最小生成树经典算法

最小生成树经典算法
最小生成树经典算法

最小生成树的两种经典算法的分析及实现

摘要:数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM和KRUSKAL的两种经典算法的算法思想,对两者进行了详细的比较,最后用这两种经典算法实现了最小生成树的生成。

关键词:连通图,赋权图,最小生成树,算法,实现

1 前言

假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n (n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。一棵生成树的代价就是树上各边的代价之和。

2图的概念

2.1 定义

无序积

在无序积中,

无向图,其中为顶点(结点)集,为边集,,中元素为无向边,简称边。

有向图,其中为顶点(结点)集,为边集,,中元素为有向边,简称边。

有时,泛指有向图或无向图。

2.2 图的表示法

有向图,无向图的顶点都用小圆圈表示。

无向边——连接顶点的线段。

有向边——以为始点,以为终点的有向线段。

2.3 概念

(1)有限图——都是有限集的图。

阶图——的图。

零图——的图。特别,若又有,称平凡图。

(2)关联 (边与点关系)——设边(或),则称与(或)关联。

无环

孤立点——无边关联的点。

环——一条边关联的两个顶点重合,称此边为环 (即两顶点重合的边)。

悬挂点——只有一条边与其关联的点,所对应的边叫悬挂边。

(3)平行边——关联于同一对顶点的若干条边称为平行边。平行边的条数称为重数。

多重图——含有平行边的图。

简单图——不含平行边和环的图。

2.4 完全图

设为阶无向简单图,若中每个顶点都与其余个顶点相邻,则

称为阶无向完全图,记作。

若有向图的任一对顶点,既有有向边,又有有向边,则

称为有向完全图。

例如:

3 图的遍历

从图中某一顶点出发访遍图中其余顶点,且使每一顶点仅被访问一次。这一过程叫做图的遍历。

遍历图的基本方法有两种:深度优先搜索和广度优先搜索。这两种方法都适用于有向图和无向图。

和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条边搜索路径对图中所有顶点各作一次访问。若给定的图是连通图,则从图中任意顶点出发顺着边可以访问到该图中所有的顶点,然而,图的遍历比树的遍历复杂得多,这是因为图中的任一点都可能和其余顶点相邻接,故在访问了某个顶点之后,可能顺着某条回路又到了该顶点。为了避免重复访问同一个顶点,必须记住每个顶点是否被访问过。为此,可设置一个布尔向量visited[1..n],它的初值为false,一旦访问了顶点vi,便将visited[i]置为ture。

3.1基本概念和定理定义

定义1:图G=(V,U)的弧列u=(uu..u ) 叫做一个链;把端点重合的链叫做圈,也叫做回路。定义2:不包含圈的图称为无圈图,连通的无圈图称为树,用符号T 来表示。

定理1:在一棵树中每一对点之间只有一条路径。

定理2:有n个点的一棵树有n-1条边。

定义3:如果一棵树T 为一个连通图的子图,且包括G 中所有的点,则称该树为G 的

生成树。

定义4:对每条边e,可赋以一个实数ω(e),称为e的权,G连同它边上的权称为赋权

图。

定义5:在一个加权图中一棵生成树T 的权是T 中各个树枝的权之和,一般而言,加

权图G 中不同的生成树将有不同的权,G 的所有生成树中,权最小的那棵生成树称为G

的最小生成树,或称为G 的最优生成树。

3.2 连通图的深度优先搜索

连通图深度优先搜索的基本思想如下:假定图中某个顶点v1为出发点,首先访问出发点v1,然后任选一个v1的访问过的邻接点v2,以v2为新的出发点继续进行深度优先搜索,直至图中所有顶点被访问过。

显然,图的深度优先搜索是一个递归过程,类似于树的前序遍历,它的特点是尽可能先对纵深方向进行搜索,故称之深度优先搜索。

现以下图中G为例说明深度优搜索过程。假定v1是出发点,首先访问v1。因v1有两个邻接点v2、v3均未被访问,选择v2作为新的出发点。访问v2之后,再找v2的未访问过

的邻接点。同v2邻接的有v1、v4、v5,其中v1以被访问过,而v4、v5未被访问。选择v4作为新的出发点。重复上述搜索过程继续依次访问v8、v5。访问v5之后,由于与v5相邻的顶点均以被访问,搜索退回到v8。由于v8、v4、v2都没有未被访问的邻接点,所以搜索过程连续地从v8退回到v4,再退回到v2最后退回到v1这时选择v1的未被访问过的邻接点v3,继续往下搜索,依次访问v3、v6、v7,从而遍历了图中全部顶点。在这个过程中得到的顶点的访问

v1→v2→v4→v8→v5→v3→v6→v7

这样的序列就称之为图的深度优先搜索遍历序列。

深度优先遍历算法

typedef enum{FALSE,TRUE}Boolean;//FALSE为0,TRUE为1

Boolean visited[MaxVertexNum]; //访问标志向量是全局量

void DFSTraverse(ALGraph *G)

{ //深度优先遍历以邻接表表示的图G,而以邻接矩阵表示G时,算法完全与此相同

int i;

for(i=0;in;i++)

visited[i]=FALSE; //标志向量初始化

for(i=0;in;i++)

if(!visited[i]) //vi未访问过

DFS(G,i); //以vi为源点开始DFS搜索

}//DFSTraverse

3.3 连通图的广度优先搜索

连通图广度优先搜索的基本思想是:从图中某个顶点v1出发,访问了v1之后依次访问v1的所有邻接点;并使“先被访问的顶点的领接点”先于“后被访问的顶点的领接点”被访问,直至图中所有已经被访问的顶点的领接点都被访问到。它类似于树的按层次遍历,其特点是尽可能优先对横向搜索,故称之为广度优先搜索。

