传送带模型和滑块模型教学文案

传送带模型和滑块模型教学文案
传送带模型和滑块模型教学文案

专题:传送带模型和滑块模型

1、板块模型

此类问题通常是一个小滑块在木板上运动,小物块与长木板是靠一对滑动摩擦力或静摩擦力联系在一起的。分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移等,解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图。在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm 与木板长度L 之和,而它们各自的匀加速运动均在相同时间t 内完成。

例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。(g取10m/s2)解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度

为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止:(∵,物

体不会落后于小车)物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m

解决这类问题的方法是:①研究物块和木板的加速度;②画出各自运动过程示意图;③找出物体运动的时间关系、速度关系、相对位移关系等;④建立方程,求解结果,必要时进行

讨论。要求学生分析木板、木块各自的加速度,要写位移、速度表达式,还要寻找达到共同速度的时间等等

在这三个模型中尤其板块模型最为复杂。其次是传送带模型,一般情况下只需要分析物体的加速度和运动情况,而传送带一般是匀速运动不需另加分析。最后是追及相遇问题,它只是一个运动学问题并没有牵扯受力分析问题,相对是最简单的,只要位移关系速度公式就可以问题。对于上述的三种模型我们不难发现他们的共性是:①分别写出位移、速度表达式;②根据位移、速度的关系求得未知量。我认为在三个模型中只要熟练分析好板块模型其他两个模型在此基础上根据已知条件稍作变通就可以迎刃而解了。这样就可以减少了学生对模型数量的记忆,达到事半功倍的效果。

例3、如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。

分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一

起加速的最大加速度由A决定。解答:物块A能获得的最大加速度为:.∴A、B一起加速运动时,拉力F的最大值为:.

变式1例1中若拉力F作用在A上呢?如图2所示。解答:木板B能获得的最大加速度为:

。∴A、B一起加速运动时,拉力F的最大值为:

变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。

解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则:

解得:

例4.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg ,长为L=1.4m ;木板右端放着一小滑块,小滑块质量为m=1kg ,其尺寸远小于L 。小滑块与木板之间的动摩擦因数为

μ==04102.(/)g m s

(1)现用恒力F 作用在木板M 上,为了使得m 能从M 上面滑落下来,问:F 大小的范围是什么?

(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M 上,最终使得m 能从M 上面滑落下来。问:m 在M 上面滑动的时间是多大?

解析:(1)小滑块与木板间的滑动摩擦力f N mg ==μμ,小滑块在滑动摩擦力f 作用下向右匀加速运

动的加速度 a f m g m s 124===//μ,木板在拉力F 和滑动摩擦力f 作用下向右匀加速运动的加

速度

a F f M 2=-()/,使m 能从M 上面滑落下来的条件是

a a 21

>,即

N

g m M F m f M f F 20)(//)(=+>>-μ解得,(2)设m 在M 上滑动的时间为t ,当恒力

F=22.8N ,木板的加速度

a F f M m s 22

47=-=()/./ ),小滑块在时间t 内运动位移

S a t 1122

=/,木板在时间t 内运动位移

S a t 2222

=/,因

S S L

21-= 即

s t t t 24.12/42/7.422==-解得

例5.长为1.5m 的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B ,

直到A 、B 的速度达到相同,此时A 、B 的速度为0.4m/s ,然后A 、B 又一起在水平冰面上滑行了8.0cm 后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=0.25.求:(取g =10m/s 2)

(1)木块与冰面的动摩擦因数. (2)小物块相对于长木板滑行的距离.

(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大? 解析:(1)A 、B 一起运动时,受冰面对它的滑动摩擦力,做匀减速运动,加速度

2

22 1.0m/s

2v a g s

μ=== 解得木板与冰面的动摩擦因数μ2=0.10(2)小物块A 在长木板上受

木板对它的滑动摩擦力,做匀减速运动,加速度a 1=μ1g =2.5m/s 2

小物块A 在木板上滑动,木块B 受小物

块A 的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,有μ1mg -μ2(2m )g =ma 2 解得加速度a 2=0.50m/s 2

设小物块滑上木板时的初速度为v 10,经时间t 后A 、B 的速度相同为v ,由长木板的运动得v =a 2t ,解得滑

A

v B

行时间2

0.8s v

t a =

=,小物块滑上木板的初速度 v 10=v +a 1t =2.4m/s ,小物块A 在长木板B 上滑动的距离为2212

011211

0.96m 22

s s s v t a t a t ?=-=--=(3)小物块A 滑上长木板的初速度越大,它在长木板

B 上相对木板滑动的距离越大,当滑动距离等于木板长时,物块A 达到木板B 的最右端,两者的速度相等(设为v ′),这种情况下A 的初速度为保证不从木板上滑落的最大初速度,设为v 0.有

2201211

22

v t a t a t L --=,012v v a t

v a t ''-==,由以上三式解得,为了保证小物块不从木板的

右端滑落,小物块滑上长木板的初速度不大于最大初速度0122() 3.0m/s v a a L =

+=

2 传送带问题

突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,能够明确对于物块来说当它的速度达到和传送带速度相等时是摩擦力方向、大小改变的转折点。画好草图分析,找准物体和传送带的位移及两者之间的关系。

解决这类题目的方法如下:选取研究对象,对所选研究对象进行隔离处理,就是一个化难为易的好办法。对轻轻放到运动的传送带上的物体,由于相对传送带向后滑动,受到沿传送带运动方向的滑动摩擦力作用,决定了物体将在传送带所给的滑动摩擦力作用下,做匀加速运动,直到物体达到与皮带相同的速度,不再受摩擦力,而随传送带一起做匀速直线运动。传送带一直做匀速直线运动,要想再把两者结合起来看,则需画一运动过程的位移关系图就可让学生轻松把握。总之就是物体只要上了传送带就是想和传送带达到共同的速度,至于能否达到要看实际条件。简化一下即为:①研究物块的加速度;②画出运动过程示意图;③找出物体运动的时间关系、速度关系、位移关系以及传送带的位移关系;④建立方程,求解结果,必要时进行讨论。

滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。因此这类命题,往往具有相当难度。滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。按滑块与传送带的初始状态,分以下几种情况讨论。

