二阶互调

二阶互调
二阶互调

二阶互调

x+x+45=y+95 ;

x=912+(a-110*0.2) ;

y=1773.2+(b-827*0.2) ;

a=100~124 ;

b=800~859 ;

计算上述5个式子可得:

2(890-0.2a)=1773.2+0.2b-165.4+50 ;计算可得:

122.2=0.2a-0.4b

即2a+611=b 然后可得对应得二阶互调频点为:

100-811 ,101-813

102-815 ,103-817

。。。。。。。。。。

115-841 ,116-843

。。。。。。。。。。

123-857 ,124-859

(1)该频率计划是因为二阶互调所引起的。

115频点的发射频率和接收频率之和等于841的下行频率1871,同时

124频点的发射频率和接收频率之和等于859的下行频率1874.6,因此

引起了二阶互调导致系统掉话。

(2)对于该网络的频率计划主要要考虑900/1800之间的二阶互调干扰和三阶互调干扰。

二阶互调干扰:

1、二阶互调表现为fA+/-fB=fC,对双频网可能的表现形式有:

DCS1800Tx-GSM900Tx=GSM900Rx;

Tx代表基站发射频率,Rx代表基站接收频率。

共站时1800发射频率与900发射频率的差频不能等于GSM900的接收频

率。

2、还有一种情况就是一个基站的三个小区的BCCH之间存在这样的关系也是二

阶互调:

BCCH(A)+BCCH(B)=2*BCCH(C)

三阶互调干扰:

三阶互调表现为:

fA+fB+fC=fD,fA-fB-fC=fD,fA+fB-fC=fD或fA-fB+fC=fD。

对双频网前两者不可能成立,后两者其实是同一种情况。可归结为:情况1:DCS1800Tx1-DCS1800Tx2+GSM900Tx=GSM900Rx

即:共站两1800频点发射频率的差频与GSM900频点发射频

率的和不能等于GSM900的接收频率

情况2:DCS1800Tx-GSM900Tx1+GSM900Tx2= DCS1800Rx

即:共站两GSM900发射频率的差频与DCS1800发射频率的

和不能等于DCS1800的接收频率。

三阶互调的计算

三阶互调计算 什么是三阶互调? 三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩的合称为三阶信号。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。他所表明的是确切含义是,一个线性系统所包含的非线性系数的大小。这个指标对于大动态放大器是一个非常重要的技术指标。测试这项指标使用的测试仪器主要是频谱分析仪。对于不同指标要求的三阶互调失真,需使用不同性能的频谱分析仪,对三阶互调失真要求越高,对频谱分析仪的要求就越高。 给定具体频率可以推算出哪些频率点有三阶互调干扰具体的算法是: 计算方法: (1)将所分配或使用的频率从低向高排序; (2)按最小信道间隔计算每个频率对应的频道数; (3)计算相邻频道数的差值; (4)求差值的和(按下举例方法求和); (5)检查差值与和数中不得有相同的数出现。 举例说明:现有一组频率156.275MHz 156.150MHz 156.200MHz 156.125MHz计算是否存在互调组合。 (1)排序156.125 156.150 156.200 156.275(156.300) (2)顺序频道数 1 2 4 7(8) (3)相邻频道差值 1 2 3(4) (4)差值之和 3 5(6)6(7) (5)检查差值与和数是否有同样的数出现 有相同的数字3,表明这一组频率存在互调,只有将156.275频率向上调换成156.300或其它的频率才可避开互调组合。上面括号中的数字是被调换后的计算结果。 三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波 与另一个信号的基波产生差拍(混频)后所产生的寄生信号。比如F1的二次谐波是2F1,他 与F2产生了寄生信号2F1-F2。由于一个信号是二次谐波(二阶信号),另一个信号是基波 信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制 过程中产生的。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号 称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。由于F2,F1信号比较接

二次谐波的产生及其解

§2.3 二次谐波的产生及其解 二次谐波或倍频是一种很重要二阶非线性光学效应,在实践中有广泛的应用,如Nd:YAG激光器的基频光(1.064μm)倍频成0.532νm绿光,或继续将0.532μm激光倍频到0.266μm紫外区域。 本节从二阶非线性耦合波方程出发,求解出产生的二次谐波光强小信号解,并解释相位匹配对二次谐波产生的影响。 2.3.1 二次谐波的产生 设基频波的频率为,复振幅为;二次谐波的频率为,复振幅。由基频波在介质中极化产生的二阶极化强度,辐射出的二次谐波场所满足的非线性极化耦合波方程 (2.3.1-1) (2.3.1-2)注意简并度, (2.3.1-3)波矢失配量, (2.3.1-4) 写成单位矢量(光波的偏振方向或电场的振动方向)和标量的乘积形式,基频光场可能有两种偏振方向,即,两种偏振方向可以是相互平行也可以是相互垂直,并有 (2.3.1-5) 基频波与产生的二次谐波耦合产生的极化场强度,辐射出基频光场满足的非线性极化耦合波方程。 (2.3.1-6) (2.3.1-7) (2.3.1-8) 如果介质对频率为的光波都是无耗的,即远离共振区,则都是实数。 进一步考虑极化率张量的完全对易对称性和时间反演对称性可以证明: (2.3.1-10) 二次谐波的耦合波方程组为: (2.3.1-11) (2.3.1-12) 2.3.2 二次谐波的小信号解