下面以图中G为例说明广度优先搜索的过程。首先从起点v1出发,访问v1。v1有两个未曾访问的邻接点v2和v3。先访问v2,再访问v3。然后再先后访问v2的未曾访问过的邻接点v4、v5及v3的未曾访问过的邻接点v6、v7。最后访问v4的未曾访问过的邻接点v8。至此图中所有顶点均以被访问到。得到的顶点访问序列为:

v1→v2→v3→v4→v5→v6→v7→v8

相应的,这样的序列就称之为图的广度优先搜索遍历序列。

在广度优先搜索中,若对x的访问先于y,则对x邻接点的访问也先于对y的邻接点的访问。因此,可采用队列来暂存那些刚访问过,但可能还有未访问过的邻接点的顶点。

连通图的广度优先搜索算法如下:

void BFS(ALGraph*G,int k)

{// 以vk为源点对用邻接表表示的图G进行广度优先搜索

int i;

CirQueue Q; //须将队列定义中DataType改为int

EdgeNode *p;

InitQueue(&Q);//队列初始化

//访问源点vk

printf("visit vertex:%e",G->adjlist[k].vertex);

visited[k]=TRUE;

EnQueue(&Q,k);//vk已访问,将其入队。(实际上是将其序号入队)

while(!QueueEmpty(&Q)){//队非空则执行

i=DeQueue(&Q); //相当于vi出队

p=G->adjlist[i].firstedge; //取vi的边表头指针

while(p){//依次搜索vi的邻接点vj(令p->adjvex=j)

if(!visited[p->adivex]){ //若vj未访问过

printf("visitvertex:%c",C->adjlistlp->adjvex].vertex); //访问 vj visited[p->adjvex]=TRUE;

EnQueue(&Q,p->adjvex);//访问过的vj入队

}//endif

p=p->next;//找vi的下一邻接点

}//endwhile

}//endwhile

}//end of BFS

4 最小生成树的两种经典算法

构造最小生成树可以有很多算法。其中多数算法利用了最小生成树的下列一种简称为MST的性质:假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集。若(u,v)

是一条具有最小权值(代价)的边,其中u属于U, v属于U的补集,则必存在一棵包含边(u,v)的最小生成树。

4.1 普里姆(Prim)算法

求最小生成树的两种算法中,第一种被称为Prim算法。它采用的方法是从图G中一条一条地选择边,并将他们加入到支撑树中

(1)算法思想

假设V是图中顶点的集合,E是图中边的集合,TE为最小生成树中的边的集合,则prim 算法通过以下步骤可以得到最小生成树:

首先初始化:U={u 0},TE={M}此步骤设立一个只有结点u 0的结点集U和一个空的边集TE作为最小生成树的初始行态,在随后的算法执行中,这个行态会不断的发生变化,直到得到最小生成树为止。

然后在所有u∈U,v∈V-U的边(u,v)∈E中,找一条权最小的边(u 0,v 0),将此边加进集合TE中,并将此边的非U中顶点加入U中。此步骤的功能是在边集E中找一条边,要求这条边满足以下条件:首先边的两个顶点要分别在顶点集合U和V-U中,其次边的权要最小。找到这条边以后,把这条边放到边集TE中,并把这条边上不在U中的那个顶点加入到U中。这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,分别增加一条边和一个顶点,因此,TE和U是两个动态的集合。

如果U=V,则算法结束;否则重复步骤2。可以把本步骤看成循环终止条件。我们可以算出当U=V时,步骤2共执行了n-1次(设n为图中顶点的数目),TE中也增加了n-1条边,这n-1条边就是需要求出的最小生成树的边。

(2)Prim算法的伪代码描述

PrimMST(G,T,r){

//求图G的以r为根的MST,结果放在T=(U,TE)中

InitCandidateSet(…);//初始化:设置初始的最短边候选集,并置T=({r},¢)

for(k=0;k

(u,v)=SelectLiShtEdge(…);//选取最短边(u,v);

T←T∪{(u,v)};//扩充T

ModifyCandidateSet(…); }

}

(3)算法的执行过程

用PRIM算法得到最小生成树的过程

注意:

若候选轻边集中的轻边不止一条,可任选其中的一条扩充到T中。

连通网的最小生成树不一定是惟一的,但它们的权相等。

【例】在上图(e)中,若选取的轻边是(2,4)而不是(2,1)时,则得到如图(h)所示的另一棵MST。

(4)算法特点

T从任意的根r开始,并逐渐生长直至U=V,即T包含了 C中所有的顶点为止。MST 性质确保此时的T是G的一棵MST。因为每次添加的边是使树中的权尽可能小,因此这是一种"贪心"的策略。

(5)算法分析

该算法的时间复杂度为O(n2)。与图中边数无关,该算法适合于稠密图。

4.2 克鲁斯卡尔(Kruskal)算法

第二个MST算法是Kruskal算法。它象Prim算法一样,也是把选择的边一条一条的加入到生成树中,从而求出一个图的最小生成树(MST)。不过,在Prim算法的整个执行过程中,它选择的边集仅形成一棵树。而Krukal算法形成的却是一片树的森林。这种算法在概念上很简单。它按照权的递增顺序来选择边,并加入到生成树中。但选择的边仅当不产成回路时才能被添加到生成树当中。

(1)算法思想

①T的初始状态

只有n个顶点而无边的森林T=(V,¢ )

②按边长递增的顺序选择E中的n-1安全边(u,v)并加入T,生成MST

注意:

安全边指两个端点分别是森林T里两棵树中的顶点的边。加入安全边,可将森林中的两棵树连接成一棵更大的树

因为每一次添加到T中的边均是当前权值最小的安全边,MST性质也能保证最终的T 是一棵最小生成树。

(2)算法特点

该算法的特点是:当前形成的集合T除最后的结果外,始终是一个森林。

(3)Kruskal算法的抽象描述

KruskalMST(G){//求连通网G的一棵MST

T=(V,¢); //初始化,T是只含n个顶点不包含边的森林

依权值的递增序对E(G)中的边排序,并设结果在E[0..e-1]中

for(i=0;i

取E[0..e-1)中的第i条边(u,v);

if u和v分别属于T中两棵不同的树then

T=T∪{(u,v)};//(u,v)是安全边,将其加入T中

if T已是一棵生成树then

`` return T;

}//endfor

return T;