点评:处理水平传送带问题,首先是要对放在传 送带上的物体进行受力分析,通过比较物体初速度 与传送带的速度的关系,分清物体所受的摩擦力是 动力还是阻力;其次是分析物体的运动状态,即对静 态— 动态— 终态做分析和判断,对其全过程做出

合理的分析、推断,进而用相关的物理规律求解.一、滑块初速为0,传送带匀速运动

[例1]如图所示,长为L 的传送带AB 始终保持速度为v 0

的水平向右的速度运动。今将一与皮带间动摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB

解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B 。

滑块C 的加速度为

,设它能加速到为

时向前运动的距离为

C

A B

A

θ

,C 由A 一直加速到B ,由

,C 由A 加速到

用时

,前进的距离

距离内以

速度匀速运动

C 由A 运动到B 的时间

[例2]如图所示,倾角为θ的传送带,以

的恒定速度按图示

方向匀速运动。已知传送带上下两端相距L 今将一与传送带间动摩擦因数为μ的滑块A 轻放于传送带上端,求A 从上端运动到下端的时间t 。

解析:当A 的速度达到

时是运动过程的转折点。A 初始下

滑的加速度

若能加速到

,下滑位移(对地)为

(1)若

。A 从上端一直加速到下端 。

(2)若 ,A 下滑到速度为

用时

之后

距离内摩擦力方向变为沿斜面向上。又可能有两种情况。

(a )若

,A 达到

后相对传送带停止滑动,以

速度匀速,

总时间

(b)若,A达到后相对传送带向下滑,,到达末端速度

用时

总时间

2倾斜的传送带

情景一:如图4(a)所示,传送带顺时针匀速运

行,且足够长.现将物体轻轻放在传送带上的A端,

物体经过一段时间运动到另一端B点.

分析:将物块轻轻放在传送带上后,物块所受滑

动摩擦力方向沿斜面向下,受力情况如图3(b)所

示,物块将做匀加速直线运动.当速度达到v后,如

果mgsinθ>f,将继续向下加速运动,直到运动至B

点.如果mgsinθ≤f,物块将随传送带一起匀速运

动至B点,物块受力情况如图4(b)所示.

图4

二、滑块初速为0,传送带做匀变速运动

[例3]将一个粉笔头轻放在以2m/s 的恒定速度运动在足够长的水平传送带上后,传送带上留下一条长度为4m 的划线。若使

该传送带仍以2m/s 的初速改做匀减速运动,加速度大小恒为

1.5m/s 2,且在传送带开始做匀减速运动的同时,将另一粉笔头(与传送带的动摩擦因数和第一个相同)轻放在传送带上,该粉笔头在传送带上能留下一条多长的划线?

解析:在同一v-t 坐标图上作出两次划线粉笔头及传送带的

速度图象,如图所示。第一次划线。传送带匀速,粉笔头匀加

速运动,AB 和OB 分别代表它们的速度图线。速度相等时(B 点),划线结束,图中

的面积代表第一次划线长度

,即B 点坐标为(4,2),粉笔头的加速度

第二次划线分两个AE 代表传送带的速度图线,它的加速度为

可算出E

点坐标为(4/3,0)。OC 代表第一阶段粉笔头的速度图线,C 点表示二者速度相同,

t

v 0 0

v 1 t 1 t 2 t 3

传送带

粉笔头

C

A B

滑块滑板模型 - 答案

滑块、滑板模型 [典例] 1.如图所示,A 、B 两物块叠放在一起,放在光滑地面上,已知A 、B 物块的质量分别为M 、m ,物块间粗糙。现用水平向右的恒力F 1、F 2先后分别作用在A 、B 物块上,物块A 、B 均不发生相对运动,则F 1、F 2的最大值之比为( ) A .1∶1 B .M ∶m C .m ∶M D .m ∶(m +M) 2.(多选)(2014·江苏高考)如图所示,A 、B 两物块的质量分别为2 m 和m ,静止叠放在 水平地面上。A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为1 2 μ。最大静摩擦力等 于滑动摩擦力,重力加速度为g 。现对A 施加一水平拉力F ,则( ) A .当F<2μmg 时,A 、 B 都相对地面静止 B .当F =52μmg 时,A 的加速度为1 3 μg C .当F>3μmg 时,A 相对B 滑动 D .无论F 为何值,B 的加速度不会超过1 2 μg 3.如图所示,质量M=8 kg 的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg 的小物块,物块与小车间的动摩擦因数 =0.2,小车足够长(取g=l0 m/s2)。求: (1)小物块放后,小物块及小车的加速度大小各为多大? (2)经多长时间两者达到相同的速度? (3)从小物块放上小车开始,经过t=1.5 s 小物块通过的 位移大小为多少? 4.如图所示,质量M = 8kg 的长木板放在光滑水平面上,在长木板的右端施加一水平恒力F = 8N ,当长木板向右运动速率达到v 1 =10m/s 时,在其右端有一质量m = 2kg 的小物块(可视为质点)以水平向左的速率v 2 = 2m/s 滑上木板,物块与长木板间的动摩擦因数μ = 0.2,小物块始终没离开长木板,g 取10m/s 2,求: ⑴经过多长时间小物块与长木板相对静止; ⑵长木板至少要多长才能保证小物块始终不滑离长木板; ⑶上述过程中长木板对小物块摩擦力做的功。 5. 质量M =4 kg 、长2l =4 m 的木板放在光滑水平地面上,以木板中点为界,左边和右边的动摩擦因数不同.一个质量为m =1 kg 的滑块(可视为质点)放在木板的左端,如图甲所示.在t =0时刻对滑块施加一个水平向右的恒力F ,使滑块和木板均由静止开始运动,t 1=2 s 时滑块恰好到达木板中点,滑块运动的x 1-t 图象如图乙所示.取g =10 m/s 2. M m m