图1 倍频边界条件 1、小信号解 在小信号近似下,基频波复振幅不随光波传输距离改变, (2.3.2-1)并由边界条件,对二次谐波的耦合波方程(2.2.1-12)积分得: (2.3.2-2)二次谐波的光强为: (2.3.2-3)利用有效倍频系数(有效非线性光学系数) (2.3.2-4) 和函数定义, (2.3.2-5) 以及 (2.3.2-6)得到小信号近似下的二次谐波解 (2.3.2-7) 小信号近似下倍频效率: (2.3.2-8)倍频效率正比于基频光束功率密度,输出倍频光强是基频波光强的平方。同时由曼利——罗关系,在产生一个二次谐波光子的同时,要湮灭两个基频波光子。转换效率正比于倍频系数的平方,即与正比于有效极化率系数的平方。 2、二次谐波解的讨论 定义相位匹配带宽:由二次谐波光强最大值一半处的宽度,定义允许的相位失配量 (2.3.2-9)定义相干长度:如果相位失配量,使倍频光强单调增长的一段距离为相干长度 (2.3.2-10)由上面的讨论知,在小信号近似下,为获得高的倍频效率,首先应满足相位匹配条件,并且选用有效倍频系数大和较长的晶体,尽可能增强基频光的强度。 §2.3.3 二次谐波的大信号解(基频波存在损耗) 产生二次谐波的耦合波方程为 (2.3.3-1)讨论在相位匹配条件下,即,此时基频波和二次谐波的折射率相等,如果基频波存在损耗,

三阶互调的算法

在移动通信领域内,频率规划是很重要的项目之一。频率规划的正确与否直接影响到工程完工之后实际的通信质量。在多信道的共用系统中,因为多个信道的同时工作,必然要产生相互干扰,为了减少频率之间的相互干扰的程度,就应该选取一些适当的频点,选用无三阶互调的频点就能够有效的抑制频率间的干扰。 三阶互调是由电路的非线性产生的三次项,在频率上满足: Fi-Fj=Fj-Fk(两信号三阶互调) Fi-Fj=Fk-Fl(三信号三阶互调) 三阶互调的意思是,只要有几个频率满足以上的关系,相互间就会构成干扰,比如在两信号的三阶互调中,Fi=2Fj-Fk,若由Fj和Fk产生的新的频率Fi落在本系统或其他系统工作的频率或通带上,就会对系统的通信造成干扰。无三阶互调就是要取出一组满足频率要求的点,使这些点的任何组合都满足Fi-Fj≠Fj-Fk,Fi-Fj≠Fk-Fl。 在一组数的范围内取出无三阶互调的点,我们可以考虑几种算法。第一种是:先将所有的组合求出,然后依照无三阶互调的条件进行判断,取出所有满足无三阶互调的组,然后依照附加条件(比如信道间隔)进行挑选;第二种是:先依照附加条件选择信道组合,再将程序求出的组合进行无三阶互调比较和判断,最终求得满足的解。 在判断无三阶互调的条件时,将每两个元素进行循环比较的方法显得过于繁杂,一般采用差分三角形法。 这个例子是取5个无三阶互调的点,取出的组(1,2,5,10,12)(引自《移动通信工程》,人民邮电出版社316页,表5-5)满足无三阶的条件,约束条件为信道间隔≥1,由这个数组可以计算出上面的差分三角矩阵。验证无三阶互调的方法是:只要这个三角矩阵中的元素不重复,则这个数组本身就满足无三阶互调。由于矩阵本身并不会很大,可以用多重循环形成差分三角形,再进行矩阵元素之间的比较。 在具体编程描述时可以考虑选用C语言或专用数学工具Matlab或者Mathematic。考虑到在求解较大型的无三阶互调组时,用C语言描述的工作量过大,牵涉到矩阵运算的循环次数过多,编程繁杂难以实现,且难以维护,故选用Matlab,Matlab以其矩阵运算的效率而闻名。 在编程的实现上,Matlab提供了很多的可以供使用的函数,这方便了我们的编程过程。对于第一种算法,COMBNK(n k)函数可以生成在n个元素里每次取出k个元素的所有组合,使用此函数很快就能获得所有组合,然后能对每一种组合求得差分三角矩阵,进而求出我们需要的无三阶互调组,这种方法在求得维数较低的无三阶互调数组时易于使用。例如在取数范围<56时使用比较方便,在CPU主频为2G的情况下,15分钟左右能求出结果,无三阶互调组的维数为7(不加任何限定条件);但是当数组变大的时候就不再适合了,此时生成矩阵的规模成几何级数增长,当要在100个点中取出维数为10的组时,有1.7310e+013种组合,这在生成矩阵的时候是不可实现的,因为Matlab不允许对默认的存储变量的大小进行修改,每个变量用8个字节来表示,那么要求系统存储矩阵的容量不能低于1.3848e+005GBytes,这在物理上也是不可行的,最终因耗尽内存而不能继续。这时应该作出在系统内存和CPU占用率上的取舍。故比较合理的解决方案是采用第二种算法。