}

(4)用Kruskal算法构造最小生成树的过程

(5)算法分析

该算法的时间复杂度为O(eloge)。

Kruskal算法的时间主要取决于边数。它比较适合于稀疏图。

5 两种算法的对比

5.1 Prime

初始时任选一点s为树根,每次选出一条权最小的边[i,j],使得点i在树中,点j不在树中,将j和[i,j]加入树中,重复n-1次求出最小生成树。在算法中,有两个内循环:其一是在closedge[v].lowcost中求最小值,其频度是n-1;其二是重新选择具有最小权值的边,其频度为n。由此,普里姆算法的时间复杂度为O(n2),与网中的边数无关,因此适用于求边稀疏的网的最小生成树。

5.2 Kruskal

从所有边中找到一个最小的边,且将改变放入后不会生成圈,重复n-1次后求出最小生成树。首先将所有边排序,然后从小到大判断,如果不产生圈就加入树中,当加入n-1条边时停止。它的算法至多对e条边各扫描一次,每次选择最小代价的边需要O(loge)的时间(第一次需要O(e))。又生成树T的每个连通分量可看作是一个等价类,则构造T加入新的边的过程类似于求等价类的过程,由此该算法复杂度是(eloge),比较适合求边稀疏的网的最小生成树。

两种算法同样优秀。

6 对两种算法的实现

在设计任意某种线路时,常常要使各站点之间保持相通。连接方法有很多,但需要找出接线总长度最短的接法。通常可以把这一连接问题模型化为一无向图G=(V,E),其中V是集合,E是每对站点间可能存在的接线集合。对图中每一边(u,v)∈E,有一个权值w(u,v)来表示连接u和v的代价。希望找出一无回路子集,使其连接所有站点,且权值之和最小。因为T无回路且连接了所有站点,所以他必然是一棵树,称之为生成树。把确定树T的问题称为最小生成树的问题,求解最小生成树有两种方法,现在,分别使用两种算法对最小生成树进行实现(见附录)。

7 致谢

参考文献

[1] 严蔚敏等.数据结构[M].清华大学出版社,2004.

[2] Bruno.R.Preiss.数据结构及算法[M].电子工业出版社,2003

[3] 耿素云等. 离散数学[M].高等教育出版社,2004

[4] 李春葆.数据结构习题与解析[M].清华大学出版社,2004

[5] 王若梅罗笑南.数据结构与算法[M].中山大学出版社,2000

[6] 唐策善.数据结构-用C语言描述[M].高等教育出版社,2002

ANALYSING AND REALIZING THE TWO CLASSIC ALGORITHM OF THE

MOST SMALLEST FORMATION

Author :Fan Jie Director :Zhang Yuzhou

Abstract :According to the construction is the calculating machine branch calculated the legal principle theory of law base and the technique base, has the foot heavy function in the

calculating machine territory, is the calculating machine branch core regulation. The

structure smallest production has very many algorithms, this article mainly lay

between the concept, and has analyzed PRIM and KRUSKAL the kind of standard

algorithm thought, has been good compared to , finally used the kind of standard

algorithm slightly produced the production.

Keywords:connected graph, weighted graph, minimal spanning tree, Algorithm, Realization

附录:

PRIM方法求最小生成树

程序

#define M 999

#define n 6

Typedef struct

{int fromvex,endvex;int length;}edge;

Int dist[n+1][n+1];

Edge T[n];

Void Adjust(int i)

{edge temp;intc,f;

If (i==1)return;

Temp=T[i];c=i;f=i/2;

While(f>=1)

{if(temp,length

{T[c]=T[f];i=j;j=2*I;}

Else break;

}

T[i]=temp;

}

PRIM()

{int I,j,k,v; int d;edge e;

For(i=1;i<=n-1;i++)

{T[i],fromvex=1;T[i],endvex=i+1;T[i],length=dist[1][i=1];} For(i=n/2;i>=1;i--) sift(I,n);

For (k=1;k

{e=T[1];T[1]=T[n-k+1];T[n-k+1]=e;

Sift(T,1,n-k);v=T[n-k+1],endvex;

For (j=1;j

{d=dist[v][T[j],endvex];

If(d

Adjust(j);

}}}}

Main()

{int i,j;

For(i=1;i<=n;i++)

For (j=1;j<=n;j++)scanf(“%d”,&dist[i][j]);

PRIM();

For(i=n-1;i>=1;i--)

Printf(“(%d,%d) length;%d\n”,T[i],fromvex,T[i],length); }

运行结果如下:

(1,3)length;1

(3,6) length;4

(6,4)length;2

(3,5)length;5

(5,2)length;3

2:KRUSAK方法求解程序

#define n 6

#define e 10

Typedef struct

{int fromvex,endvex;float weight;}edge;

Edge GE[e+1];

KRUSKAL(GE,C)

edge GE[];int C[];

{int i,j,S[n+1],k,r;

For(i+1,i<=n,i++) S[i]=j;

I=1 ;j=1;

While(j

{if (S[GE[j],fromvex]!=S[GE[j],endvex])

{C[i]=j;i++;k=S[GE[j],endvex];

For(r=1;r<=n;r++)

If(S[r]==k) S[r]=s[GE[j],romvex];

}

I++;}}

Main()

{int I,C[n];

For (i=1;i<=n-1;i++) C[i]=0;

For(i=1;i<=e;i++)

Scanf(“%d%d %f”,&GE[i],fromvex,&GE[i],endvex,&GE[i],wigth);

KRUSCAL(GE,C)

Printf(“(I,j) length\n”);

For(i=1;i<=n-1;i++)printf(“(%d %d)length;.of\n”,GE[C[i]],fromvex,GE[c[i],endvex,GE[C[i]),weigth);

}

结果:(i,j)length

(1,5)length;4

(2,3)length;5

(2,4)length;8

(2,6)length;12

(1,2)length;18

即最小生成树中5条边是边集数组GE中的第1,2,3,5,7条边

最小生成树问题的算法实现及复杂度分析—天津大学计算机科学与技术学院(算法设计与分析)