9.15传送带总结材料

《传送带》听评课总结材料 第七组组员:张瑜冬李丽丽吴可姜海滨刘颖王坤李杰吴玲时间:2014年9月15日 观察维度——课程性质三个视角:目标内容实施资源 于2014年9月15日,听了一节韩立红老师的《传送带》,我们小组的观察维度是课程性质,在课程性质维度下选择了目标、内容、实施、资源四个视角六个观察点进行评课,下面我将我们小组的听评课结果汇报一下: 首先,从目标角度看: 传送带的动力学研究,符合该班学生学习目标面向全体学生,关注了不同学生的需求。整节课很成体系,完整而有层次,内容紧凑,环环相扣,容量本身的斟酌比较合适。 其次,从内容角度看: 本节课的课堂探究都由问题提出引发。针对高三学生,增加了高考连接,进行题型归纳总结,从简单到复杂,引导学生学习传送带动力学研究的三个模型。 模型一:水平传送带 1)无初速度 2)同向初速度 3)反向初速度 讨论题 模型二:顺时针倾斜传送带 1)传送带不够长 2)传送带总够长 3)传送带刚够长 讨论题 模型三:逆时针倾斜传送带 1)传送带不够长 2)传送带总够长 3)传送带刚够长 讨论题 教学由问题驱动,不同难度的问题层层递进,适合学生的认知水平,教师的适时引导,对回答不太完美的学生予以补充,对回答完美的学生予以肯定,问题链与学生认知水平、知识结构相符合,使得能力较弱和能力较强学生都能得到展示机会。 再次,从评价角度看: 检测学习目标所采用的主要评价方式通过交流、讨论,从而了解所要掌握的知识,个别提问并评价26次,总时间11分38秒;集体提问并评价15次,总时间5分36秒。 教师语言表达简洁清楚平和,通过身体语言辅助表达,思维敏捷活跃。学生回答时会有偏差,教师及时给与引导再提问,当答案较完整后,教师会修正完善答题过程,也是引导学生对知识进行总结归纳的过程。 最后,从资源角度看: 本节课预设了导学案、图片,模型等资源,多媒体课件展示三个模型,使学生一直处于一种活跃的状态,体现了课堂生命鲜活的特征。本节课为高三复习课,教师先下发导学案,回忆旧知识,让学生了解整堂课的内容,掌握自己的学习情

传送带滑块专题

专题三 传送带和滑块问题 1、传送带和滑块模型中要注意摩擦力的突变 ①滑动摩擦力消失 ②滑动摩擦力突变为静摩擦力 ③滑动摩擦力改变方向 2、一般解法 ①确定研究对象; ②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响; ③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。 一、水平放置运行 1、如图所示,水平放置的传送带以速度v=2m/s 向右运行,现将一小物体轻轻地放在传送带A 端,物体与传送带间的动摩擦因数μ=0.2,若A 端与B 端相距4 m ,则物体由A 运动到B 的时间和物体到达B 端时的速度是:( ) A .2.5 s ,2m/s B .1s ,2m/s C .2.5s ,4m/s D .1s ,4/s 2.如图所示,绷紧的水平传送带始终以恒定速率v 1运行。初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带。若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t 图象(以地面为参考系)如图乙所示。已知v 2>v 1, 则 A .t 2时刻,小物块离A 处的距离达到最大 B .t 2时刻,小物块相对传送带滑动的距离达到最大 C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左 D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用 3.如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。现给 木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木 块加速度的大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是 4.在光滑水平面上放置两长度相同、质量分别为m 1和m 2的木板P 、Q ,在木板的左端各有 一大小、形状、质量完全相同的物块a 和b ,木板和物块均处于静止状态.现对物块a 和b 分别施加水平恒力F 1和F 2,使它们向右运动。当物块与木板分离时,P 、Q 的速 m 1 m 2 F v 1 v 2 A 甲 v t O v 2 -v 1 乙 t 1 t 3 t 2

高中物理必修一传送带和滑块模型

1.静止在光滑水平面上的物体在水平拉力F作用下开始运动,拉力随时间变化的规律如图所示,关于物体在0~t1时间内的运动情况下列描述正确的是( ) A.物体先做匀加速运动,后做匀减速运动 B.物体的速度一直增大 C.物体的速度先增大后减小 D.物体的加速度一直增大 2.将木块A、B叠放在一起后放在倾角为α的光滑斜面上,A和B一起沿斜面自由滑下。下滑过程中,A和B无相对运动,如图所示。已知A的质量为m,求下滑过程中A受到的支持力及摩擦力各多大? 3.如图所示的装置中,重4N的物块被平行于斜面的细线拴在斜面上端的小柱上,整个装置被固定在测力计上并保持静止,斜面的倾角为30°。如果物块与斜面间无摩擦,装置稳定以后,当细线被烧断物块正下滑时,与稳定时比较,测力计的读数为( ) A.增大4N B.增大3N C.减小1N D.不变

4.如图所示为车站使用的水平传送带的模型,传送带长l=8m,现有一个质量为m=10kg的旅行包以v0=10m/s的初速度水平地滑上水平传送带,已知旅行包与皮带间的动摩擦因数为μ=0.6。g取10m/s2,且可将旅行包视为质点。试讨论下列问题: (1)若传送带静止,则旅行包从传送带的A端滑到另一端B所需要的时间是多少? (2)若传送带一速度v=4m/s沿顺时针方向匀速转动,则旅行包从传动带的A端滑到B端历时多少? (3)若传送带以速度v=4m/s沿逆时针向匀速转动,则旅行包是否能够从传动带的A端滑到B端?如不能,试说明理由;如能,试计算历时多少? 5.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查.如图3-7-6所示为一水平传送带装置示意图,绷紧的传送带AB始终保持v=1m/s的恒定速率运行,一质量为m=4kg的行李无初速地放在A处,设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2. (1)从A运动到B的时间以及物体在皮带上留下的滑痕长度; (2)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率. A B v 图3-7-6

