第十一章 期权定价模型

第十一章 期权定价模型
第十一章 期权定价模型

第十一章 期权定价模型

【学习目标】

本章是期权部分的重点内容之一。本章主要介绍了著名的Black-Scholes 期权定价模型和由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型,并对其经济理解和应用进行了进一步的讲解。学习完本章,读者应能掌握Black-Scholes 期权定价公式及其基本运用,掌握运用二叉树模型为期权进行定价的基本方法。

自从期权交易产生以来,尤其是股票期权交易产生以来,学者们即一直致力于对期权定价问题的探讨。1973年,美国芝加哥大学教授 Fischer Black 和Myron Scholes 发表《期权定价与公司负债》1一文,提出了著名的Black-Scholes 期权定价模型,在学术界和实务界引起强烈的反响,Scholes 并由此获得1997年的诺贝尔经济学奖。在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型。在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨2。

第一节 Black-Scholes 期权定价模型

一、Black-Scholes 期权定价模型的假设条件 Black-Scholes 期权定价模型的七个假设条件如下:

1. 期权标的资产为一风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。S 遵循几何布朗运动3,即

dz dt S

dS σμ+= 其中,dS 为股票价格瞬时变化值,dt 为极短瞬间的时间变化值,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率(以连续复利表示),σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。μ和σ都是已知的。

简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一是单位时间内已知的一个收益率变化μ,被称为漂移率,可以被看成一个总体的变 1 Black, F., and Scholes (1973) “The Pricing of Options and Corporate Liabilities ”, Journal of Political Economy , 81( May-June), p. 637-659

2 从本书难度的设定出发,本章只介绍期权定价模型的基本内容及其理解,而不具体推导模型,更深入的内容可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 第六章

3 有关股票价格及其衍生证券所遵循的随机过程的详细信息,可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-121页

化趋势;二是随机波动项,即dz σ,可以看作随机波动使得股票价格变动偏离总体趋势的部分。

2.在期权有效期内,标的资产没有现金收益支付。综合1和2,意味着标的资产价格的变动是连续而均匀的,不存在突然的跳跃。

3. 没有交易费用和税收,不考虑保证金问题,即不存在影响收益的任何外部因素。综合2和3,意味着投资者的收益仅来源于价格的变动,而没有其他影响因素。

4. 该标的资产可以被自由地买卖,即允许卖空,且所有证券都是完全可分的。

5. 在期权有效期内,无风险利率r 为常数,投资者可以此利率无限制地进行借贷。

6.期权为欧式看涨期权,其执行价格为X ,当前时刻为t ,到期时刻为T 。

7.不存在无风险套利机会。

二、Black-Scholes 期权定价模型

(一)Black-Scholes 期权定价公式

在上述假设条件的基础上,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的一个微分方程:

rf S

f S S f rS t f =??+??+??222221σ (11.1) 其中f 为期权价格,其他参数符号的意义同前。

通过解这个微分方程,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的定价公式:

)()(2)(1d N Xe d SN c t T r ---= (11.2)

其中,

t T d t

T t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln()

)(2/()/ln(

c 为无收益资产欧式看涨期权价格;N (x )为标准正态分布变量的累计概率分布函数(即这个变量小于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。

(二)Black-Scholes 期权定价公式的理解

1.期权价格的影响因素

首先,让我们将Black-Scholes 期权定价公式与第十章中分析的期权价格的影响因素联系起来。在第十章中,我们已经得知期权价格的影响因素包括:标的资产市场价格、执行价格、波动率、无风险利率、到期时间和现金收益。在式(11.2)中,除了由于我们假设标的资产无现金收益之外,其他几个参数都包括在内,且影响方向与前文分析的一致。

2.风险中性定价原理

其次我们要谈到一个对于衍生产品定价非常重要的原理:风险中性定价原理。观察式(11.2),以及第十章中的期权价格影响因素分析,我们可以注意到期权价格是与标的资产的预期收益率无关的。即在第一节我们描述标的资产价格所遵循的几何布朗运动时曾经出现

过的预期收益率μ在期权定价公式中消失了。这对于寻求期权定价的人们来说无疑是一个很大的好消息。因为迄今为止,人们仍然没有找到计算证券预期收益率的确定方法。期权价格与μ的无关性,显然大大降低了期权定价的难度和不确定性。

进一步考虑,受制于主观风险收益偏好的标的证券预期收益率μ并未包括在期权的价值决定公式中,公式中出现的变量为标的证券当前市价(S )、执行价格(X )、时间(t )、证券价格的波动率(σ)和无风险利率r ,它们全都是客观变量,独立于主观变量——风险收益偏好。既然主观风险偏好对期权价格没有影响,这使得我们可以利用Black-Scholes 期权定价模型所揭示的期权价格的这一特性,作出一个可以大大简化我们工作的简单假设:

在对衍生证券定价时,所有投资者都是风险中性的。

在所有投资者都是风险中性的条件下(有时我们称之为进入了一个“风险中性世界”),所有证券的预期收益率都可以等于无风险利率r ,这是因为风险中性的投资者并不需要额外的收益来吸引他们承担风险。同样,在风险中性条件下,所有现金流量都可以通过无风险利率进行贴现求得现值。这就是风险中性定价原理。

应该注意的是,风险中性假定仅仅是一个人为假定,但通过这种假定所获得的结论不仅适用于投资者风险中性情况,也适用于投资者厌恶风险的所有情况。

为了更好地理解风险中性定价原理,我们可以举一个简单的例子来说明。

假设一种不支付红利股票目前的市价为10元,我们知道在3个月后,该股票价格要么是11元,要么是9元。现在我们要找出一份3个月期协议价格为10.5元的该股票欧式看涨期权的价值。

由于欧式期权不会提前执行,其价值取决于3个月后股票的市价。若3个月后该股票价格等于11元,则该期权价值为0.5元;若3个月后该股票价格等于9元,则该期权价值为0。

为了找出该期权的价值,我们可构建一个由一单位看涨期权空头和?单位的标的股票多头组成的组合。若3个月后该股票价格等于11元时,该组合价值等于(11?-0.5)元;若3个月后该股票价格等于9元时,该组合价值等于9?元。为了使该组合价值处于无风险状态,我们应选择适当的?值,使3个月后该组合的价值不变,这意味着:

11?-0.5=9?

?=0.25

因此,一个无风险组合应包括一份看涨期权空头和0.25股标的股票。无论3个月后股票价格等于11元还是9元,该组合价值都将等于2.25元。

在没有套利机会情况下,无风险组合只能获得无风险利率。假设现在的无风险年利率等于10%,则该组合的现值应为:

元19.225.225.01.0=?-e

由于该组合中有一单位看涨期权空头和0.25单位股票多头,而目前股票市场为10元,因此:

31.019.225.010==-?f f 这就是说,该看涨期权的价值应为0.31元,否则就会存在无风险套利机会。

从该例子可以看出,在确定期权价值时,我们并不需要知道股票价格上涨到11元的概率和下降到9元的概率。但这并不意味着概率可以随心所欲地给定。事实上,只要股票的预期收益率给定,股票上升和下降的概率也就确定了。例如,在风险中性世界中,无风险利率为10%,则股票上升的概率P 可以通过下式来求:

0.10.2510[119(1)]e P P -?=?+-

P=62.66%。

又如,如果在现实世界中股票的预期收益率为15%,则股票的上升概率可以通过下式来求:

0.150.2510[119(1)]e P P -?=?+-

P=69.11%。

可见,投资者厌恶风险程度决定了股票的预期收益率,而股票的预期收益率决定了股票升跌的概率。然而,无论投资者厌恶风险程度如何,从而无论该股票上升或下降的概率如何,该期权的价值都等于0.31元。

3. 对期权定价公式的经济理解。

首先,从Black-Scholes 期权定价模型自身的求解过程来看1,N(d 2)实际上是在风险中性世界中S T 大于X 的概率,或者说是欧式看涨期权被执行的概率,因此,e -r(T-t)XN(d 2)是X 的风险中性期望值的现值,更朴素地说,可以看成期权可能带来的收入现值。SN(d 1)= e -r(T-t)S T N(d 1)是S T 的风险中性期望值的现值,可以看成期权持有者将来可能支付的价格的现值。因此整个欧式看涨期权公式就可以被看作期权未来期望回报的现值。 其次,1)df N d dS

?==(,显然反映了标的资产变动一个很小的单位时,期权价格的变化量;或者说,如果要避免标的资产价格变化给期权价格带来的影响,一个单位的看涨期权多头,就需要?单位的标的资产空头加以保值。事实上,我们在第十二章中将看到,1)N d ?=(是复制交易策略中股票的数量,SN (d 1)就是股票的市值, -e -r(T-t)XN(d 2)则是复制交易策略中负债的价值。

最后,从金融工程的角度来看,欧式看涨期权可以分拆成资产或无价值看涨期权

(Asset-or-noting call option )多头和现金或无价值看涨期权(cash-or-nothing option )空头,SN(d 1)是资产或无价值看涨期权的价值,-e -r(T-t)XN(d 2)是X 份现金或无价值看涨期权空头的价值。这是因为,对于一个资产或无价值看涨期权来说,如果标的资产价格在到期时低于执行价格,该期权没有价值;如果高于执行价格,则该期权支付一个等于资产价格本身的金额,根据前文对N(d 2)和SN(d 1)的分析,可以得出该期权的价值为e -r(T-t)S T N(d 1)= SN(d 1)的结论;同样,对于(标准)现金或无价值看涨期权,如果标的资产价格在到期时低于执行价格,该期权没有价值;如果高于执行价格,则该期权支付1元, 由于期权到期时价格超过执行价格的概率为N(d 2),则1份现金或无价值看涨期权的现值为-e -r(T-t) N(d 2)。