算法设计与分析课程设计报告 学院计算机科学与技术 专业计算机科学与技术 年级2011 姓名XXX 学号 2013年5 月19 日

题目:最小生成树问题的算法实现及复杂度分析 摘要:该程序操作简单,具有一定的应用性。数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。而最小生成树算法是算法设计与分析中的重要算法,最小生成树也是最短路径算法。最短路径的问题在现实生活中应用非常广泛,如邮递员送信、公路造价等问题。本设计以Visual Studio 2010作为开发平台,C/C++语言作为编程语言,以邻接矩阵作为存储结构,编程实现了最小生成树算法。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM 经典算法的算法思想,最后用这种经典算法实现了最小生成树的生成。 引言:假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n(n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。最小生成树是指在所有生成树中,边上权值之和最小的生成树,另外最小生成树也可能是多个,他们之间的权值之和相等。一棵生成树的代价就是树上各边的代价之和。而实现这个运算的经典算法就是普利姆算法。

贪心算法实验(最小生成树)

算法分析与设计实验报告第一次附加实验

附录: 完整代码(贪心法) //贪心算法最小生成树prim算法 #include #include #include #include #include using namespace std; #define inf 9999; //定义无限大的值const int N=6; template //模板定义 void Prim(int n,Type c[][N+1]); int main() { int c[N+1][N+1]; cout<<"连通带权图的矩阵为:"<

cin>>c[i][j]; } } cout<<"Prim算法最小生成树选边次序如下:"< //参数为结点个数n,和无向带权图中各结点之间的距离c[][N+1] void Prim(int n,Type c[][N+1]) { Type lowcost[N+1]; //记录c[j][closest]的最小权值 int closest[N+1]; //V-S中点j在s中的最临接顶点 bool s[N+1]; //标记各结点是否已经放入S集合| s[1]=true; //初始化s[i],lowcost[i],closest[i] for(int i=2;i<=n;i++) { lowcost[i]=c[1][i]; closest[i]=1; s[i]=false; } for(int i=1;i

最小生成树算法分析

最小生成树算法分析 一、生成树的概念 若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。 对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后一般不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs 或dfs,这样得到的是生成森林。 由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。 可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。 二、求图的最小生成树算法 严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。 对于加权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树称为图的最小生成树。 求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。

例1、城市公交网 [问题描述] 有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。 [输入] n(城市数,1<=n<=100) e(边数) 以下e行,每行3个数i,j,w ij,表示在城市i,j之间修建高速公路的造价。 [输出] n-1行,每行为两个城市的序号,表明这两个城市间建一条高速公路。 [举例] 下面的图(A)表示一个5个城市的地图,图(B)、(C)是对图(A)分别进行深度优先遍历和广度优先遍历得到的一棵生成树,其权和分别为20和33,前者比后者好一些,但并不是最小生成树,最小生成树的权和为19。 [问题分析] 出发点:具有n个顶点的带权连通图,其对应的生成树有n-1条边。那么选哪n-1条边呢?设图G的度为n,G=(V,E),我们介绍两种基于贪心的算法,Prim算法和Kruskal算法。 1、用Prim算法求最小生成树的思想如下: ①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not (Y∈S); 将顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE)

kruskal算法求最小生成树

#include #include #include #include using namespace std; #define maxn 110 //最多点个数 int n, m; //点个数,边数 int parent[maxn]; //父亲节点,当值为-1时表示根节点 int ans; //存放最小生成树权值 struct eage //边的结构体,u、v为两端点,w为边权值

{ int u, v, w; }EG[5010]; bool cmp(eage a, eage b) //排序调用 { return a.w < b.w; } int Find(int x) //寻找根节点,判断是否在同一棵树中的依据 { if(parent[x] == -1) return x; return Find(parent[x]); } void Kruskal() //Kruskal算法,parent能够还原一棵生成树,或者森林{ memset(parent, -1, sizeof(parent)); sort(EG+1, EG+m+1, cmp); //按权值将边从小到大排序 ans = 0; for(int i = 1; i <= m; i++) //按权值从小到大选择边 { int t1 = Find(EG[i].u), t2 = Find(EG[i].v); if(t1 != t2) //若不在同一棵树种则选择该边,合并两棵树 { ans += EG[i].w; parent[t1] = t2; printf("最小生成树加入的边为:%d %d\n",EG[i].u,EG[i].v); } } } int main() { printf("输入顶点数和边数:"); while(~scanf("%d%d", &n,&m)) { for(int i = 1; i <= m; i++) scanf("%d%d%d", &EG[i].u, &EG[i].v, &EG[i].w); Kruskal(); printf("最小生成树权值之和为:%d\n", ans); } return 0; }

最小生成树经典算法

最小生成树的两种经典算法的分析及实现 摘要:数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM和KRUSKAL的两种经典算法的算法思想,对两者进行了详细的比较,最后用这两种经典算法实现了最小生成树的生成。 关键词:连通图,赋权图,最小生成树,算法,实现 1 前言 假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。n个城市之间最多可以设置n (n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。现在要选择这样一棵生成树,也就是使总的代价最小。这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。一棵生成树的代价就是树上各边的代价之和。 2图的概念 2.1 定义 无序积 在无序积中, 无向图,其中为顶点(结点)集,为边集,,中元素为无向边,简称边。 有向图,其中为顶点(结点)集,为边集,,中元素为有向边,简称边。 有时,泛指有向图或无向图。 2.2 图的表示法

有向图,无向图的顶点都用小圆圈表示。 无向边——连接顶点的线段。 有向边——以为始点,以为终点的有向线段。 2.3 概念 (1)有限图——都是有限集的图。 阶图——的图。 零图——的图。特别,若又有,称平凡图。 (2)关联 (边与点关系)——设边(或),则称与(或)关联。 无环 孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所对应的边叫悬挂边。 (3)平行边——关联于同一对顶点的若干条边称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。 简单图——不含平行边和环的图。 2.4 完全图 设为阶无向简单图,若中每个顶点都与其余个顶点相邻,则 称为阶无向完全图,记作。 若有向图的任一对顶点,既有有向边,又有有向边,则 称为有向完全图。 例如:

最小生成树(Prim、Kruskal算法)整理版

一、树及生成树的基本概念 树是无向图的特殊情况,即对于一个N个节点的无向图,其中只有N-1条边,且图中任意两点间有且仅有一条路径,即图中不存在环,这样的图称为树,一般记为T。树定义有以下几种表述: (1)、T连通、无圈、有n个结点,连通有n-1条边;(2)、T无回路,但不相邻的两个结点间联以一边,恰得一个圈;(3)、T连通,但去掉任意一边,T就不连通了(即在点集合相同的图中,树是含边数最少的连通图);(4)、T的任意两个结点之间恰有一条初等链。 例如:已知有六个城市,它们之间要架设电话线,要求任 意两个城市均可以互相通话,并且电话线的总长度最短。若用 六个点v1…v6代表这六个城市,在任意两个城市之间架设电话 线,即在相应的两个点之间连一条边。这样,六个城市的一个 电话网就作成一个图。任意两个城市之间均可以通话,这个图 必须是连通图,且这个图必须是无圈的。否则,从圈上任意去 掉一条边,剩下的图仍然是六个城市的一个电话网。图5-6是 一个不含圈的连通图,代表了一个电话线网。 生成树(支撑树) 定义:如果图G’是一棵包含G的所有顶点的树,则称G’是G的一个支撑树或生成树。例如,图5-7b是图5-7a的一个支撑树。 定理:一个图G有生成树的条件是G是连通图。 证明:必要性显然; 充分性:设图G是连通的,若G不含圈,则按照定义,G是一个树,从而G是自身的一个生成树。若G含圈,则任取G的一个圈,从该圈中任意去掉一条边,得到图G的一生成子图G1。若G1不含圈,则G1是G的一个生成树。若G1仍然含圈,则任取G1的一个圈,再从圈中任意去掉一条边,得到图G的一生成子图G2。依此类推,可以得到图G的一个生成子 图G K,且不含圈,从而G K是一个生成树。 寻找连通图生成树的方法: 破圈法:从图中任取一个圈,去掉一条边。再对剩下的图 重复以上步骤,直到不含圈时为止,这样就得到一个生成树。 取一个圈(v1,v2,v3,v1),在一个圈中去掉边e3。在剩下的图 中,再取一个圈(v1,v2,v4,v3,v1),去掉边e4。再从圈(v3,v4,v5,v3) 中去掉边e6。再从圈(v1,v2,v5,v4,v3,v1)中去掉边e7, 这样,剩下的图不含圈,于是得到一个支撑树,如图所示。 避圈法:也称为生长法,从图中某一点开始生长边,逐步扩展成长为一棵树,每步选取与已入树的边不构成圈的那些边。

最小生成树的Kruskal算法实现

#include #include #define M 20 #define MAX 20 typedef struct { int begin; int end; int weight; }edge; typedef struct { int adj; int weight; }AdjMatrix[MAX][MAX]; typedef struct { AdjMatrix arc; int vexnum, arcnum; }MGraph; void CreatGraph(MGraph *);//函数申明 void sort(edge* ,MGraph *); void MiniSpanTree(MGraph *); int Find(int *, int ); void Swapn(edge *, int, int); void CreatGraph(MGraph *G)//构件图 { int i, j,n, m; printf("请输入边数和顶点数:\n"); scanf("%d %d",&G->arcnum,&G->vexnum); for (i = 1; i <= G->vexnum; i++)//初始化图{ for ( j = 1; j <= G->vexnum; j++) { G->arc[i][j].adj = G->arc[j][i].adj = 0; } } for ( i = 1; i <= G->arcnum; i++)//输入边和权值

{ printf("请输入有边的2个顶点\n"); scanf("%d %d",&n,&m); while(n < 0 || n > G->vexnum || m < 0 || n > G->vexnum) { printf("输入的数字不符合要求请重新输入:\n"); scanf("%d%d",&n,&m); } G->arc[n][m].adj = G->arc[m][n].adj = 1; getchar(); printf("请输入%d与%d之间的权值:\n", n, m); scanf("%d",&G->arc[n][m].weight); } printf("邻接矩阵为:\n"); for ( i = 1; i <= G->vexnum; i++) { for ( j = 1; j <= G->vexnum; j++) { printf("%d ",G->arc[i][j].adj); } printf("\n"); } } void sort(edge edges[],MGraph *G)//对权值进行排序{ int i, j; for ( i = 1; i < G->arcnum; i++) { for ( j = i + 1; j <= G->arcnum; j++) { if (edges[i].weight > edges[j].weight) { Swapn(edges, i, j); } } } printf("权排序之后的为:\n"); for (i = 1; i < G->arcnum; i++) {

(完整word版)实验5 最小生成树算法的设计与实现(报告)

实验5 最小生成树算法的设计与实现 一、实验目的 1、根据算法设计需要, 掌握连通图的灵活表示方法; 2、掌握最小生成树算法,如Prim、Kruskal算法; 3、基本掌握贪心算法的一般设计方法; 4、进一步掌握集合的表示与操作算法的应用。 二、实验内容 1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法; 2、设计Kruskal算法实验程序。 有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。 设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。 三、Kruskal算法的原理方法 边权排序: 1 3 1 4 6 2 3 6 4 1 4 5 2 3 5 3 4 5 2 5 6 1 2 6 3 5 6 5 6 6 1. 初始化时:属于最小生成树的顶点U={}

不属于最小生成树的顶点V={1,2,3,4,5,6} 2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树 的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}

3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5} 4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}

5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5} 6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成

课程设计---克鲁斯卡尔算法求最小生成树

课程设计报告 课程名称:数据结构课程设计 设计题目:克鲁斯卡尔算法求最小生成树 系别:计算机系 专业:软件技术 学生姓名:陈浩学号:2011304040133 日期: 2013年1月5日-2013年1月11日