滑块传送带模型分析带答案

1.如图3-3-13所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之 间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=k t(k是常数),木板和木块加速度 的大小分别为a1和a2.下列反映a1和a2变化的图线中正 确的是( ). 2.如图3-3-7所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是 ( ). 3.如图3-3-8甲所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑 上传送带开始计时,小物块在传送带上运动的v-t图像(以地面为参考系)如图3 -3-21乙所示.已知v2>v1,则( ). 图3-3-8 A.t2时刻,小物块离A处的距离达到最大 B.t2时刻,小物块相对传送带滑动的距离达到最大 C.0~t2时间内,小物块受到的摩擦力方向先向右后向左 D.0~t3时间内,小物块始终受到大小不变的摩擦力作用 4.表面粗糙的传送带静止时,物块由顶端A从静止开始滑到皮带底端B用的时间是t,则 ( ) A.当皮带向上运动时,物块由A滑到B的时间一定大于t B.当皮带向上运动时,物块由A滑到B的时间一定等于t C.当皮带向下运动时,物块由A滑到B的时间一定等于t D.当皮带向下运动时,物块由A滑到B的时间一定小于t 5. 如图是一条足够长的浅色水平传送带在自左向右匀速运行。现将一个木炭包无初速地放在传送带的最左端,木炭包在传送带上将会留下一段黑色的径迹。下列说法中正确的是() A.黑色的径迹将出现在木炭包的左侧 B.木炭包的质量越大,径迹的长度越短 C. 传送带运动的速度越大,径迹的长度越短 D.木炭包与传送带间动摩擦因数越大,径迹的长度越短 6.、如图所示,水平传送带上A、B两端点相距x=4 m,传送带以v0=2 m/s 的速度(始终保持不变)顺时针运转.今将一小煤块(可视为质点)无初速度地

滑块滑板模型专题

滑块与滑板相互作用模型 【模型分析】 1、相互作用:滑块之间的摩擦力分析 2、相对运动:具有相同的速度时相对静止。两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。 3、通常所说物体运动的位移、速度、加速度都是对地而言的。在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。它就是我们解决力和运动突破口。 4、求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。 5、求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。另外求相对位移时:通常会用到系统能量守恒定律。 6、求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。 1、如图所示,在光滑水平面上有一小车A,其质量为0.2 m,小 A

车上放一个物体B ,其质量为0.1=B m ,如图(1)所示。给B 一个水平推力F ,当F增大到稍大于3.0N 时,A、B开始相对滑动。如果撤去F ,对A 施加一水平推力F ′,如图(2)所示,要使A 、B不相对滑动,求F ′的最大值m F 2.如图所示,质量8 的小车放在水平光滑的平面上,在小车左端加一水平推力8 N ,当小车向右运动的速度达到1.5 时,在小车前端轻轻地放上一个大小不计,质量为2 的小物块,物块与小车间的动摩擦因数μ=0.2,小车足够长(取0 2)。求: (1)小物块放后,小物块及小车的加速度大小各为 多大? (2)经多长时间两者达到相同的速度? (3)从小物块放上小车开始,经过1.5 s 小物块通过的位移大小为多少? M m

公开课教学设计

公开课教学设计 《功能关系—传送带模型的构建》 华容一中胡昌武 一、教学目标 知识目标: 1、进一步掌握物体在传送带上的运动规律 2、理解掌握物体在传送带上运动的功能分析方法及过程 能力目标: 提高学生建模能力、分析问题、解决问题的能力 情感目标: 培养学生独立思考、合作探究和推理判断的能力 二、教学重点 物体在传送带上运动产生内能的原因及计算。 三、教学难点 模型的迁移运用 四、课时:1课时 五、教学过程 (一)激情导入 高考动向: 我们研究过运动学的问题,也研究过功与能的有关问题,这两类问题在高考中都很难绕过一个基本模型——传送带。近几年有关传送带考题也是频频出现。传送带问题的考查一般从两个层面上展开,一是受力和运动分析,二是功能分析。今天我们主要研究第二类问题。

下面请同学们完成学案上的复习引入里的有关问题。 问题情境 如图所示,传送带随轮以恒定的速率1v 顺时针转动(01>v ),物体从左端以速度2v 滑上传送带,从传送带左端运动到右端。试分析下列问题: 情况 答案 问题 12v v < 12v v > 12v v = 是否受到摩擦力作用 物体将会在传送带上怎样运动 (二)合作探究,小组交流 将学生分成学习小组,讨论研究下面的三个问题: 探究1:一水平传送带两轮之间距离为10m ,以1v =4m/s 的速度做匀速运动。已知某质量为1kg 小物体与传送带间的动摩擦因数为0.1,将该小物体轻轻的无初速放在传送带的左端,设传送带速率不受影响,求物体从左端运动到右端的过程中(g 取10m/s2) (1)传送带对物体做的功W f ; (2)系统产生的内能Q ; (3)物体对传送带做的功W F 。 2v 1v v 2 v 1 v

传送带和滑块模型

传送带模型专题 传送带模型是一个经典的力学模型,也是实际生活中广泛应用的一种机械装置,以其为背景的问题都具有过程复杂、条件隐蔽性强的特点,传送带问题也是高考中的常青树,从动力学角度、功能角度进行过多次考查,它自然成为师生关注的热点。 一、难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 二、难点突破策略: 在以上三个难点中,第1个难点应属于易错点,突破方法是先正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,做到准确灵活地分析摩擦力的有无、大小和方向。 第2个难点是对于物体相对地面、相对传送带分别做什么样的运动,判断错误。该难点应属于思维上有难度的知识点,突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,画好草图分析,找准物体和传送带的位移及两者之间的关系。 如图甲所示,A 、B 分别是传送带上和物体上的一点,刚放上物体时,两点重合。设皮带的速度为V0,物体做初速为零的匀加速直线运动,末速为V0,其平均速度为V0/2,所以 物体的对地位移x 物=20t V ,传送带对地位移x 传送带=V0t ,所以A 、B 两点分别运动到如图 乙所示的A '、B '位置,物体相对传送带的位移也就显而易见了,x 物=2传送带 x ,就是图乙中的A '、B '间的距离,即传送带比物体多运动的距离,也就是物体在传送带上所留下的划痕的长度。 第3个难点也应属于思维上有难度的知识点。对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是分析有滑动摩擦力做功转化为内能的物理过程,使“只要有滑动摩擦力做功的过程,必有内能转化”的知识点在头脑中形成深刻印象。 三.传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个: (1)动力学角度:首先要正确分析物体的运动过程,做好受力情况分析,然后利用运动学公式结合牛顿第二定律,求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.