(三)Black-Scholes 期权定价公式的拓展

1.无收益资产欧式看跌期权的定价公式

Black-Scholes 期权定价模型给出的是无收益资产欧式看涨期权的定价公式,根据欧式看涨期权和看跌期权之间的平价关系,可以得到无收益资产欧式看跌期权的定价公式:

()()21()()r T t r T t p c Xe S Xe N d SN d ----=+-=--- (11.3)

2. 无收益资产美式期权的定价公式

在标的资产无收益情况下,由于C=c ,因此式(11.2)也给出了无收益资产美式看涨期权的价值。

1 Black-Scholes 期权定价模型的具体推导过程参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-133页

由于美式看跌期权与看涨期权之间不存在严密的平价关系,因此美式看跌期权的定价还没有得到一个精确的解析公式,但可以用数值方法以及解析近似方法求出。

3. 有收益资产期权的定价公式

到现在为止,我们一直假设期权的标的资产没有现金收益。那么,对于有收益资产,其期权定价公式是什么呢?实际上,如果收益可以准确地预测到,或者说是已知的,那么有收益资产的欧式期权定价并不复杂。

在收益已知情况下,我们可以把标的证券价格分解成两部分:期权有效期内已知现金收益的现值部分和一个有风险部分。当期权到期时,这部分现值将由于标的资产支付现金收益而消失。因此,我们只要用S 表示有风险部分的证券价格。σ表示风险部分遵循随机过程的波动率1,就可直接套用公式(11.2)和(11.3)分别计算出有收益资产的欧式看涨期权和看跌期权的价值。

当标的证券已知收益的现值为I 时,我们只要用(S -I )代替式(11.2)和(11.3)中的S 即可求出固定收益证券欧式看涨和看跌期权的价格。

当标的证券的收益为按连续复利计算的固定收益率q (单位为年)时,我们只要将)(t T q Se --代替式(11.2)和(11.3)中的S 就可求出支付连续复利收益率证券的欧式看涨和看跌期权的价格。在各种期权中,股票指数期权、外汇期权和期货期权的标的资产可以看作支付连续红利率,因而它们适用于这一定价公式。具体的内容,我们将在第十三章深入阐述。

另外,对于有收益资产的美式期权,由于有提前执行的可能,我们无法得到精确的解析解,仍然需要用数值方法以及解析近似方法求出。

三、Black-Scholes 期权定价公式的计算

(一) Black-Scholes 期权定价模型的参数

我们已经知道,Black-Scholes 期权定价模型中的期权价格取决于下列五个参数:标的资产市场价格、执行价格、到期期限、无风险利率和标的资产价格波动率(即标的资产收益率的标准差)。在这些参数当中,前三个都是很容易获得的确定数值。但是无风险利率和标的资产价格波动率则需要通过一定的计算求得估计值。

1. 估计无风险利率

在发达的金融市场上,很容易获得对无风险利率的估计值。但是在实际应用的时候仍然需要注意几个问题。首先,我们需要选择正确的利率。一般来说,在美国人们大多选择美国国库券利率作为无风险利率的估计值。由于美国国库券所报出的利率通常为贴现率(即利息占票面价值的比例),因此需要转化为通常的利率,并且用连续复利的方式表达出来,才可以在Black-Scholes 公式中应用。其次,要小心地选择国库券的到期日。如果利率期限结构曲线倾斜严重,那么不同到期日的收益率很可能相差很大,我们必须选择距离期权到期日最近的那个国库券的利率作为无风险利率。

我们用一个例子来说明无风险利率的计算。假设一个还有84天到期的国库券,其买入报价为8.83,卖出报价为8.77。由于短期国库券市场报价为贴现率,我们可以推算出其中间报价对应的现金价格(面值为100美元)为

8.838.778410097.9472360TB P +????=-= ???????