目录 1. 需求分析 (2) 1.1 设计题目 (2) 1.2 设计任务及要求 (2) 1.3课程设计思想 (2) 1.4 程序运行流程: (2) 1.5软硬件运行环境及开发工具 (2) 2.概要设计 (2) 2.1流程图 (2) 2.2抽象数据类型MFSet的定义 (3) 2.3主程序 (3) 2.4抽象数据类型图的定义 (4) 2.5抽象数据类型树的定义 (6) 3. 详细设计 (8) 3.1程序 (8) 4.调试与操作说明 (11) 4.1测试结果 (11) 4.2调试分析 (12)

5.课程设计总结与体会 (12) 5.1总结 (12) 5.2体会 (12) 6. 致谢 (13) 7. 参考文献 (13) 1.需求分析 1.1 设计题目:最小生成树 1.2 设计任务及要求:任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 1.3 课程设计思想:Kruskal算法采用了最短边策略(设G=(V,E)是一个无向连通网,令T=(U,TE)是G的最小生成树。最短边策略从TE={}开始,每一次贪心选择都是在边集E中选择最短边(u,v),如果边(u,v)加入集合TE中不产生回路,则将边(u,v)加入边集TE中,并将它在集合E中删去。),它使生成树以一种任意的方式生长,先让森林中的树木随意生长,每生长一次就将两棵树合并,最后合并成一棵树。 1.4程序运行流程: 1)提示输入顶点数目; 2)接受输入,按照项目要求产生边权值的随机矩阵;然后求解最小生成树; 3)输出最小生成树并且退出; 1.5 软硬件运行环境及开发工具:VC 2.概要设计

Kruskal算法求最小生成树(java)

Kruskal算法求最小生成树(JA V A) 代码: package homework; import java.util.Scanner; import java.util.Arrays; import java.util.ArrayList; class Edge { public int start;//始边 public int end;//终边 public double cost;//权重 } public class MinSpanningTree_Kruskal{ private static int MAX = 100; private ArrayList edge = new ArrayList();//整个图的边 private ArrayList target = new ArrayList();//目标边,最小生成树private int[] parent = new int[MAX];//标志所在的集合 private static double INFINITY = 99999999.99;//定义无穷大 private double mincost = 0.0;//最小成本 private int n;//结点个数 public MinSpanningTree_Kruskal(){} public static void main(String args[]){ MinSpanningTree_Kruskal sp = new MinSpanningTree_Kruskal(); sp.init(); sp.kruskal(); sp.print(); }//初始化 public void init(){ Scanner scan = new Scanner(System.in); int p,q; double w; System.out.println("请输入结点个数:"); n = scan.nextInt(); System.out.println("请输入各条边及权值(每次输入一组数据按回车确认," + "最后输入-1 -1 -1 结束输入过程)"); while(true){ p = scan.nextInt(); q = scan.nextInt(); w = scan.nextDouble();

最小生成树的应用

武 夷 学 院 课程设计报告 课程名称: 数据结构(C 言语版本) 设计题目: 最小生成树的应用 学生班级: 10计科1班 学生姓名: 陈娟,谢贤根,黄伟伟,陈开槟 指导教师: 林丽惠 完成日期: 2012-01-05

课程设计项目研究报告 目录 一、问题描述及基本要求....................................................................................... - 1 - 二、实现本程序需要解决的问题如下................................................................. - 1 - 三、测试数据......................................................................................................... - 2 - 四、算法思想......................................................................................................... - 3 - 五、模块划分............................................................................ 错误!未定义书签。 六、算法设计与分析............................................................................................. - 7 - 七、源程序........................................................................................................... - 11 - 八、测试数据....................................................................................................... - 14 - 九、课程设计项目进度表及任务分配表及任务分配表................................... - 15 - 十、设计心得....................................................................................................... - 16 -十一参考文献....................................................................................................... - 17 -

【开题报告】最小生成树算法及其应用

开题报告 信息与计算科学 最小生成树算法及其应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 最小生成树(minimum spanning tree,MST)是计算机学科中一重要内容, 其算法也是重要的计算方法, 是现代科学中比较热门的研究方向. 一个有个结点的连通图的生成树是原图的极小连通子图, 且包含原图中的所有个n n 结点, 并且有保持图联通的最少的边. 许多应用问题都是一个求五项连通图的最小生成树问题. 例如: 要在个城市之间铺设n 光缆, 主要目标是要使这个城市的任意两个之间都可以通信, 但铺设光缆的费用很高, n 且各个城市之间铺设光缆的费用不同; 另一个目标是要使铺设光缆的总费用最低. 这就需要找到带权的最小生成树. MST 性质: 最小生成树性质: 设是一个连通网络, 是顶点集的一个真(,)G V E =U V 子集. 若是中一条“一个端点在中(例如: ), 另一个端点不在中”的边(,)n u v G U u U ∈U (例如:), 且具有最小权值, 则一定存在的一棵最小生成树包括此边v V U ∈-(,)u v G . (,)u v 求MST 的一般算法可描述为: 针对图, 从空树开始, 往集合中逐条选择并G T T 加入条安全边, 最终生成一棵含条边的MST. 1n -(,)u v 1n -当一条边加入时, 必须保证仍是MST 的子集, 我们将这样的边称(,)u v T {}(,)T u v 为的安全边. 其中主要有两种算法: Prim 算法和Kruskal 算法. T Prim 算法: 该算法由Prim 提出, 但事实上Jarnik 于1930年更早提出. 用于求无向图的最小生成树. 设图 . (),G V E =步骤1: 取一个顶点, 则, . 1v {}1V v ={}E =

数据结构课程设计报告最小生成树Kruskal算法[1]4545

课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:最小生成树Kruskal算法 院(系): 专业: 班级: 学号: 姓名: 指导教师:

目录 1 课程设计介绍 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 2 课程设计原理 (2) 2.1课设题目粗略分析 (2) 2.2原理图介绍 (4) 2.2.1 功能模块图 (4) 2.2.2 流程图分析 (5) 3 数据结构分析 (11) 3.1存储结构 (11) 3.2算法描述 (11) 4 调试与分析 (13) 4.1调试过程 (13) 4.2程序执行过程 (13) 参考文献 (16) 附录(关键部分程序清单) (17)