高中物理滑块滑板模型

高中物理滑块滑板模型 1. 在水平地面上,有一质量为M=4kg、长为L=3m的木板,在水平向右F=12N的拉力作用下,从静 止开始经t=2s速度达到υ=2m/s,此时将质量为m=3kg的铁块(看成质点)轻轻地放在木板的最右端,如图所示.不计铁块与木板间的摩擦.若保持水平拉力不变,请通过计算说明小铁块能否离开 木板?若能,进一步求出经过多长时间离开木板? 解答:设木板加速运动的加速度大小为a1, 由v=a1t得,a1=1m/s2. 设木板与地面间的动摩擦因数为μ,由牛顿第二定律得, F-μMg=Ma1 代入数据解得μ=0.2. 放上铁块后,木板所受的摩擦力f2=μ(M+m)g=14N>F,木板将做匀减速运动. 设加速度为a2,此时有: f2-F=Ma2 代入数据解得a2=0.5m/s2. 设木板匀减速运动的位移为x,由匀变速运动的公式可得, x=v2/2 a2=4m 铁块静止不动,x>L,故铁块将从木板上掉下. 设经t′时间离开木板,由 L=vt′- 1/2a2t′2 代入时间解得t′=2s(t′=6s舍去). 答:铁块能从木板上离开,经过2s离开木板. 2. 如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6N的水平力作用下由静止开始向右运 动.已知木板A、B长度均为l=1m,木板A的质量M A=3kg,小滑块及木板B的质量均为m=1kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10m/s2.求:(1)小滑块在木板A上运动的时间; (2)木板B获得的最大速度. 解答:解:(1)小滑块对木板A的摩擦力 木板A与B整体收到地面的最大静摩擦力 ,小滑块滑上木板A后,木板A保持静止① 设小滑块滑动的加速度为② ③ 解得:④

板块模型教学设计

板块模型教学设计 一、板块问题的重要性 理想模型法是物理思维的重要方法之一。我们在解决实际问题时,常要把问题中的物理情景转化为理想模型,然后再利用适合该模型的规律求解,因此在物理学习中培养建立物理模型的能力十分重要。 板块模型是一种复合模型,是由板模型和滑块模型组合而成。构成系统的板块间存在着相互作用力,通过相互作用力做功,实现能量转化。可以从动量、能量和牛顿运动定律等多个角度来分析这一问题。因此,板块模型是对力学规律的综合应用能力考查的重要载体。且有很好的延展性,高考卷中多有涉及。天津卷在05、07、09三年以此为背景进行考查。 二、解题中存在的主要问题 1、块和板有相对运动,参照物的选取出现错乱。 2、对物体受力情况不能进行正确的分析。块和板之间有相互作用,分析力时没能彻底隔离物体,研究对象没盯死。 3、忽视守恒条件,没有正确判断系统是否满足动量守恒的条件,能不能用动量守恒定律求解。 4、分析过程混淆。 模型一:符合动量守恒 例题:质量为2kg 、长度为2.5m 的长木板B 在光滑的水平地面上以4m/s 的速度向右运动,将一可视为质点的物体A 轻放在B 的右端,若A 与B 之间的动摩擦因数为0.2,A 的质量为m=1kg 。 2 /10s m g 求: (1)说明此后A 、B 的运动性质 (2)分别求出A 、B 的加速度 (3)经过多少时间A 从B 上滑下 (4)A 滑离B 时,A 、B 的速度分别为多大?A 、B 的位移分别为多大? (5)若木板B 足够长,最后A 、B 的共同速度 (6)当木板B 为多长时,A 恰好没从B 上滑下(木板B 至少为多长,A 才不会从B 上滑下?) 解题注意事项:1.判断动量是否守恒 2.抓住初末动量 3.抓住临界条件(如“恰好不掉下去”、“停止滑动”“重力势能最大或弹性势能最大”这都 意味着共速) 解决方法:1.往往是动量守恒定律和能量守恒定律综合应用,尤其是遇到涉及(可能是所求也可能是已知) 相对位移,应用能量守恒比较简单 2.但求解一个物体对地位移应用动能定理或运动学公式求解 变式:(2011年福建省四地六校联考)如图所示,长12 m ,质量为100 kg 的小车静止在光滑水平地面上.一质量为50 kg 的人从小车左端,以4 m/s2加速度向右匀加速跑至小车的右端(人的初速度为零).求: (1)小车的加速度大小; (2)人从开始起跑至到达小车右端所经历的时间; (3)人从开始起跑至到达小车右端对小车所做的功. 1.如图所示,带有挡板的长木板置于光滑水平面上,轻弹簧放置在木板上,右端与挡板相连,左端位于木板上的B 点。开始时木板静止,小铁块从木板上的A 点以速度v0=4.0m/s 正对着弹簧运动,压缩弹簧,弹