二阶与三阶截点的测试

一、截点的概念 固态放大器通常使用晶体管如二极管或场效应管来实现放大,虽然这些晶体管一般被用于线性工作模式,但是仍然存在非线性的现象,如互调产物及谐波,并以虚假信号的形式出现在输出端。在单音调情况下,虚假信号表现为输入信号的多次谐波。在双音调情况下,虚假信号就是两个输入信号f1和f2的混合产物,最普遍的是二阶和三阶互调产物。 二阶互调产物是输入信号频率相加和相减后的频率上的信号(最大)。 fspur = f1±f2 …………………………⑺ 当工作频带大于一个倍频程时,这些假信号才会产生影响,假如工作频带小于一个倍频程时,这些假信号将超出频带。 这些虚假信号同输入信号间的关系可以用截点来描述,这些截点定义为:在不饱和的情况下,基波信号的输入输出功率间的线性曲线与虚假信号的线性曲线的交点。二阶互调产物的直线的斜率2倍于基波功率直线的斜率,因此其输出大小可以由输入信号的功率(Pin)和输出二阶截点值(OIP2)来确定,关系如下: 双音调二阶互调抑制= OIP2 - ( Pin + G ) 双音调二阶互调假信号电平= 2 ( Pin + G ) - OIP2 其中G为放大器增益。 输出二阶截点值(OIP2)dBm= (输入信号的功率(Pin)-二阶互调假信号电平)+输入信号的功率(Pin) 三阶互调产物是由基波信号和其二次谐波结合的形成的。 fspur =|2f1±f2|±|f1±2f2 | …………………………⑻ 三阶互调信号的斜率3倍于基波输入功率的斜率,其大小也可由输入信号功率和输出三阶截点值确定,关系如下:双音调三阶互调抑制= 2 { OIP3 - ( Pin + G ) } 双音调三阶互调假信号电平= 3 ( Pin + G ) - 2 * OIP3 输出三阶截点值=(输入信号功率-三阶互调假信号电平)/2+输入信号功率 二、阶截点的测试: 1、用两台信号源输入,经二路合成器合成,接入放大器,再输出到频谱仪; 2、两台信号源分别设置不同的频率,相同的输出幅度(将频谱仪的测试值调到一致),记下一组值P1; 3、找到2f2-f1和2f1-f2频点,测试它们的幅度值P2,(P1—P2)/2就是放大器的三阶截点值(输出端); 4、两个频率间隔最好小于20MHz(对于放大器,可以不作限制); 5、输入端的三阶截点值要减去增益值; 6、信号源幅度不要太大(-20dBm左右),或以f1、f2在频谱仪上读数为0dBm为宜; 7、频谱仪的衰减要足够大,以排除频谱仪动态不足带来的误差。 二阶截点的测试: 1、两台信号源输入,经二路合成器合成,接入放大器,再输出到频谱仪; 2、两台信号源分别设置不同的频率,相同的输出幅度(将频谱仪的测试值调到一致),记下一组值P1; 3、找到f2-f1和f1-f2频点,测试它们的幅度值P2,P1—P2就是放大器的二阶截点值(输出端); 4、两个频率间隔最好小于20MHz(对于放大器,可以不作限制); 5、输入端的二阶截点值要减去增益值; 6、信号源幅度不要太大(-20dBm左右),或以f1、f2在频谱仪上读数为0dBm为宜; 7、频谱仪的衰减要足够大,以排除频谱仪动态不足带来的误差。 噪声系数的测试: 1、利用噪声测试仪的信号源输出,经探头到,噪声测试仪的测试输入端; 2、设置起始、终止频率、步进; 3、校准CAL; 4、将待测器件串接到输出端与探头间; 5、待测器件的噪声系数和增益可以直接读出;

倍频效应二次谐波

倍频现象的理论解释线性光学效应的特点:出射光强与入射光强成正比;不同频率的光波之间没有相互作用,没有相互作用包括不能交换能量;效应来源于介质中与作用光场成正比的线性极化。 非线性光学效应的特点:出射光强不与入射光强成正比(例如成平方或者三次方的关系);不同频率光波之间存在相互作用,可以交换能量;效应来源于介质中与作用光场不成正比的非线性极化。 倍频效应是非线性的光学效应,当介质在光波电场的作用下时,会产生极化。设P是光场E在介质中产生的极化强度。 对于线性光学过程:P=ε0χE 对于非线性光学过程:P可以展开为E的幂级数: ε=ε0χ(1)E+ε0χ(2)E2+ε0χ(3)E3+...ε0χ(ε)Eε+… 其中:ε(1)=ε0χ(1)E,ε(2)=ε0χ(2)ε2,ε(3)=ε0χ(3)ε3,…,ε(ε)= ε0χ(ε)εε分别为线性以及2,3,…,n阶非线性极化强度。χ(ε)为n阶极化率。 正是这些非线性极化项的出现,导致了各种非线性光学效应的产生。而倍频效应,就是由其中的二阶极化强度ε(2)所导致产生的: ε??[εε?ε???? ?ε???? ]+c.c. 设光场是频率为ε、波矢为ε???? 的单色波,即:ε=1 2 ε0ε(2)ε2???[2εε?2ε???? ?ε???? ]+c.c. 则ε(2)=ε0χ(2)ε2中将出现项:1 4

该极化项的出现,可以看作介质中存在频率为2ε的振荡电偶极矩,它的辐射便可能产生频率为2ε的倍频光。 介质产生非线性极化:从微观上看,非线性是由原子、分子非谐性所造成的。物质受强光作用后,电子发生位移x,具有位能V(x),对于无对称中心晶体,与电子位移+x和-x 相对应的位能并不相等,即:V(+X)≠V(-x),因而位能函数V(x)应该包含奇次项: ε(ε)=1 2 εε02ε2+ 1 3 εεε3+? 相应的,电子与核之间的恢复力为: ε=??ε(ε) ?ε =?(εεε2ε+εεε2+?) 当D>0时,正位移(ε>0)引起的恢复力大于负位移(ε<0)引起的恢复力。如果作用在电子上的电场力是正的,则会引起一个相对较小的位移;反之,则会引起一个相对较大的位移。那么,电场正方向产生的极化强度就比电场反方向产生的极化强度小。这就使得非线性极化的产生。 有了非线性极化,那么,一个给定的强光波电场对应的极化波就是一个正峰值b比负峰值b’小的非线性极化波: 而根据傅里叶分析,任何一个非正弦的周期函数,都可以分解成角频率为ε、2ε、3ε、…的正弦波。所以强光波电场在介质中引起的非线性极化波,可以分解成为角频率为ε的基频极化波,角频率为2ε的二次谐频极化波,以及常值分量等成分。而其中角频率为2ε的二次谐波,就是倍频光。