美元

1从理论上说,风险部分的波动率并不完全等于整个证券价格的的波动率,有风险部分的波动率近似等于整个证券价格波动率乘以S/(S -V),这里V 是红利现值。但在本书中,为了方便起见,我们假设两者是相等的。

进一步应用连续复利利率的计算公式得到相应的利率:

()0.231001000.090297.947r T t r TB

e e r P -?=→=→= 2. 估计标的资产价格的波动率

估计标的资产价格的波动率要比估计无风险利率困难得多,也更为重要。正如第十章所述,估计标的资产价格波动率有两种方法:历史波动率和隐含波动率。

(1) 历史波动率

所谓历史波动率就是从标的资产价格的历史数据中计算出价格收益率的标准差。以股票价格为例,表11-1列出了计算股票价格波动率的一个简单说明。很显然,计算波动率的时候,我们运用了统计学中计算样本均值和标准差的简单方法。其中,t R 为股票价格百分比收益率,R (或者为μ)则为连续复利收益率(估计)均值,()Var R (或者2

σ)则是连续复利收益率(估计)方差,σ就是相应的(估计)标准差(波动率),即Black-Scholes 公式计算时所用的参数。在表11-1中,共有11天的收盘价信息,因此得到10个收益率信息。

()()1

1

211ln 1ln 1t t t T

t t T

t t R P P R R T Var R R R T -=====--∑∑

表11-1 历史波动率计算

天数

t P t R ()ln t R ()2ln t R R - 0

100.00 1

101.50 1.0150 0.0149 0.000154 2

98.00 0.9655 -0.0351 0.001410 3

96.75 0.9872 -0.0128 0.000234 4

100.50 1.0388 0.0380 0.001264 5

101.00 1.0050 0.0050 0.000006 6

103.25 1.0223 0.0220 0.000382 7

105.00 1.0169 0.0168 0.000205 8

102.75 0.9786 -0.0217 0.000582 9

103.00 1.0024 0.0024 0.000000 10

102.50 0.9951 -0.0049 0.000053 总计 0.0247 0.004294 样本均值0.0247/100.00247μ==

样本方差2

0.004294/90.000477σ==

样本标准差0.021843σ=

在Black-Scholes 公式所用的参数中,有三个参数与时间有关:到期期限、无风险利率和波动率。值得注意的是,这三个参数的时间单位必须相同,或者同为天、周,或者同为年。年是经常被用到的时间单位,因此,我们常常需要将诸如表11-1中得到的天波动率转化为年波动率。在考虑年波动率时,有一个问题需要加以重视:一年的天数究竟按照日历天数还是按照交易天数计算。一般认为,证券价格的波动主要来自交易日。因此,在转换年波动率时,应该按照一年252个交易日进行计算。这样,表11-1中计算得到的天波动率相应的年

波动率为0.3467year day σσ==。

在我们的例子中,我们使用的是10天的历史数据。在实际计算时,这个天数的选择往往很不容易。从统计的角度来看,时间越长,数据越多,获得的精确度一般越高。但是,资产价格收益率的波动率却又常常随时间而变化,太长的时间段反而可能降低波动率的精确度。因此,计算波动率时,要注意选取距离今天较近的时间,一般的经验法则是设定度量波动率的时期等于期权的到期期限。因此,如果要为9个月的期权定价,可使用9个月的历史数据。

(2)隐含波动率

从Black-Scholes 期权定价模型本身来说,公式中的波动率指的是未来的波动率数据,这使得历史波动率始终存在着较大的缺陷。为了回避这一缺陷,一些学者将目光转向隐含波动率的计算。所谓的隐含波动率,即根据Black-Scholes 期权定价公式,将公式中除了波动率以外的参数和市场上的期权报价代入,计算得到的波动率数据。显然,这里计算得到的波动率可以看作是市场对未来波动率的预期。当然,由于Black-Scholes 期权定价公式比较复杂,隐含波动率的计算一般需要通过计算机完成。

(二)Black-Scholes 期权定价公式的计算:一个例子

为了使读者进一步理解Black-Scholes 期权定价模型,我们下面用一个简单的例子,来说明这一模型的计算过程。

例11.1假设某种不支付红利股票的市价为50元,无风险利率为12%,该股票的年波动率为10%,求该股票协议价格为50元、期限1年的欧式看涨期权和看跌期权价格。

在本题中,可以将相关参数表达如下:

S =50,X =50,r=0.12,σ=0.1,T=1,

计算过程可分为三步:

第一步,先算出1d 和2d 。

121 1.250.1 1.15

d d d ===-=

第二步,计算()1N d 和()2N d 。

()()()()12 1.250.8944

1.150.8749N d N N d N ====

第三步,上述结果及已知条件代入公式(11.2),这样,欧式看涨期权和看跌期权价格分别为:

0.121500.8944500.8749 5.92c e -?=?-?=美元

()()

0.121

p e-?

