提出了4种改善方法:合理选择水泥及掺合料品种;提高混凝土密实性;采用高压蒸汽养护;增设必要的保护层。 Summary:This paper introduces the mechanism and classification of erosion of concrete sulfate and influence factors of concrete sulfate attack.5 methods for the inspection of sulfate attack concrete are described:Express method;Plavini;dry wet cycling method I;Dry wet cycling method II;Chloride ion penetration test.4 improvement methods are proposed:Reasonable selection of varieties of cement and admixture;Improve the density of concrete;High pressure steam curing;Add the necessary protective layer. 关键词:硫酸盐侵蚀混凝土改善方法影响因素 Key word: Sulfate attack Concrete Improvement method Influential factors

影响混凝土和易性因素.

混凝土和易性影响因素 水泥混凝土和易性是,水泥混凝土混合料在施工过程中的流动性和不易离析、易于捣实等综合性质。 对于影响混凝土和易性的主要因素有: 一、水泥数量与稠度的影响 混凝土拌合物在自重或外界振动动力的作用下要产生流动,必须克服其内在的阻力,拌合物内在阻力主要来自两个方面,一为骨料间的摩擦力,一为水泥浆的粘聚力,骨料间摩擦力的大小主要取决于骨料颗粒表面水泥浆层的厚度,亦水泥浆的数量。水泥浆的粘聚力大小主要取决于浆的干稀程度,亦即水泥浆的稠度。 混凝土拌合物在保持水灰比不变的情况下,水泥浆用量越多,包裹在骨料颗粒表面的浆层就越厚,润滑作用越好,使骨料间摩擦力减小,混凝土拌合物易于流动,于是流动性就大。反之则小。但若水泥浆量过多,这时骨料用量必然减少,就会出现流浆及泌水现象,而且好多消耗水泥。若水泥浆量过少,致使不能填满骨料间的空隙或不够包裹所有骨料表面时,则拌合物会产生崩塌现象,粘聚性变差,由此可知,混凝土拌合物水泥浆用量不能太少,但也不能过多,应以满足拌合物流动性要求为度。 在保持混凝土水泥用量不变得情况下,减少拌合用水量,水泥浆变稠,水泥浆的粘聚力增大,使粘聚性和保水性良好,而流动性变小。增加用水量则情况相反。当混凝土加水过少时,即水灰比过低,不仅流动性太小,粘聚性也因混凝土发涩而变差,在一定施工条件下难以成型密实。但若加水过多,水灰比过大,水泥浆过稀,这时拌合物虽流动性大,但将产生严重的分层离析和泌水现象,并且严重影响混凝土的强度和耐久性。因此,绝不可以单纯以加水的方法来增加流动性。而应采取在保持水灰比不变的条件下,以增加水泥浆量的办法来调整拌合物的流动性。 以上讨论可以明确,无论是水泥数量的影响,还是水泥稠度的影响,实际都是水的影响。因此,影响混凝土拌合物和易性的决定性因素是其拌合用水量的多少。

高性能混凝土的研究与发展现状78166

高性能混凝土地研究与发展现状 摘要:阐述了高性能混凝土产生地背景和国内外学者对高性能混凝土地认识与定义,并详细介绍了高性能混凝土地国内外地研究与发展现状,同时,还针对高性能混凝土研究与发展中地一些问题进行了探讨.关键词:高性能混凝土;定义;耐久性;存在问题高性能混凝土(,)是世纪年代末年代初,一些发达国家基于混凝土结构耐久性设计提出地一种全新概念地混凝土,它以耐久性为首要设计指标,这种混凝土有可能为基础设施工程提供年以上地使用寿命.区别于传统混凝土,高性能混凝土由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面地混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程中显示出其独特地优越性,在工程安全使用期、经济合理性、环境条件地适应性等方面产生了明显地效益,因此被各国学者所接受,被认为是今后混凝土技术地发展方向.高性能混凝土产生地背景传统地混凝土虽然已有近年地历史,也经历了几次大地飞跃,但今天却面临着前所未有地严峻挑战:()随着现代科学技术和生产地发展,各种超长、超高、超大型混凝土构筑物,以及在严酷环境下使用地重大混凝土结构,如高层建筑、跨海大桥、海底隧道、海上采油平台、核反应堆、有毒有害废物处置工程等地建造需要在不断增加.这些混凝土工程施工难度大,使用环境恶劣、维修困难,因此要求混凝土不但施工性能要好,尽量在浇筑时不产生缺陷,更要耐久性好,使用寿命长.()进入世纪年代以来,不少工业发达国家正面临一些钢筋混凝土结构,特别是早年修建地桥梁等基础设施老化问题,需要投入巨资进行维修或更新.年美国国家材料咨询局地一份政府报告指出:在美国当时地.万座桥梁中,大约有.万座处于不同程度地破坏状态,有地使用期不到年,而且受损地桥梁每年还增加.万座.年在提交美国国会地报告“国家公路和桥梁现状”中指出,为修复或更换现存有缺陷桥梁地费用需投资亿美元;如拖延修复进程,费用将增至亿美元.美国现存地全部混凝土工程地价值约万亿美元,每年用于维修地费用高达亿美元.在加拿大,为修复劣化损坏地全部基础设施工程估计要耗费亿美元.在英国,调查统计了个工程劣化破坏实例,其中碳化锈蚀占%,环境氯盐锈蚀占%,内部氯盐锈蚀占%,混凝土冻蚀%,混凝土磨蚀%,混凝土碱—骨料反应破坏%,硫酸盐化学腐蚀%,其他各种不常发生地腐蚀破坏%.我国结构工程中混凝土耐久性问题也非常严重.建设部于世纪年代组织了对国内混凝土结构地调查,发现大多数工业建筑及露天构筑物在使用~年后即需大修,处于有害介质中地建筑物使用寿命仅~年,民用建筑及公共建筑使用及维护条件较好,一般可维持年.相对于房屋建筑来说,处于露天环境下地桥梁耐久性与病害状况更为严重.据年全国公路普查,到年底我国已有各式公路桥梁座,公路危桥座,每年实际需要维修费用亿元,而实际到位仅亿元.港口、码头、闸门等工程因处于海洋环境,氯离子侵蚀引发钢筋锈蚀,导致构件开裂、腐蚀情况最为严重.年交通部四航局等单位对华南地区座码头调查地结果,有%以上均发生严重或较严重地钢筋锈蚀破坏,出现破坏地时间有地距建成仅—年.()混凝土作为用量最大地人造材料,不能不考虑它地使用对生态环境地影响.传统混凝土地原材料都来自天然资源.每用水泥,大概需要.以上地洁净水,砂、以上地石子;每生产硅酸盐水泥约需.石灰石和大量燃煤与电能,并排放,而大气中浓度增加是造成地球温室效应地原因之一.尽管与钢材、铝材、塑料等其它建筑材料相比,生产?昆凝土所消耗地能源和造成地污染相对较小或小得多,混凝土本身也是一种洁净材料,但由于它地用量庞大,过度开采矿石和砂、石骨料已在不少地方造成资源破坏并严重影响环境和天然景观.有些大城市现已难以获得质量合格地砂石.另一方面,由于混凝土过早劣化,如何处置费旧工程拆除后地混凝土垃圾也给环境带来威胁.因此,未来地混凝土必须从根本上减少水泥用量,必须更多地利用各种工业废渣作为其原材料;必须充分考虑废弃混凝土地再生利用,未来地混凝土必须是高性能地,尤其是耐久地.耐久和高强都意味着节约资源.“高性能混凝土”正是在这种背景下产生地.高性能混凝土地定义与性能对高性能混凝土地定义或含义,国际上迄今为止尚没有一个统一地理解,各个国家不同人群有不同