二阶互调和三阶互调

二阶互调 x+x+45=y+95 ;x=912+(a-110*0.2) ;y=1773.2+(b-827*0.2) ;a=100~124 ;b=800~859 ;计算上述5个式子可得:2(890-0.2a)=1773.2+0.2b-165.4+50 ;计算可得:122.2=0.2a-0.4b 即2a+611=b 然后可得对应得二阶互调频点为:100-811 ,101-813 102-815 ,103-817 。。。。。。。。。。115-841 ,116-843 。。。。。。。。。。123-857 ,124-859 (1)该频率计划是因为二阶互调所引起的。115频点的发射频率和接收频率之和等于841的下行频率1871,同时124频点的发射频率和接收频率之和等于859的下行频率1874.6,因此引起了二阶互调导致系统掉话。 (2)对于该网络的频率计划主要要考虑900/1800之间的二阶互调干扰和三阶互调干扰。二阶互调干扰: 1、二阶互调表现为fA+/-fB=fC,对双频网可能的表现形式有: DCS1800Tx-GSM900Tx=GSM900Rx;Tx代表基站发射频率,Rx代表基站接收频率 共站时1800发射频率与900发射频率的差频不能等于GSM900的接收频率。 2、还有一种情况就是一个基站的三个小区的BCCH之间存在这样的关系也是二阶互调: BCCH(A)+BCCH(B)=2*BCCH(C) 三阶互调干扰 三阶互调表现为:fA+fB+fC=fD,fA-fB-fC=fD,fA+fB-fC=fD或fA-fB+fC=fD。对双频网前两者不可能成立,后两者其实是同一种情况。可归结为:情况1:DCS1800Tx1-DCS1800Tx2+GSM900Tx=GSM900Rx 即:共站两1800频点发射频率的差频与GSM900频点发射频率的和不能等于GSM900的接收频率情况2:DCS1800Tx-GSM900Tx1+GSM900Tx2= DCS1800Rx 即:共站两GSM900发射频率的差频与DCS1800发射频率的和不能等于DCS1800的接收频率。

接收机邻通道选择性和互调抑制两项指标的测试方案

接收机邻通道选择性和互调抑制的测试方法 一、接收机测试指标要求 二、测试设备清单: 根据测试文档内容,理出以下可能相关测试所需的测试设备,有些是否真正需要,待考究。 三、测试平台搭建 1、测试平台1:邻通道选择性(ACS) 名词解析:邻道选择性(Adjacent Channel Selectivity,ACS)是用来衡量存在相邻信道信号时,接收机在其指定信道频率上接收有用信号的能力,定义为接收机滤波器在指定信道上的衰减与在相邻信道上的衰减的比值。

即指在相邻的信道上存在无用信号时,接收机接收已调有用信号的能力,用无用信号与灵敏度的相对电平表示。 2、测试平台2:互调抑制 名词解析:是指当存在2个或多个以上与有用信号存在特定频率关系的无用信号时,接收机接收有用调制信号时,其性能不低于给定指标的能力;其中三阶互调对系统影响最严重,所以一般测试三阶互调。检验接收机抑制因信号的相互作用在接收机输出端造成干扰的能力,在下行信道加入干扰信号检查接收误码率,判断接收机性能。 四、测试方法步骤

1、邻通道选择性 1)根据测试平1搭建连接图搭建测试环境。 2)测试步骤: a.在接收机的有用信道上使用射频信号源1产生相应被测信道的标准调制信号并将该信 号(有用信号)输入到接收机,其他射频信号源关闭输出,根据设定的BER(Bit Error Rate)或SINAD( Signal-to-Noise-And-Distortion)指标使用误码测试仪等仪器工具测得符合BER或SINAD指标的有用信号的灵敏度,记录此时射频信号源1的功率值为P1; b.再将射频信号源1产生的有用信号加大3dB,即输出SINAD必然会随之增大,BER也会 随之降低; c.然后在接收机的相邻信道(上邻道)上使用射频信号源2产生标准调制信号,即无用信 号,并通过合路器与有用信号合成一路输入到接收机,保持有用信号功率不变,逐渐加大或减小无用信号的功率,直到接收机信号的BER或SINAD恢复到原来测试灵敏度的水平,记录此时射频信号源2的功率值为P2; d.根据无用信号的功率与前面测试接收机的灵敏度功率的差值就是邻通道选择性,记录为 P上=|P2-P1|; e.根据步骤c选择另外一侧相邻信道(下邻道),重复步骤c、d,记录该测试结果功率 为P下=|P2-P1|,至此测试完成; f.根据P上和P下大小,选择较小者为接收机的邻通道选择性(dB),记录该值对应的邻 道(上邻道或下邻道)和被测信道的标称频率(MHz)。 2、互调抑制 1)根据测试平台2搭建连接图搭建测试环境。 2)测试步骤: a.在接收机的有用信道上使用射频信号源1产生相应被测信道的标准调制信号并将该信 号(有用信号f1)输入到接收机,其他射频信号源关闭输出,根据设定的BER(Bit Er ror Rate)或SINAD( Signal-to-Noise-And-Distortion)指标使用误码测试仪等仪器工具测得符合BER或SINAD指标的有用信号的灵敏度,记录此时射频信号源1的功率值为P 1; b.再将射频信号源1产生的有用信号加大3dB,即输出SINAD必然会随之增大,BER也会 随之降低; c.因三阶互调对系统影响最大,所以由三阶互调频响式子有下面频组: 1)(f1+△f,f1+2△f) 2)(f1-△f,f1-2△f) d.使用射频信号源2和射频信号源3产生上述频组1)的频率的标准调制信号,即无用信 号f2和f3,f2和f3输出电平预设值为P1+预估互调抑制比值,并通过合路器与有用信号合成一路输入到接收机,保持有用信号功率不变,同步逐渐加大或减小无用信号f2和f 3的功率(f2和f3步进值一致),直到接收机信号的BER或SINAD恢复到原来测试灵敏度的水平,记录此时射频信号源2和射频信号源3的功率值为P2(f2和f3功率值一致); e.根据步骤d完成上述频组2)的测试,记录此时f2和f3功率值的功率值为P3; f.由测试结果得互调抑制(dB)值有P1=|P2-P1|和P2=|P3-P1|; g.根据P1和P2大小,选择较小者为接收机的互调干扰抑制比(dB),记录该值对应的互 调响应频组频率(MHz)和被测信道的标称频率(MHz)。