=?--?-=美元

5010.87495010.89440.27

在本例中,标的资产执行价格和市场价格正好相等,但是看涨期权的价格却与看跌期权的价格相差悬殊。其中的原因在于利率和到期期限对期权价格的影响。在本例中,利率高达12%,到期期限长达一年。在这种情况下,执行价格的现值将大大降低。对于欧式看涨期权来说,这意味着内在价值的大幅上升;而对欧式看跌期权来说,却意味着内在价值的大幅降低。因此,在计算了执行价格的现值以后,看涨期权是实值期权而看跌期权则是一个虚值期权。事实上,由于实际中的市场短期利率通常较低,期权到期期限一般不超过9个月,因此如果标的资产市场价格与执行价格相等,同样条件下的看涨期权价格和看跌期权价格一般比较接近。

四、Black-Scholes期权定价公式的精确度实证

要求证Black-Scholes期权定价公式的精确度,我们可以运用Black-Scholes期权定价公式计算出期权价格的理论值,然后与市场上的期权价格进行比较。如果两者不存在显著的差别,那么这个定价公式的精度应该是令人满意的。

从总的实证研究结果来看,Black-Scholes期权定价公式存在一定偏差,但它依然是迄今为止解释期权价格动态的最佳模型之一。与CAPM解释股票价格差异的能力相比,Black-Scholes期权定价公式可以较好地解释期权的价格差异。这也正是Scholes得以获得1997年诺贝尔经济学奖的重要原因。

一般认为,造成用Black-Scholes期权定价公式估计的期权价格与市场价格存在差异的原因主要有以下几个:

1.计算错误;

2.期权市场价格偏离均衡;

3.使用的错误的参数;

4.Black-Scholes期权定价公式建立在众多假定的基础上。

五、Black-Scholes期权定价公式的应用

Black-Scholes期权定价公式除了可以用来估计期权价格,在其它一些方面也有重要的应用。主要包括评估组合保险成本、给可转换债券定价和为认股权证估值。

(一)评估组合保险成本

证券组合保险是指事先能够确定最大损失的投资策略。比如在持有相关资产的同时买入看跌期权就是一种组合保险。

假设你掌管着价值1亿的股票投资组合,这个股票投资组合于市场组合十分类似。你担心类似于1987年10月19日的股灾会吞噬你的股票组合,这时购买一份看跌期权也许是合理的。显然,期权的执行价格越低,组合保险的成本越小,不过也许我们需要一个确切的评估,市场上可能根本就没有对应的期权,要准确估算成本十分困难,此时Black-Scholes期权定价公式就十分有用。比如也许10%的损失是可以接受的,那么执行价格就可以设为9000万,然后再将利率、波动率和保值期限的数据代进公式,就可以合理估算保值成本。

(二)给可转换债券定价

可转换债券是一种可由债券持有者转换成股票的债券,因此可转换债券相当于一份普通的公司债券和一份看涨期权的组合。即

CB B C V V V =+

其中CB V 表示可转换债券的价值,B V 代表从可转换债券中剥离出来的债券的价值,C V 代表从可转换债券中剥离出来的期权的价值。

在实际中C V 的估计是十分复杂的,因为C V 对利率非常敏感,而布莱克_舒尔斯期权定价公式假定无风险利率不变,对C V 显然不适用。其次,从可转换债券中隐含的期权的执行与否会因为股票股利和债券利息的问题复杂化。第三,许多可转换债券的转换比例会随时间变化。

还有就是绝大多数可转换债券是可赎回的。可赎回债券的分解更加复杂。对债券持有者而言,它相当于一份普通的公司债券、一份看涨期权多头(转换权)和一份看涨期权空头(赎回权)的组合。可赎回的可转换债券对股票价格变动很敏感,而且对利率也非常敏感。当利率下降的时候,公司可能会选择赎回债券。当然,利率上升的时候债券价值也会上升。

(三)为认股权证估值

认股权证通常是与债券或优先股一起发行的,它的持有人拥有在特定时间以特定价格认购一定数量的普通股,因此认股权证其实是一份看涨期权,不过两者之间还是存在细微的差别,看涨期权执行的时候,发行股票的公司并不会受到影响,而认股权证的执行将导致公司发行更多的股票,因此,认股权证的执行存在稀释效应,在估值的时候必须考虑这一点。

第二节 二叉树模型

B lack-Scholes 模型的提出,对期权定价的研究而言,是一个开创性的研究。然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。1979年,J. Cox 、S. Ross 和M. Rubinstein 三人发表《期权定价:一种被简化的方法》1一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树模型(the Binomial Model )”或“二叉树模型”,是期权数值定价方法的一种。二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。同时,它不仅可以为欧式期权定价,而且可以为美式期权定价;不仅可以为无收益资产定价,而且可以为有收益资产定价,应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。