1 课程设计介绍 1.1 课程设计内容 编写算法能够建立带权图,并能够用Kruskal算法求该图的最小生成树。最小生成树能够选择图上的任意一点做根结点。最小生成树输出采用顶点集合和边的集合的形式。 1.2 课程设计要求 1.顶点信息用字符串,数据可自行设定。 2.参考相应的资料,独立完成课程设计任务。 3.交规范课程设计报告和软件代码。

2 课程设计原理 2.1 课设题目粗略分析 根据课设题目要求,拟将整体程序分为三大模块。以下是三个模块的大体分析: 1.要确定图的存储形式,通过对题目要求的具体分析。发现该题的主要操作是路径的输出,因此采用边集数组(每个元素是一个结构体,包括起点、终点和权值)和邻接矩阵比较方便以后的编程。 2.Kruskal算法。该算法设置了集合A,该集合一直是某最小生成树的子集。在每步决定是否把边(u,v)添加到集合A中,其添加条件是A∪{(u,v)}仍然是最小生成树的子集。我们称这样的边为A的安全边,因为可以安全地把它添加到A中而不会破坏上述条件。 3.Dijkstra算法。算法的基本思路是:假设每个点都有一对标号(d j,p j),其中d是从起源点到点j的最短路径的长度(从顶点到其本身的最短路径是零路(没有弧的路),其长度等于零);p j则是从s到j 的最短路径中j点的前一点。求解从起源点s到点j的最短路径算法的基本过程如下: 1)初始化。起源点设置为:①d s=0,p s为空;②所有其它点:d i=∞,p i=?; ③标记起源点s,记k=s,其他所有点设为未标记的。 2)k到其直接连接的未标记的点j的距离,并设置: d j=min[d j, d k+l kj]

克鲁斯卡尔算法求最小生成树

目录 1.需求分析 (2) 1.1 设计题目 (2) 1.2 设计任务及要求 (2) 1.3课程设计思想 (2) 1.4 程序运行流程 (2) 1.5软硬件运行环境及开发工具 (2) 2.概要设计 (2) 2.1流程图 (2) 2.2抽象数据类型MFSet的定义 (3) 2.3主程序 (4) 2.4抽象数据类型图的定义 (4) 2.5抽象数据类型树的定义 (5) 3.详细设计 (7) 3.1程序 (7) 4.调试与操作说明 (10) 4.1测试结果 (10) 4.2调试分析 (11) 5.课程设计总结与体会 (11) 5.1总结 (11) 5.2体会 (11) 6. 致谢 (12) 7. 参考文献 (12)

1.需求分析 1.1 设计题目:最小生成树 1.2 设计任务及要求:任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 1.3 课程设计思想:Kruskal算法采用了最短边策略(设G=(V,E)是一个无向连通网,令T=(U,TE)是G的最小生成树。最短边策略从TE={}开始,每一次贪心选择都是在边集E中选择最短边(u,v),如果边(u,v)加入集合TE中不产生回路,则将边(u,v)加入边集TE中,并将它在集合E中删去。),它使生成树以一种任意的方式生长,先让森林中的树木随意生长,每生长一次就将两棵树合并,最后合并成一棵树。 1.4程序运行流程: 1)提示输入顶点数目; 2)接受输入,按照项目要求产生边权值的随机矩阵;然后求解最小生成树; 3)输出最小生成树并且退出; 1.5 软硬件运行环境及开发工具:VC 2.概要设计 2.1流程图

图1流程图 2.2抽象数据类型MFSet的定义: ADT MFSet { 数据对象:若设S是MFSet型的集合,则它由n(n>0)个子集Si(i = 1,2...,n)构成,每个子集的成员代表在这个子集中的城市。 数据关系: S1 U S2 U S3 U... U Sn = S, Si包含于S(i = 1,2,...n) Init (n): 初始化集合,构造n个集合,每个集合都是单成员,根是其本身。rank 数组初始化0 Find(x):查找x所在集合的代表元素。即查找根,确定x所在的集合,并路径压缩。 Merge(x, y):检查x与y是否在同一个集合,如果在同一个集合则返回假,否则按秩合并这两个集合并返回真。 }

最小生成树的算法

最小生成树的算法 王洁 引言: 求连通图的最小生成树是数据结构中讨论的一个重要问题.在现实生活中,经常遇到如何得到连通图的最小生成树,求最小生成树不仅是图论的基本问题之一 ,在实际工作中也有很重要的意义,,人们总想寻找最经济的方法将一个终端集合通过某种方式将其连接起来 ,比如将多个城市连为公路网络 ,要设计最短的公路路线;为了解决若干居民点供水问题 ,要设计最短的自来水管路线等.而避开这些问题的实际意义 ,抓住它们的数学本质 ,就表现为最小生成树的构造。下面将介绍几种最小生成树的算法。 一,用“破圈法”求全部最小生成树的算法 1 理论根据 1.1 约化原则 给定一无向连通图 G =(V ,E )( V 表示顶点,E 表示边),其中 V={ 1v , 2v ,3v …… n v },E= { 1e , 2e , 3e …… n e }对于 G 中的每条边 e ∈ E 都赋予权ω(i e )>0,求生成树 T = (V ,H ),H ? E ,使生成树所有边权最小,此生成树称为最小生成树. (1) 基本回路 将属于生成树 T 中的边称为树枝,树枝数为n -1,不属于生成树的边称为连枝.将任一连枝加到生成树上后都会形成一条回路.把这种回路称为基本回路,记为()cf e 。 基本回路是由 T 中的树枝和一条连枝构成的回路. (2) 基本割集 设无向图 G 的割集 S (割集是把连通图分成两个分离部分的最少支路集合) ,若 S 中仅包含有T 中的一条树枝,则称此割集为基本割集,记为()S e 。 基本割集是集合中的元素只有一条是树枝,其他的为连枝. (3) 等长变换 设T=(V,H),为一棵生成树,e ∈ H, 'e ∈ E, 'e ? H,当且仅当'e ∈()cf e ,也就是说 e ∈()S e ,则'T =T ⊕{e, ' e }也是一棵生成树。当()e ω='()e ω时,这棵生成树叫做等长变换。 等长变换就是从基本回路中选取与树枝等权边,并与此树枝对换后形成的生成树. 根据以上定理得出2个结论:①若在某个回路C 中有一条唯一的最长边,则任何一棵最小生成树都不含这条边;②若在某个边 e 的割集中有一条唯一最短边,则每棵生成树中都必须含这条边.由上面结论可以得到唯一性:若图 G 中的生成树T = (V ,H )是唯一的一棵最小生成树,当且仅当任意一连枝e ∈ H, ' e ∈ E 都是其基本回路中唯一最长边,任意一条树边 e 都是其基本割集()S e 中的唯一最短边.