次谐波的产生原理

在理想的干净供电系统中,电流和电压都是正弦波的。在只含线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。 在实际的供电系统中,由于有非线性负荷的存在,当电流流过与所加电压不呈线性关系的负荷时,就形成非正弦电流。任何周期性波形均可分解为一个基频正弦波加上许多谐波频率的正弦波。谐波频率是基频的整倍数,例如基频为50Hz,二次谐波为100Hz,三次谐波则为150Hz。因此畸变的电流波形可能有二次谐波、三次谐波……可能直到第三十次谐波组成。 有几个常见多发的问题是由谐波引起的:电压畸变、过零噪声、中性线过热、变压器过热、断路器的误动作等。 ①电压畸变:因为电源系统有内阻抗,所以谐波负荷电流将造成电压波形的谐波电压畸变(这是产生"平顶"波的根源)。此阻抗有两个组成部分:电源接口(PCC)以后的电气装置内部电缆线路的阻抗和PCC以前电源系统内的阻抗,用户处的供电变压器即是PC C的一例。 由非线性负荷引起的畸变负荷电流在电缆的阻抗上产生一个畸变的电压降。合成的畸变电压波形加到与此同一电路上所接的全部其他负荷上,引起谐波电流的流过,即使这些负荷是线性的负荷也是如此。 解决的办法是把产生谐波的负荷的供电线路和对谐波敏感的负荷的供电线路分开,线性负荷和非线性负荷从同一电源接口点开始由不同的电路馈电,使非线性负荷产生的畸变电压不会传导到线性负荷上去。 ②过零噪声:许多电子控制器要检测电压的过零点,以确定负荷的接通时刻。这样做是为了在电压过零时接通感性负荷不致产生瞬态过电压,从而可减少电磁干扰(EM I)和半导体开关器件上的电压冲击。当在电源上有高次谐波或瞬态过电压时,在过零处电压的变化率就很高且难于判定从而导致误动作。实际上在每个半波里可有多个过零点。 ③中性线过热:在中性点直接接地的三相四线式供电系统中,当负荷产生3N次谐波电流时,中性线上将流过各相3N次谐波电流的和。如当时三相负荷不平衡时,中性线上流经的电流会更大。最近研究实验发现中性线电流会可能大于任何一相的相电流。造成中性线导线发热过高,增加了线路损耗,甚至会烧断导线。 现行的解决措施是增大三相四线式供电系统中中性线的导线截面积,最低要求要使用与相线等截面的导线。国际电工委员会(IEC)曾提议中性线导线的截面应为相线导线截面的200%。 ④变压器温升过高:接线为Yyn的变压器,其二次侧负荷产生3N次谐波电流时,其中性线上除有三相负荷不平衡电流总和外,还将流过3N次谐波电流的代数和,并将谐波电流通过变压器一次侧流入电网。解决上述问题最简单的办法是采用Dyn接线的变压器,使负荷产生的谐波电流在变压器△形绕组中循环,而不致流入电网。 无论谐波电流流入电网与否,所有的谐波电流都会增加变压器的电能损耗,并增加了变压器的温升。 ⑤引起剩余电流断路器的误动作:剩余电流断路器(RCCB)是根据通过零序互感器的电流之和来动作的,如果电流之和大于额定的限值它就将脱扣切断电源。出现谐波时RCC B误动作有两个原因:第一,因为RCC B是一种机电器件,有时不能准确检测出高频分量的和,所以就会误跳闸。第二,由于有谐波电流的缘故,流过电路的电流会比计算所得或简单测得的值要大。大多数的便携式测量仪表并不能测出真实的电流均方根值而只是平均值,然后假设波形是纯正弦的,再乘一个校正系数而得出读数。在有谐波时,这样读出的结果可能比真实数值要低得多,而这就意味着脱扣器是被整定在一个十分低的数值上。 现在可以买到能检测电流均方根值的断路器,再加上真实的均方根值测量技术,校正脱扣器的整定值,便可保证供电的可靠性。

二阶互调

二阶互调 x+x+45=y+95 ; x=912+(a-110*0.2) ; y=1773.2+(b-827*0.2) ; a=100~124 ; b=800~859 ; 计算上述5个式子可得: 2(890-0.2a)=1773.2+0.2b-165.4+50 ;计算可得: 122.2=0.2a-0.4b 即2a+611=b 然后可得对应得二阶互调频点为: 100-811 ,101-813 102-815 ,103-817 。。。。。。。。。。 115-841 ,116-843 。。。。。。。。。。 123-857 ,124-859 (1)该频率计划是因为二阶互调所引起的。 115频点的发射频率和接收频率之和等于841的下行频率1871,同时 124频点的发射频率和接收频率之和等于859的下行频率1874.6,因此 引起了二阶互调导致系统掉话。 (2)对于该网络的频率计划主要要考虑900/1800之间的二阶互调干扰和三阶互调干扰。 二阶互调干扰: 1、二阶互调表现为fA+/-fB=fC,对双频网可能的表现形式有: DCS1800Tx-GSM900Tx=GSM900Rx; Tx代表基站发射频率,Rx代表基站接收频率。 共站时1800发射频率与900发射频率的差频不能等于GSM900的接收频 率。 2、还有一种情况就是一个基站的三个小区的BCCH之间存在这样的关系也是二 阶互调:

BCCH(A)+BCCH(B)=2*BCCH(C) 三阶互调干扰: 三阶互调表现为: fA+fB+fC=fD,fA-fB-fC=fD,fA+fB-fC=fD或fA-fB+fC=fD。 对双频网前两者不可能成立,后两者其实是同一种情况。可归结为:情况1:DCS1800Tx1-DCS1800Tx2+GSM900Tx=GSM900Rx 即:共站两1800频点发射频率的差频与GSM900频点发射频 率的和不能等于GSM900的接收频率 情况2:DCS1800Tx-GSM900Tx1+GSM900Tx2= DCS1800Rx 即:共站两GSM900发射频率的差频与DCS1800发射频率的 和不能等于DCS1800的接收频率。

三阶互调截取点测量提示和技巧

三阶互调截取点测量提示和技巧 确保下一个高线性度IP3 测量的精度工程师们常常需要进行三阶互调截取 点(IP3)测量来更好地了解被测器件的线性度。在大功率水平下进行IP3 测量(+40 dBm 或更高)是最困难的测量任务之一。其中一个原因是:为了实现精确的测量,信号源和信号分析仪的三阶失真分量必须低于被测器件(DUT)所 产生的失真分量(最好低于20 dB)。鉴于高线性度IP3 测量的难度,下述技术可以帮助您确保测量精度。 在进行IP3 测量时,您可以从产生高线性度双音源开始。虽然多音模式矢量 信号发生器也可以产生双音信号,然而对于要求最严格的IP3 测量来说,此解 决方案通常没有足够好的防失真性能。产生干净的双音信号的最佳方法是使用 两个信号发生器并用合成器将其合成。这里,信号源隔离是IP3 测量获得成功 的关键。如果没有足够好的信号源隔离,那么其中一个源发出的FR 能量会泄 漏到另一个源中。 信号源隔离的重要性您可以采用若干种方法合成两个信号源的信号,产生达 到IP3 测量要求的隔离。一个明显要求是选择具有最佳端口-端口隔离的合成器。一般来说,纯粹电阻性分路器/合成器仅能实现6-12 dB 的隔离。与此对照,Wilkinson 功率合成器常常能够实现最优隔离通常达到20 dB 或更低。 除了正确选择功率合成器之外,您还可以对两个信号源进行隔离。一种最简 单的方法是使用隔离器或者定向耦合器。耦合器和隔离器通常提供30 dB 或更高的方向性。除了Wilkinson 功率合成器之外,两个信号源均采用定向耦合器 的配置还使信号源之间的隔离优于50 dB。 在获得正确配置的双音源信号之后,下一步是分析激励信号的互调分量,以 验证互调失真(IMD)是否足够低。在使用RF 信号分析仪时,挤出动态范围

三阶互调的计算及IP3测试原理和方法详细教程

三阶互调的计算及IP3测试原理和方法详细教程 三阶交截点(IP3)是衡量通信系统线性度的一个重要指标,他反映了系统受到强信号干扰时互调失真的大小。当系统的IP3较高时,要精确测试IP3 会比较困难,因为测试环境中各种因素(如测试配件的隔离度、线性度和匹配性等)都容易影响高IP3的测试。下面将简略介绍IP3的测试原理,详细分析高IP3的测试方法。 1IP3测试原理在无线通信设备中,器件(如放大器、混频器、调制/解调器等)的非线性通常会使同时侵入2个或多个强干扰信号发生相互调制,并产生新的频率成分,这种现象称为互调。互调干扰不仅能降低有用信号的功率,引起信号失真,降低系统选择性,还能破坏邻近信道的性能。因此,互调性能是系统常检指标,通常用IP3来表示。 IP3是工作频率信号在理想线性系统中的输出信号与三阶互调分量幅值相等时的交点,是一个固定点。如图1所示[1]。该点是虚交点,实际系统中无法直接测出,但可以通过相关的测量值计算出来。下面将简单介绍IP3计算式的原理。 虽然侵入系统的强信号可能有2个或2个以上,但为了测试的方便,假设只有2个强的等幅单音信号侵入了系统。若用一个幂级数来表示器件的非线性作用,并假设单音信号的频率分别为f1和f2,那么不难推出三阶互调分量的频率为(2f1-f2)或(2f2-f1)。IP3(IIP3,OIP3)的计算式为[2]: 其中:IIP3为输入IP3,是IP3的横坐标; OIP3为输出IP3,是IP3的纵坐标; Pin为单音信号的输入功率电平; Pout为单音信号的输出功率电平; G为被测件(Device Under Test - DUT)的小信号增益。 IMD3为三阶互调失真,他等于干扰信号的输出功率电平减去三阶互调量功率电平的值,即:

二次谐波-相位匹配及其实现方法

二次谐波的应用 二次谐波成像是近年发展起来的一种三维光学成像技术,具有非线性光学成像所特有的高空间分辨率和高成像深度,可避免双光子荧光成像中的荧光漂白效应。 此外二次谐波信号对组织的结构对称性变化高度敏感,因此二次谐波成像对于某些疾病的早期诊断或术后治疗监测具有很好的生物医学应用前景. 二次谐波英文名称:second harmonic component 定义:将非正弦周期信号按傅里叶级数展开,频率为原信号频率两倍的正弦分量。 SHG的一个必要条件是需要没要反演对称的介质其次是必须满足相位匹配,传播中的倍频光波和不断昌盛的倍频极化波保持了相位的一致性. 谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。 SHG实验装置SHG实验装置按二次谐波信号收集方式可分为前向和后向,图2为前向和后向二次谐波产生的实验装置示意图.以图2(a)为例:由激光器产生的角频率为的入射基频光,经过物镜聚焦到样品上,产生频率为2的二次谐波,由另一个高数值孔径的物镜收集,滤光片(一般为窄带滤光片)滤掉激发光和可能产生的荧光和其他背景光,再用探测器件(如PMT)和计算机系统进行信号的采集、存储、分析和显示.要实现二次谐波微成像需要对以下因素进行最优化考虑:超短脉冲激光、高数值孑L径的显微物镜、高灵敏度的非解扫面探测器、准相位匹配和具有高二阶非线性的样品J.激光器:掺Ti蓝宝石飞秒激光器因具有高重复频率(80MHz)和高峰值功率,单脉冲能量低且町在整个近红外区(700~1000nm)内连续调谐,所以是二次谐波显微成像的理想光源.激光的重复频率对SHG也有影响,如果提高激发光的重复频率,激发光的平均功率可相应提高,二次谐波信号也得到增强.物镜:一般情况下,二次谐波主要非轴向发射,即信号收集时必须有一个足够大的数值孑L径来有效接收整个二次谐波信号.滤光片:为保证所收集的信号为二次谐波信号,必须使用滤光片.一般采用一长波滤光片和窄带滤光片(带宽10nm)组合以过滤任何干扰信号.信号收集系统:为尽晕减少二次谐波信号在系统中的损失,提高系统的探测灵敏度,最好采用非解扫(non.descanned)的信号.信号收集系统中的主要部件是PMT探测器.首先,为收集整个二次谐波信号,需要探测器的接收面足够宽.其次,对于由可调谐Ti:蓝宝石飞秒激光器,要接收的二次谐波信号处于350~500nm波段,故可采用双碱阴极光电倍增管.由于激发光波长离探测器的响应区很远,故可有效探N--次谐波信号.除了使用不同的滤光片外,二次谐波显微成像和双光子激发荧光显微成像在系统结构上是完全兼容的.已有人成功地将激光扫描共聚焦显微镜改造成双光子系统9,同样,也可以方便的用改造后的系统进行两者的复合成像 二次谐波显微成像技术的发展及其在生物医学中的应用. 细胞膜电压的测量对理解细胞信号传递过程有重要作用. 使用合适的膜染剂进行标记, 通过对染剂分子的二次谐波显微成像, 信号强度变化便能反映膜电压的大小. 近年来, 二次谐波显微成像的一个主要领域, 就是发展具有高时空分辨率及高灵敏度的活细胞中横跨膜电压的光学测量方法. SHG成像用于膜电压测量细胞膜电压的测量对理解细胞信号传递过程有重要作用.使用合适的膜染剂进行标记,通过对染剂分子的二次谐波显微成像,信号强度变化便能反映膜电压的大小.近年来,二次谐波显微成像的一个主要领域,就是发展具有高时空分辨率及高灵敏度的活细胞中横跨膜电压的光学测量方法.1993年,OBouevitch等人¨证明,所加电场可强烈地调制SHG强度.1999年,PJCampagno!a等人则证明了SHG信号随膜电压变化.实验结果表明,激发波长为

什么是二次谐波。

1.什么是二次谐波? 答:谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。 2.谐波是怎样分类的? 谐波主要根据频率和相序特性进行分类。 1. 根据频率分类 2次谐波(100Hz)、3次谐波(150Hz)。非工频整数倍的谐波称为间谐波。 2. 根据相序旋转作用分类 根据相序旋转作用可负序谐波、零序谐波、正序谐波三种。分别对应2、3、4次谐波,并依次类推分别对应5、6、7次谐波,8、 9、10次谐波……。其中正序谐波包括基波频率,为正向旋转。 负序谐波为逆向旋转,产生的磁场抵消基波产生的磁场。零序谐波不旋转,但会叠加到三相四线制系统中的中性线上。在三相四线制系统中,一些谐波能够相互抵消,另一些却会相互叠加,致使谐波被放大。 理想情况下,电网电压和电流波形为频率为50Hz(有些国家为60Hz)的正弦波。但是现实情况并非如此,电压和电流波形不是完美的正弦波,这被称为“畸变”。利用傅立叶分析法,这个畸

变的波形可以分解为一系列不同频率的正弦波的叠加,其中序数为1的是我们需要的50Hz(或60Hz)的基波,其余的分量的频率是基波频率的整数倍,这些频率的电能是我们不希望看到的,被称为谐波。 二次谐波就是电网中存在的频率为100Hz(50Hz的2倍)。一般是由冶炼金属的电弧炉产生的。二次谐波的治理是比较复杂的

三阶互调

三阶互调 (Third Order Intermodulation 或3rd Order IMD)是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩的合称为三阶信号。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。他所表明的是确切含义是,一个线性系统所包含的非线性系数的大小. 公式 三阶互调公式:f1+f2-f3,2f1-f2,2f2-f1 三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制过程中产生的。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。由于F2,F1信号比较接近,也造成2F1-F2,2F2-F1会干扰到原来的基带信号F1,F2。这就是三阶互调干扰。既然会出现三阶,当然也有更高阶的互调,这些信号不也干扰原来的基带信号么?其实因为产生的互调阶数越高信号强度就越弱,所以三阶互调是主要的干扰,考虑的比较多。不管是有源还是无源器件,如放大器、混频器和滤波器等都会产生三次互调产物。这些互调产物会降低许多通信系统的性能。 1、三阶互调的产生 三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号混频后所产生的寄生信号。比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2和2F2-F1。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),所以称之为三阶互调。 由于F2,F1信号一般比较接近,也造成2F1-F2,2F2-F1会干扰到其它基站的信号,这就是三阶互调干扰。 2、三阶互调的影响 假如某基站输出的互调干扰为-36dBm(满足无委指标),互调信号和有用信号一起通

二次谐波相位匹配及其实现方法

二次谐 波的应用 二次谐波成像是近年发展起来的一种三维光学成像技术,具有非线性光学成像所特有的高空间分辨率和高成像深度,可避免双光子荧光成像中的荧光漂白效应。 此外二次谐波信号对组织的结构对称性变化高度敏感,因此二次谐波成像对于某些疾病的早期诊断或术后治疗监测具有很好的生物医学应用前景. 二次谐波英文名称:second harmonic component 定义:将非正弦周期信号按傅里叶级数展开,频率为原信号频率两倍的正弦分量。SHG的一个必要条件是需要没要反演对称的介质其次是必须满足相位匹配,传播中的倍频光波和不断昌盛的倍频极化波保持了相位的一致性. 谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。