一、二叉树模型的基本方法

我们从简单的无收益资产期权的定价开始讲解二叉树模型,之后再逐步加以扩展。 二叉树模型首先把期权的有效期分为很多很小的时间间隔t ?,并假设在每一个时间间隔t ?内证券价格只有两种运动的可能:从开始的S 上升到原先的u 倍,即到达Su ;下降到原先的d 倍,即Sd 。其中,1u >,1d <,如图11.1所示。价格上升的概率假设为q ,下降的概率假设为1q -。

图11.1 t ?时间内资产价格的变动

相应地,期权价值也会有所不同,分别为u f 和d f 。

注意,在较大的时间间隔内,这种二值运动的假设当然不符合实际,但是当时间间隔非常小的时候,比如在每个瞬间,资产价格只有这两个运动方向的假设是可以接受的。因此,二叉树模型实际上是在用大量离散的小幅度二值运动来模拟连续的资产价格运动。 1 J. Cox, J., Ross, S., and Rubinstein: Option Pricing (1979) “a Simplified Approach ”, Journal of Financial Economics , September, p.7

(一)单步二叉树模型

运用单步二叉树为期权定价,可以有两种方法:无套利方法和风险中性定价方法。

1.无套利定价法

由于期权和标的资产的风险源是相同的,在如图11.1的单步二叉树中,我们可以构造一个证券组合,包括?股资产多头和一个看涨期权空头。如果我们取适当的?值,使

u d Su f Sd f ?-=?- 则无论资产价格是上升还是下跌,这个组合的价值都是相等的。也就是说,当u d f f Su Sd

-?=-时,无论股票价格上升还是下跌,该组合的价值都相等。显然,该组合为无风险组合,因此我们可以用无风险利率对u d Su f Sd f ?-?-或贴现来求该组合的现值。在无套利机会的假设下,该组合的收益现值应等于构造该组合的成本,即

()r t u S f Su f e -??-=?- 将u d f f Su Sd

-?=-代入上式就可得到: 1r t r t r t u d e d e d f e f f u d u d ??-?????--=+-?? ?--???? (11.4)

2.风险中性定价法

在第一节中我们已经探讨过,期权定价可以在风险中性世界中进行,同样,我们也可以在二叉树模型中应用风险中性定价原理,确定参数p 、u 和d ,从而为期权定价。这是二叉树定价的一般方法。

在风险中性世界里:

(1) 所有可交易证券的期望收益都是无风险利率;

(2) 未来现金流可以用其期望值按无风险利率贴现。

在风险中性的条件下,标的证券的预期收益率应等于无风险利率r ,因此若期初的证券价格为S ,则在很短的时间间隔t ?末的证券价格期望值应为t r Se

?。因此,参数p 、u 和d

的值必须满足这个要求,即: Sd p pSu Se t r )1(-+=?

d p pu

e t r )1(-+=? (11.5)

二叉树模型也假设证券价格遵循几何布朗运动,那么在一个小时间段t ?内证券价格变化的方差是222()()[1]T t T t S e e μσ

---1。根据方差的定义,变量Q 的方差等于()()22E Q E Q -????,因此:

1 遵循几何布朗运动意味着股票价格符合对数正态分布,因而可以得到这一关于股票价格方差的结论。具体内容可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-133页

222()()222222[1](1)[(1)]T t T t S e e p S u p S d S p u p d μσ---=+--+-

[]22

2()()22[1](1)(1)T t T t e e pu p d pu p d μσ---=+--+- (11.6) 式(11.4)和(11.5)给出了计算p 、u 和d 的两个条件。第三个条件的设定则可以有所

不同, Cox 、Ross 和Rubinstein 所用的条件1是:

1u d

=

(11.7) 从以上三个条件求得,当t ?很小时:

d

u d e p t r --=? (11.8) t e u ?=σ

(11.9) t

e

d ?-=σ (11.10) 从而 ()1r t u d f

e p

f p f -?=+-???? (11.11)

比较以上两种方法,我们可以看到,无套利定价法和风险中性定价法实际上具有内在一致性。在无套利定价过程中,我们并没有考虑资产价格上升和下降的实际概率,由于资产预期收益率等于不同情况下收益率以概率为权重的加权平均值,在无套利定价法下无需考虑概率就意味着资产预期收益具有无关性,这正好符合风险中性的概念。其次,如果将式(11.8)代入(11.4),最后的期权公式(11.4)和(11.11)实际上是完全相同的。那么要如何理解公式(11.11)中的概率p 呢?这里的概率实际上是风险中性世界中的概率而非实际的概率,因此资产的预期收益率仍然对期权定价是无关的。

一般来说,在运用二叉树方法时,风险中性定价是常用的方法,而无套利定价法则主要是提供了一种定价思想。

(二)多步二叉树模型:证券价格的树型结构

以上所述的单步二叉树模型虽然比较简单,但已包含着二叉树定价模型的基本原理和方法。因此,可以进一步拓展到多步二叉树模型。应用多步二叉树模型来表示证券价格变化的完整树型结构如图11.2所示。