传送带木板滑块专题

专题动力学中的典型“模型” 热点一滑块——长木板模型 滑块——长木板模型是近几年来高考考查的热点,涉及摩擦力的分析判断、牛顿运动定律、匀变速直线运动等主干知识,能力要求较高.滑块和木板的位移关系、速度关系是解答滑块——长木板模型的切入点,前一运动阶段的末速度是下一运动阶段的初速度,解题过程中必须以地面为参考系.1.模型特点:滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动. 2.位移关系:滑块由木板一端运动到另一端过程中,滑块和木板同向运动时,位移之差Δx=x2-x1=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L. 考向一外力F作用下的滑块——长木板 1 [2016·兰州实战考试] 如图Z3-1所示,质量m=1 kg的物块A放在质量M=4 kg的木板B的左端,起初A、B静止在水平地面上.现用一水平向左的力F作用在木板B上,已知A、B之间的动摩擦因数为μ1=0.4,地面与B之间的动摩擦因数为μ2=0.1,假设最大静摩擦力等于滑动摩擦力,g取10 m/s2. (1)求能使A、B发生相对滑动的F的最小值; (2)若F=30 N,作用1 s后撤去F,要使A不从B上滑落,则木板至少为多长?从开始到A、B均静止,A的总位移是多少? 图Z3-1 (多选)[2015·陕西宝鸡九校联考] 如图Z3-2所示,光滑水平面上放着质量为M的木板,木板左端有一个质量为m的木块.现对木块施加一个水平向右的恒力F,木块与木板由静止开始运动,经过时间t分离.下列说法正确的是( ) 图Z3-2 A.若仅增大木板的质量M,则时间t增大 B.若仅增大木块的质量m,则时间t增大 C.若仅增大恒力F,则时间t增大 D.若仅增大木块与木板间的动摩擦因数,则时间t增大 考向二无外力F作用的滑块——长木板 2 [2016·广州模拟] 在粗糙水平面上,一电动玩具小车以v0=4 m/s的速度做匀速直线运动,其正前方平铺一边长为L=0.6 m的正方形薄板,小车在到达薄板前某处立即关闭电源,靠惯性运动s= 3 m 的距离后沿薄板一边的中垂线平滑地冲上薄板.小车与水平面以及小车与薄板之间的动摩擦因数均为μ1=0.2,薄板与水平面之间的动摩擦因数μ2=0.1,小车质量M为薄板质量m的3倍,小车可看成质点,重力加速度g取10 m/s2,求: (1)小车冲上薄板时的速度大小; (2)小车从刚冲上薄板到停止时的位移大小. (多选)[2016·山西长治一模] 如图Z3-3所示,一足够长的木板静止在粗糙的水平面上,t=0时刻滑块从板的左端以速度v0水平向右滑行,木板与滑块之间存在摩擦,且最大静摩擦力等于滑动摩擦力,则滑块的v-t图像可能是图Z3-4中的( ) 考向三斜面上的滑块——长木板 3 [2016·武汉武昌区调研] 如图Z3-5所示,在倾角为θ=37°的固定长斜面上放置一质量M=1 kg、长度L1=3 m的极薄平板AB,薄平板的上表面光滑,其下端B与斜面底端C的距离为L2=16 m.在薄平板的上端A处放一质量m=0.6 kg的小滑块(视为质点),将小滑块和薄平板同时由静止释放.设薄平板与斜面之间、小滑块与斜面之间的动摩擦因数均为μ=0.5,求滑块与薄平板下端B到达斜面底端C的时间差Δt.(已知sin 37°=0.6,cos 37°=0.8,重力加速度g取10 m/s2) 图Z3-5 如图Z3-6所示,一质量为M的斜面体静止在水平地面上,斜面倾角为θ,斜面上叠放着A、

牛顿第二定律的综合应用——动力学中的“板块”和“传送带”模型

动力学中的“板块”和“传送带”模型 一.“滑块—滑板”模型 1. 模型特点:上下叠放两个物体,在摩擦力的相互作用下发生相对滑动。 2. 两种位移关系 ①物体的位移:各个物体对地的位移,即物体的实际位移。 ②相对位移:一物体相对另一的物体的位移。两种情况。 (1)滑块和滑板同向运动时,相对位移等两物体位移之差,即.21x x x -=?相 (2)滑块和滑板反向运动时,相对位移等两物体位移之和,即.21x x x +=?相 这是计算摩擦热的主要依据,.相滑x f Q ?= 3. 解题思路:(1)初始阶段必对各物体受力分析,目的判断以后两物体的运动情况。 (2)二者共速时必对各物体受力分析,目的判断以后两物体的运动情况。 二者等速是滑块和滑板间摩擦力发生突变的临界条件,是二者相对位移最大的临界点。 (3)物体速度减小到0时,受力分析,判断两物体以后是相对滑动还是相对静止。 相对静止二者的加速度a 相同;相对滑动二者的加速度a 不同。 (4)明确速度关系:弄清各物体的速度大小和方向,判断两物体的相对运动方向,从而弄清摩擦力的方向,正确对物体受力分析。 例.如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求: (1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离. 〖思路指导〗(1)AB 开始运动时,相向均做减速运动,二者初速等大,加速度等大,则经历相等时间,v ?相等.即相同时刻速度等大.对A 、B 、木板分析B 和木板同向向右运动,A 和木板反向运动,故B 和木板先相对静止,A 减速到0后,反向加速再与木板共速. (2)B 和木板共速后是相对滑动还是相对静止,假设法讨论.相对静止的条件:f-μμμ,则合外力向右,向右加速运动. ./5.2,)(-m 211211s m a ma g m m m g m g B A A B ==++-解得μμμ B 和木板共速有:,1110t a t a v B =-解得t 1=0.4s../110s m t a v v B B =-=0.8m.t 2 v v x 1B o B =+= A 的速度大小v A =v B =1m/s.

(word完整版)高一物理人教版必修一第四章《牛顿运动定律》----传送带与滑块专题

《牛顿运动定律》----传送带与滑块专题 1.(双选)如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平恒力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( ) A .物块先向左运动,再向右运动 B .物块向右运动,速度逐渐增大,直到做匀速运动 C .木板向右运动,速度逐渐变小,直到做匀速运动 D .木板和物块的速度都逐渐变小,直到为零 2.如图所示,长为L=6m 、质量M=4kg 的长木板放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1kg 的物块,物块与木板间的动摩擦因数为0.4,开始时物块与木板都处于静止状态,现对物 块施加F=8N ,方向水平向右的恒定拉力,求:(g=10m/s 2 ) (1)小物块的加速度; (2)长木板的加速度; (3)物块从木板左端运动到右端经历的时间。 3.如图所示,有一长度x =1 m 、质量M =10 kg 的平板小车,静止在光滑的水平面上,在小车一端放置一质量m =4 kg 的小物块,物块与小车间的动摩擦因数μ=0.25,要使物块在2 s 内运动到小车的 另一端,求作用在物块上的水平力F 是多少?(g 取10 m/s 2 ) F m M

4.长为1.5m 的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B ,直到A 、B 的速度达到相同,此时A 、B 的速度为0.4m/s ,然后A 、B 又一起在水平冰面上滑行了8.0cm 后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=0.25.求:( g =10m/s 2 ) (1)木块与冰面的动摩擦因数. (2)小物块相对于长木板滑行的距离. (3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大? 5.如图所示,货运平板车始终保持速度v 向前运动,把一个质量为m ,初速度为零的物体放在车板的前端A 处,若物体与车板间的摩擦因数为μ,要使物体不滑落,车板的长度至少是多少? 6.如图所示,光滑水平面上放着长L=2m ,质量为M=4.5kg 的木板(厚度不计),一个质量为m=1kg 的小物体放在木板的最右端,m 和M 之间的动摩擦因数μ=0.1,开始均静止.今对木板施加一水平向右的恒定拉力F ,(g 取10m/s2)求: (1)为使小物体不从木板上掉下,F 不能超过多少. (2)如果拉力F=10N ,小物体能获得的最大速度? A v B