SHG实验装置SHG实验装置按二次谐波信号收集方式可分为前向和后向,图2为前向和后向二次谐波产生的实验装置示意图.以图2(a)为例:由激光器产生的角频率为的入射基频光,经过物镜聚焦到样品上,产生频率为2的二次谐波,由另一个高数值孔径的物镜收集,滤光片(一般为窄带滤光片)滤掉激发光和可能产生的荧光和其他背景光,再用探测器件(如PMT)和计算机系统进行信号的采集、存储、分析和显示.要实现二次谐波微成像需要对以下因素进行最优化考虑:超短脉冲激光、高数值孑L径的显微物镜、高灵敏度的非解扫面探测器、准相位匹配和具有高二阶非线性的样品J.激光器:掺Ti蓝宝石飞秒激光器因具有高重复频率(80MHz)和高峰值功率,单脉冲能量低且町在整个近红外区(700~1000nm)内连续调谐,所以是二次谐波显微成像的理想光源.激光的重复频率对SHG也有影响,如果提

互调干扰测试仪使用手册

互调干扰测试仪使用手册 一:天馈系统互调测试 天馈系统互调测试主要是为了检查基站小区上行干扰情况,反射式互调由天馈系统中的跳线、馈线连接器、馈线以及天线中最差的组件决定;在进行互调排查时可以使用低互调负载分段连接定位故障。 二:测试界面 1:三阶、五阶操作界面

2:干扰小区扫频操作界面 三:测试操作步骤 1:扫频测试步骤 a:点击SPRCTRUM进入干扰小区的扫频测试界面,如上图所示。 b:点击START和STOP分别设定值为885和910,其次点击NEXT,进入下页,如下图所示页面,可以看到MARKERSELECT和ENTER两个键。

选中MARKER SELECT,选择marker1,然后点击ENTER健,键入需标记的第一个频点值,以移动的上行频段为例,在此键入890MHZ,然后再次点击MARKER SELECT,选择marker2,然后点击ENTER健入需标记的第二个频点值,以移动的上行频段为例,在此键入909MHZ,最终示意图如下: 2:三阶、五阶操作步骤:

a:首先打开PIM界面,如上图所示 b:点击SETTING设置采样点数,由6修改为10,这样能够使得测试更精确;将界面左上角的dBc修改为dBm;后边的互调设置是根据测试情况而定,如果测试三阶,将-130修改为-80,如果测试五阶,将-130修改为-100. c:界面设置完毕后,点击START进行测试。测试结束后,如果实际测试值小于三阶或者五阶的设定值就算通过。反之,没有通过。

四:分段测试器件互调与故障定位 1:故障定位图 备注:上图是测试五阶的互调与故障定位,如果测试三阶,上图的-100dBm改为-80dBm即可。 2:事例说明 在进行互调排查时可使用低互调负载分段式连接定位故障器件,天馈系统各组件分段测试表格如下:

高次谐波的产生及其治理

高次谐波的产生及其治理 一、概述 目前,许多变电所的负荷中含有大量非线性负荷,如整流装置、交-交变频装置、炼钢电弧炉、中频炉、电力机车、交流电焊机、高频电焊机、中频淬火炉、高频淬火炉、计算机的开关电源、带电子镇流器的荧光灯等。供电给这些非线性负荷的系统电压即使为理想正弦波,它们工作时的电流也是非正弦电流。这些非正弦电流波形按傅氏级数可以分解为基波及一系列不同频率和振幅的谐波。谐波频率为基波频率的整数倍时,称为高次谐波;其频率为基波频率的非整数倍时,称为分数谐波或旁频波;其频率低于基波频率时,称为次谐波。谐波电流流经系统中包括发电机、输电线、变压器等各种阻抗元件时,必然产生非正弦的电压降,使交流系统内各点的电压波形也发生不同程度的畸变。电压畸变的程度取决于非线性负荷容量与电网容量的相对比值以及供电系统对谐波频率的阻抗,畸变的电压反过来对整流装置从系统中取用的电流波形又有影响。因而谐波电流和谐波电压是相伴而生、相互影响的。 二、谐波危害 2.1通讯干扰 非线性负荷供电系统产生的谐波对与其邻近的通讯线路产

生静电感应及电磁感应,在通讯系统内产生不良影响。 2.2同步发电机的影响 电力系统中的同步发电机,特别是以非线性负荷为主或以发电电压直接供给非线性负荷的同步发电机,高次谐波对其有较大不良影响。谐波电流引起定子特别是转子部分的附加损耗和附加温升,降低了发电机的额定出力。 2.3对异步电动机的影响 谐波引起电机角速度脉动,严重时会发生机械共振。对电动机的功率因数和最大转矩都有影响。 2.4对电力电容器的影响 由于电容器的容抗和频率成反比,电力电容器对谐波电压最为敏感。谐波电压加速电容器介质老化,介质损失系数tgδ增大,容易发生故障和缩短寿命,谐波电流常易使电容器过负荷而出现不允许的温升。电容器与电力系统还可能发生危险的谐振。此时,电容器成倍地过负荷,响声异常,熔断器熔断,使电容器无法运行。伴随着谐振,在谐振环节常出现过电压,造成电气元件及设备故障或损坏,严重时影响系统的安全运行。 2.5对电缆线路绝缘的影响 对电缆线路,非正弦电压使绝缘老化加速,漏泄电流增大;当出现并联谐振过电压时,可能引起放炮并击穿电缆。 2.6对变压器的影响

相关文档
最新文档