一种新的最小生成树算法

一种新的最小生成树算法 姓名:金鸿轩 班级:软件13-6 学号:13200106 2015-01-18

一种新的最小生成树算法 作者:金鸿轩 辽宁工程技术大学软件学院,辽宁省葫芦岛市,125105 摘要:本文提出一种新的算法以完成加权连通图的最小生成树(minimum spanning tree, MST)。该算法具有以下优点:1,由于主要以排序为主,因此比较简单。2,算法复杂度与 Boruvka 和Prim(PFS,堆)算法是同一个数量级,在图的密度小于1 的情况下,提出的算 法比Boruvka 和Prim(PFS,堆)算法性能优越。3,即使在大型图中,内存不能一次读入 全部数据,提出的算法在Step2 中只需扫描一次数据库就能完成,对系统要求较低。 关键词:最小生成树;边顺生长;边逆生长;算法复杂度 A new minimum spanning tree algorithm This paper presents a new algorithm to complete the weighted minimum spanning tree of connected graph ,The algorithm has the following advantages :1,Because mainly the sorting, so simple 2The algorithm complexity and Boruvka and Prim (PFS, heap) algorithm is the same order of magnitude, the density of the diagram under the condition of less than 1, put forward to calculate Method than Boruvka and Prim algorithm (PFS, heap) superior performance.3Even in a large figure, memory cannot be read at a time All the data, the algorithm in Step2 scan a database, will be finished on the system requirements is low Closing date of draft :2015.1.19 Author's brief introduction :jinhongxuan Communication contacts :985441540@https://www.360docs.net/doc/3215446085.html,

经典最小生成树prim与kruskal算法分析比较

经典最小生成树prim与kruskal算法分析比较 例题 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网, 并连接到所有的农场。当然,他需要你的帮助。 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。 为了用最小的消费,他想铺设最短的光纤去连接所有的农场。 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光 纤最短的方案。 输入格式 Input Format 输入格式经常会以两中形式 (1)采用邻接矩阵存储 第一行为农场的个数,N(3<=N<=100)。 接下去为一个N*N的矩阵,表示每个农场之间的距离。(农场之间的距离小于999, 0路线表示无法直接到达)。 (2)图采用边目录方式存储。 第一行N为农场的个数,M为农场与农场之间共有M条可以搭设光纤路线。 接下去的M行为中每行有3个数A,B,C。分别表示农场A到农场B的距离为B。 输出格式 Output Format 输出连接所有农场并所用光纤最短的方案。 (输出之后要求换行) 样例输入 Sample Input (1)采用邻接矩阵存储。 (2)采用边目录方 式存储。 6 6 7 0 3 0 0 0 2 1 2 3 3 0 5 0 2 0 2 3 5 0 5 0 1 0 0 3 4 1 0 0 1 0 4 0 4 5 4 0 2 0 4 0 1 2 5 2 2 0 0 0 1 0 6 5 1 1 6 2 样例输出 Sample Output

(1)采用邻接矩阵存储(2)采用边目录方式存储。 10 10 (1)我的prim的代码采用邻接矩阵存储 prim适合采用邻接矩阵存储代码如下 var n,i,j,w,k,t,w1,m,min,p:longint; ch:char; lowcost,coset:array[1..100]of longint; bo:array[1..100]of boolean; map:array[1..100,1..100]of longint; {邻接矩阵图} begin while not eof do begin readln(n); if n=0 then break; for i:=1 to n do for j:=1 to n do //初始化 begin read(map[i,j]); if (i=j)or(map[i,j]=0)then map[i,j]:=maxlongint; //把不相连的点之间设为无穷大 end; for i:=1 to n do begin lowcost[i]:=map[1,i]; coset[i]:=1; bo[i]:=false; {初始化lowcost集合(即每个点到集合的最短距离)与bo数组和 coset(设这个点为A)到集合内于他连接的且最短距离的另一个点(这个点为b) 那么coset就是记录与点A的父亲节点B(B一定要具备上述条件)} end; bo[1]:=true; m:=0; for i:=1 to n-1 do begin min:=maxlongint; for j:=1 to n do if (bo[j]=false)and(lowcost[j]

数学建模-最小生成树-kruskal算法及各种代码

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* kruskal算法及代码 ---含伪代码、c代码、matlab、pascal等代码 K r u s k a l算法每次选择n- 1条边,所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若产生环路则不可能形成一棵生成树。K r u s k a l算法分e 步,其中e 是网络中边的数目。按耗费递增的顺序来考虑这e 条边,每次考虑一条边。当考虑某条边时,若将其加入到已选边的集合中会出现环路,则将其抛弃,否则,将它选入。 目录 Kruskal算法 Kruskal算法的代码实现 Kruskal算法 Kruskal算法的代码实现 算法定义 克鲁斯卡尔算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

举例描述 克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个。这里面充分体现了贪心算法的精髓。大致的流程可以用一个图来表示。这里的图的选择借用了Wikipedia上的那个。非常清晰且直观。 首先第一步,我们有一张图,有若干点和边 如下图所示: 第一步我们要做的事情就是将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择。 排序完成后,我们率先选择了边AD。这样我们的图就变成了 第二步,在剩下的变中寻找。我们找到了CE。这里边的权重也是5

相关文档
最新文档