西南交通大学研究生混凝土耐久性考试答案2

1试述耐久性极限状态标志及耐久性极限状态的可靠指标取值 答: 混凝土结构发生耐久性破坏可近似认为是当混凝土发开裂到一定程度时混凝土与钢筋之间的粘结力发生破坏从而不能满足受力要求,我国《混凝土结构耐久性设计规》中将混凝土结构构件的耐久性极限状态分为三种:钢筋开始发生锈蚀的极限状态,钢筋发生适量锈蚀的极限状态和混凝土表面发生轻微损伤的极限状态,然而这个破坏程度很难定量描述,同时可知,氯离子浓度是影响钢筋锈蚀的主要因素,所以可以通过对氯离子浓度的定量描述来反映混凝土结构的耐久性能。 在对氯离子侵蚀环境下的混凝土结构进行寿命预测时,保护层内部钢筋表面 的氯离子浓度达到使钢筋开始锈蚀的临界浓度时,即认为结构开始进入失效状态,所以可近似将钢筋表面氯离子浓度达到临界值作为耐久性极限状态的标志。 2.论述混凝土产生裂缝原因及防止方法 混凝土产生裂缝的主要原因可以分为内部材料原因和外部环境作用原因。 1)内部材料原因: 材料原因引起的裂缝各类包括有: 干缩裂缝、中性化伴随钢筋腐蚀产生裂缝、氧化物使钢筋腐蚀产生裂缝、碱集料反应产生裂缝、水泥水化热产生裂缝。 2)外部环境作用原因: 外部环境作用原因引起的裂缝各类包括有:冻融循环作用、干湿交替、盐结晶、施工原因引起的混凝土裂缝、养护条件不当引起的裂缝,结构设计不当引起的裂缝以及建筑物沉降不均引起的裂缝等。 防止措施: 1)合理选择混凝土原材料和配合比,例如骨料品种、水泥品种等。 2)在混凝土中掺加外加剂,提高混凝土的密实度,或配置成高性能混凝土。 3)控制混凝土的搅拌质量和加强混凝土的早期养护条件以及合理的混凝土保护层厚度。4)优化结构设计,加强施工质量。 3.为什么在有盐环境及有干湿交替时耐久性环境等级较差? 答:混凝土是一种多孔材料,内部结构比较复杂,孔洞、微裂缝的分布和形态等对微观特征对混凝土的硫酸盐侵蚀有很大影响,干湿循环对混凝土产生疲劳破坏,干燥状态下水份蒸发,混凝土毛细孔内的硫酸钠溶液浓度上升,溶液过饱和产生析晶,体积膨胀使毛细孔内壁产生微裂缝,降低混凝土试件的抗渗透性;另一方面毛细孔内盐溶液的浓度增大促进了化学反应的速度,侵蚀产物生长速度加快,侵蚀产物富集体积膨胀微裂缝开展,也进一步降低混凝土的抗渗透性。 1)在干湿交替的条件下,潮湿时侵入混凝土孔隙中的盐溶液当环境转为干燥后因过饱和而结晶,还会产生极大的结晶压力使混凝土破坏。 2)盐在混凝土内部孔隙中形成的盐溶液浓度不同,导致渗透压不同,从而在混凝土内部

相关文档
最新文档