2010年经典物理模型--滑块与传送带相互作用模型研究

滑块与传送带相互作用模型研究 滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。因此这类命题,往往具有相当难度。滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。按滑块与传送带的初始状态,分以下几种情况讨论。 一、滑块初速为0,传送带匀速运动 [例1]如图所示,长为L 的传送带AB 始终保持速度为v 0 的水平向右的速度运动。今将一与皮带间动摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB 解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B 。 滑 块C 的加速度为 ,设 它能加速到为 时向前运动的距离为 。 若 ,C 由A 一直加速到B ,由 。 若 ,C 由A 加 速到 用时 ,前进 的距离 距离内以 速度匀速运动 C 由A 运动到B 的时间 。 [例2]如图所示,倾角为θ的传送带,以 的恒定速度按图示 方向匀速运动。已知传送带上下两端相距L 今将一与传送带间动摩擦因数为μ的滑块A 轻放于传送带上端,求A 从上端运动到下 端的时间t 。 解析:当A 的速度达到 时是运动过程的转折点。 A 初始下 滑的加速度 若能加速到 ,下滑位移(对地)为 。

滑块—滑板模型

高三物理专题复习:滑块一滑板模型 典型例题 例1. 如图所示,在粗糙水平面上静止放一长L质量为M=1kg的木板B, —质量为 m=1Kg的物块A以速度v0=2.0m/s滑上长木板B的左端,物块与木板的摩擦因素卩 1=0.1、木板与地面的摩擦因素为卩2=0.1,已知重力加速度为g=10m/s , 求:(假设板的长度足够长) (1)物块A、木板B的加速度; (2)物块A相对木板B静止时A运动的位移;人 ---------- _B (3)物块A不滑离木板B,木板B至少多长? "TT/TTTTTTTTT/TTTTTTTT1 考点:本题考查牛顿第二定律及运动学规律 考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。 解析:(1)物块A的摩擦力:f A二fmg =1N A的加速度:aj - - -1m/ s 方向向左 m 木板B受到地面的摩擦力:f地二」2(M - m)g =2N - f A 故木板B静止,它的加速度a2=0 2 (2)物块A的位移:s二二^=2m 2a (3)木板长度:L亠S = 2m 拓展1. 在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素卩 3=0.4,其余条件保持不变,(假设木板足够长)求: (1)物块A与木块B速度相同时,物块A的速度多大? (2)通过计算,判断AB速度相同以后的运动 情况; A _____________________ B (3)整个运动过程,物块A与木板B相互摩

高三物理专题复习:滑块一滑板模型 擦产生的摩擦热多大? 考点:牛顿第二定律、运动学、功能关系

解析:对于物块 A : f A = %mg =4N 1分 -0 解析:(1)A 、B 动量守恒,有: mv 0 = (M - m )v mv 0 解得:"Lf" (2)由动能定理得: 1 2 1 2 对 A: -叫 mgS A mv mv 0 加速度: aA - - - J 4g -4.0m/ s ,方向向左。 1 分 m 对于木板:1 『地二 ”2( m M )^ = 2N 1 分 加速度:a C =2.0m / si 方向向右。 物块A 相对木板B 静止时,有:a B h = v 2 - a C l 解得运动时间:鮎=1/3.s , V A = VB = aBb = 2 / 3m / s (2)假设AB 共速后一起做运动, a 二」2 (M ― - -1m/s 2 (M m) 物块A 的静摩擦力: 二 ma = 1N :: f A 所以假设成立,AB 共速后一起做匀减速直线运动。 2 2 (3)共速前A 的位移:S A =V A V ° 木板B 的位移:S B V B 1 m 2a B 9 4 所以: J 3 mg(S A - S B ) J 3 拓展2: 在例题1中,若地面光滑,其他条件保持不变,求: (1) 物块A 与木板B 相对静止时,A 的速度和位移多大? (2) 若物块A 不能滑离木板 B,木板的长度至少多大? 物块A 与木板B 摩擦产生的热量多大? 动量守恒定律、动能定理、能量守恒定律 相对位移与物块、木板位移的关系,优 (3) 考点: 考查: 物块、木板的位移计算,木板长度的计算, 选公式列式计算。 对B: 1 2 -叫mgS B Mv A …f 地 M

高一物理:摩擦力教学设计

新修订高中阶段原创精品配套教材 摩擦力 教材定制 / 提高课堂效率 /内容可修改 Friction 教师:风老师 风顺第二中学 编订:FoonShion教育

摩擦力 教学目标 知识目标 1、知道摩擦力产生的条件; 2、能在简单的问题中,根据物体的运动状态,判断静摩擦力的有无、大小和方向;知道存在着最大静摩擦力; 3、掌握动摩擦因数,会在具体问题中计算滑动摩擦力,掌握判定摩擦力方向的方法; 4、知道影响动摩擦因数的因素; 能力目标 1、通过观察演示实验,概括出摩擦力产生的条件以及摩擦力的特点,培养学生的观察、概括能力.通过静摩擦力与滑动摩擦力的区别对比,培养学生的分析综合能力.情感目标 渗透物理方法的教育.在分析物体所受摩擦力时,突出主要矛盾,忽略次要因素及无关因素,总结出摩擦力产生的条件和规律.

教学建议 一、基本知识技能: 1、两个互相接触且有相对滑动或的物体,在它们的接触面上会产生阻碍相对运动的摩擦力,称为滑动摩擦力; 2、两个物体相互接触,当有相对滑动的趋势,但又保持相对静止状态时,在它们接触面上出现的阻碍相对滑动的作用力 3、两个物体间的滑动摩擦力的大小跟这两个物体接触面间的压力大小成正比. 4、动摩擦因数的大小跟相互接触的两个物体的材料有关. 5、摩擦力的方向与接触面相切,并且跟物体相对运动或相对运动趋势相反. 6、静摩擦力存在最大值——最大静摩擦力. 二、重点难点分析: 1、本节课的内容分滑动摩擦力和静摩擦力两部分.重点是摩擦力产生的条件、特性和规律,通过演示实验得出关系. 2、难点是在理解滑动摩擦力计算公式时,尤其是理解水平面上运动物体受到的摩擦力时,学生往往直接将重力大小认为是压力大小,而没有分析具体情况. 教法建议 一、讲解摩擦力有关概念的教法建议

传送带和滑块模型(完整资料).doc

【最新整理,下载后即可编辑】 传送带模型专题 传送带模型是一个经典的力学模型,也是实际生活中广泛应用的一种机械装置,以其为背景的问题都具有过程复杂、条件隐蔽性强的特点,传送带问题也是高考中的常青树,从动力学角度、功能角度进行过多次考查,它自然成为师生关注的热点。 一、难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 二、难点突破策略: 在以上三个难点中,第1个难点应属于易错点,突破方法是先正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,做到准确灵活地分析摩擦力的有无、大小和方向。 第2个难点是对于物体相对地面、相对传送带分别做什么样的运动,判断错误。该难点应属于思维上有难度的知识点,突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,画好草图分析,找准物体和传送带的位移及两者之间的关系。

如图甲所示,A、B分别是传送带上和物体上的一点,刚放上物体时,两点重合。设皮带的速度为V0,物体做初速为零的 匀加速直线运动,末速为V0,其平均速度为V0/2,所以物体的对地位移x物=20 t V ,传送带对地位移x传送带=V0t,所以A、B 两点分别运动到如图乙所示的A'、B'位置,物体相对传送带的位移也就显而易见了,x物=2传送带 x ,就是图乙中的A'、B'间的距离,即传送带比物体多运动的距离,也就是物体在传送带上所留下的划痕的长度。 第3个难点也应属于思维上有难度的知识点。对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是分析有滑动摩擦力做功转化为内能的物理过程,使“只要有滑动摩擦力做功的过程,必有内能转化”的知识点在头脑中形成深刻印象。 三.传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个: (1)动力学角度:首先要正确分析物体的运动过程,做好受力情况分析,然后利用运动学公式结合牛顿第二定律,求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系. (2)能量角度:求传送带对物体所做的功、物体和传送带由于

高考物理动力学中的滑块和传送带问题

一、滑块问题 1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一小滑块,小滑块质量为m=1kg,其尺寸远小于L。小滑块与木板之间的动摩擦因数为μ== 04102 .(/) g m s (1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么? (2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M上,最终使得m能从M上面滑落下来。问:m在M上面滑动的时间是多大? 2.如图所示,一质量M=0.2kg的长木板静止在光滑的水平地面上,另一质量m=0.2kg的小滑块,以V0=1.2m/s的速度从长木板的左端滑上长木板。已知小滑块与长木板间的动摩擦因数μ1=0.4, g=10m/s2, 问: (1)经过多少时间小滑块与长木板速度相等? (2)从小滑块滑上长木板,到小滑块与长木板相对静止,小滑块的位移是多少?木板的位移是多少?滑块相对于木板的位移是多少?(滑块始终没有滑离 长木板) (3)请画出木板与滑块 的运动过程示意图,以及它们的速度时间图 3.长为1.5m的长木板B静止放在水平冰面上,小物块A以某一初速度从木板B的左端滑上长木板B,直到A、B的速度达到相同,此时A、B的速度为0.4m/s,然后A、B又一起在水平冰面上滑行了8.0cm后停下.若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25.求:(取g=10m/s2)(1)木块与冰面的动摩擦因数. (2)小物块相对于长木板滑行的距离.画出运动过程示意图,以及速度时间图。 (3)为了保证小物块不从木板 的右端滑落,小物块滑上长木板 的初速度应为多大?4.如图所示,质量M=8 kg的小车放在水平光滑的平面上,在小车 左端加一水平推力F=8 N,、当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物 块,物块与小车间的动摩擦因数μ=0.2,小车足够长.求 (1)小物块放后,小物块及小车的加速度各为多大? (2)经多长时间两者达到相同的速度? (3)从小物块放上小车开始,经过t=1.5 s小物块通过的位移大 小为多少?(取g=l0 m/s2). 5.如图所示,一质量M=2.0kg的长木板静止放在光滑水平面上, 在木板的右端放一质量m=1.0kg可看作质点的小物块,小物块与 木板间的动摩擦因数为μ=0.2.用恒力F向右拉动木板使木板在水 平面上做匀加速直线运动,经过t=1.0s后撤去该恒力,此时小物 块恰好运动到距木板右端l=1.0m处。在此后的运动中小物块没有 从木板上掉下来.求: (1)小物块在加速过程中受到的摩擦力的大小和方向; (2)作用于木板的恒力F的大小; (3)木板的长度至少是多少? 6.如图所示,一质量为M的平板车B放在光滑水平面上,在其右 端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现 给A和B以大小相等、方向相反的初速度v0,使A开始向左运动, B开始向右运动,最后A不会滑离B,求: (1)A、B最后的速度大小和方向. (2)从地面上看,小木块向左运动到离出发点最远处时,平板车 向右运动的位移大小. 7.如图所示,质量M = 1kg的木板静止在粗糙的水平地面上,木 板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量 m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数 μ2=0.4,取g=10m/s2,试求: (1)若木板长L=1m,在 铁块上加一个水平向右的 恒力F=8N,经过多长时 间铁块运动到木板的右 端? (2)若在铁块上的右端 施加一个大小从零开始 连续增加的水平向左的 力F,通过分析和计算 后,请在图中画出铁块 受到木板的摩擦力f2随 拉力F大小变化的图 像。(设木板足够长) 8.图l中,质量为m的物块叠放在质量为2m的足够长的木板上 方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦 因数为μ=0.2.在木板上施加一水平向右的拉力F,在0~3s内F 的变化如图2所示,图中F以mg为单位,重力加速度 2 10m/s g=.整个系统开始时静止. (1)求1s、1.5s、2s、3s末木板的速度以及2s、3s末物块的速度; (2)在同一坐标系中画出0~3s内木板和物块的t- v图象,据此求 0~3s内物块相对于木板滑过的距离。 A v B V 0 f2/N 1 2 3 4 5 6 4 F/ 2 6 8 10 12 14 2m m F 图1 图2 12 1 3t/s 0.4 F/mg 1.5

相关文档
最新文档