1 这是二叉树模型中最常用的第三个条件,后文我们将会谈到对第三个条件的其他设定方法。

Su 24

S 24

图11.2 资产价格的树型结构

当时间为0时,证券价格为S 。时间为t ?时,证券价格要么上涨到Su ,要么下降到Sd ;时间为2t ?时,证券价格就有三种可能:2Su 、Sud (等于S )和2

Sd ,以此类推。一般而言,在t i ?时刻,证券价格有1i +种可能,它们可用符号表示为: j i j d Su - 其中0,1,,j i =

注意:由于1u d

=,使得许多结点是重合的,从而大大简化了树图。 (三)倒推定价法

得到每个结点的资产价格之后,就可以在二叉树模型中采用倒推定价法,从树型结构图的末端T 时刻开始往回倒推,为期权定价。由于在到期T 时刻的预期期权价值是已知的,例如看涨期权价值为)0,max(X S T -,看跌期权价值为),max(o S X T -,因此在风险中性条件下在求解t T ?-时刻的每一结点上的期权价值时,都可通过将T 时刻的期权价值的预期值在t ?时间长度内以无风险利率r 贴现求出。同理,要求解t T ?-2时的每一结点的期权价值时,也可以将t T ?-时的期权价值预期值在时间t ?内以无风险利率r 贴现求出。依此类推。采用这种倒推法,最终可以求出零时刻(当前时刻)的期权价值。

以上是欧式期权的情况,如果是美式期权,就要在树型结构的每一个结点上,比较在本时刻提前执行期权和继续再持有t ?时间,到下一个时刻再执行期权,选择其中较大者作为本结点的期权价值。

例11.2

假设标的资产为不付红利股票,其当前市场价为50元,波动率为每年40%,无风险连续复利年利率为10%,该股票5个月期的美式看跌期权协议价格为50元,求该期权的价值。

为了构造二叉树,我们把期权有效期分为五段,每段一个月(等于0.0833年)。根据式(11.8)到(11.10),可以算出:

4924

.015076.08909

.01224.1=-=--=====??-?p d

u d e p e d e u t r t t σσ

据此我们可以画出该股票在期权有效期内的树型图,如图11.3所示。在每个结点处有两个值,上面一个表示股票价格,下面一个表示期权价值。股价上涨概率总是等于0.5076,下降概率总是等于0.4924。

在t i ?时刻,股票在第j 个结点(0,1,,j i = )的价格等于j i j d

Su -。例如,F 结点(4,1i j ==)的股价等于元69.398909.01224.1503=??。在最后那些结点处,期权

价值等于max(,0)T X S -。例如,G 结点(5,1i j ==)的期权价格等于50-35.36=14.64。

图11.3 不付红利股票美式看跌期权二叉树

从最后一列结点处的期权价值可以计算出倒数第二列结点的期权价值。首先,我们假定在这些结点处期权没被提前执行。这意味着所计算的期权价值是t ?时间内期权价值期望值的现值。例如,E 结点(4,2i j ==)处的期权价值等于:

元66.2)45.54924.005076.0(0833.01.0=?+??-e

而F 结点处的期权价值等于:

元90.9)64.144924.045.55076.0(0833.01.0=?+??-e

然后,我们要检查提前执行期权是否较有利。在E 结点,提前执行将使期权价值为0,因为股票市价和协议价格都等于50,显然不应提前执行。因此E 结点的期权价值应为2.66元。而在F 结点,如果提前执行,期权价值等于50.00-39.69元,等于10.31元,大于上述的9.90元。因此,若股价到达F 结点,就应提前执行期权,从而F 结点上的期权价值应为

10.31元,而不是9.90元。

用相同的方法我们可以算出各结点处的期权价值,并最终倒推算出初始结点处的期权价值为4.48元。

如果我们把期权有效期分成更多小时段,结点数会更多,计算会更复杂,但得出的期权价值会更精确。当t ?非常小时,期权价值将等于4.29元。

(四)二叉树方法的一般定价过程

下面我们给出用数学符号表示的二叉树期权定价方法,仍然举无收益证券的美式看跌期权为例。假设把该期权有效期划分成N 个长度为t ?的小区间,令)0,0(i j N i f ij ≤≤≤≤表示在时间t i ?时第j 个结点处的美式看跌期权的价值,我们将ij f 称为结点),(j i 的期权价值。同时用j i j d Su -表示结点),(j i 处的证券价格。由于美式看跌期权在到期时的价值是),max(o S X T -,所以有:

max(,0)j N j N j f X Su d -=-,,其中0,1,,j N =

当时间从t i ?变为t i ?+)1(时,从结点),(j i 移动到结点)1,1(++j i 的概率为p ,移动到),1(j i +的概率为1p -。假定期权不被提前执行,则在风险中性条件下:

1,11,[(1)]r t ij i j i j f e pf p f -?+++=+-

其中i j N i ≤≤-≤≤0,10。如果考虑提前执行的可能性的话,式中的ij f 必须与期权的内在价值比较,由此可得:

1,11,max{,[(1)]}j i j r t ij i j i j f X Su d e pf p f --?+++=-+-

按这种倒推法计算,当时间区间的划分趋于无穷大,或者说当每一区间t ?趋于0时,就可以求出美式看跌期权的准确价值。根据实践经验,一般将时间区间分成30步就可得到较为理想的结果。

二、基本二叉树方法的扩展

(一)有红利资产期权的定价

1.支付连续红利率资产的期权定价

当标的资产支付连续收益率为q 的红利时,在风险中性条件下,证券价格的增长率应该为r q -,因此式(11.5)就变为:

d p pu

e t q r )1()(-+=?-

同时,式(11.8)变为:

d

u d e p t q r --=?-)( (11.12) 式(11.9)和(11.10)仍然适用。

显然,这一方法适用于支付连续红利率的股价指数期权、外汇期权和期货期权,第十三章将更具体地讨论这些期权的定价方法。

2.支付已知红利率资产的期权定价

若标的资产在未来某一确定时间将支付已知红利率δ(红利与资产价格之比),我们只要调整在各个结点上的证券价格,就可算出期权价格。调整方法如下:

如果时刻t i ?在除权日之前,则结点处证券价格仍为:

i j d Su j i j ,,1,0, =-

如果时刻t i ?在除权日之后,则结点处证券价格相应调整为:

j i j d u S --)1(δ 0,1,

,j i =

对在期权有效期内有多个已知红利率的情况,也可进行同样处理。若i δ为0时刻到t i ?时刻之间所有除权日的总红利支付率,则t i ?时刻结点的相应的证券价格为:

j i j i d u S --)1(δ

3. 已知红利额

若标的资产在未来某一确定日期将支付一个确定数额的红利而不是一个确定的比率,则除权后二叉树的分支将不再重合,这意味着所要估算的结点的数量可能变得很大,特别是如果支付多次已知数额红利的情况将更为复杂(见图11.4)。

图11.4 假设红利数额已知且波动率为常数时的二叉树图

为了简化这个问题,我们可以把证券价格分为两个部分:一部分是不确定的,而另一部分是期权有效期内所有未来红利的现值。假设在期权有效期内只有一次红利,除息日τ在k t ?到(1)k t +?之间,则在t i ?时刻不确定部分的价值*S 为:

*()()S i t S i t ?=? 当i t τ?>时

*()()()r i t S i t S i t De τ--??=?- 当i t τ?≤时 (11.13)

其中D 表示红利。设*σ为*S 的标准差,假设*σ是常数,用*σ代替式(11.8)到(11.10)

中的σ就可计算出参数p 、u 和d ,这样就可无需考虑红利问题,而直接用通常的方法构造出*

S 的二叉树了。通过应用式(11.13),把未来收益现值加在每个结点的证券价格上,就会使*S 的二叉树图得以转化。从而得到S 的二叉树图。

假设零时刻*

S 的值为*0S ,则在t i ?时刻:

当i t τ?≤时,这个树上每个结点对应的证券价格为: *()0j i j r i t S u d De τ---?+ 0,1,

,j i = 当τ>?t i 时,这个树上每个结点对应的证券价格为:

*0j i j S u d - 0,1,,j i =

这种方法和我们曾经分析过的在已知红利数额的情况下应用Black-Scholes 公式中所用的方法一致,通过这种分离,我们可以重新得到重合的分支,减少结点数量,简化了定价过程。同时,这种方法还可以直接推广到处理多个红利的情况。

(二)构造树图的其他方法和思路

1. 0.5p =的二叉树图

在式(11.5)到(11.7)中,前两个式子是确定参数p 、u 和d 的固定条件,而第三个条件1u d

=是人为给定的,也是最常用的条件,但它并不是唯一的。我们也可以放弃这个假设,转而令0.5p =,当t ?的高阶小量可以忽略时,我们得到:

()2

2r q t u e σσ--?+=()2

2r q t d e σσ--?-= 这种方法的优点在于无论σ和t ?如何变化,概率总是不变的,缺点在于二叉树图中的中心线上的标的资产价格不会再和初始中心值相等。

2. 三项式树图(三叉树图)

另一种替代二叉树图的方法是三叉树图法,该树图的形状如图11.5所示。在每一个时间间隔t ?内证券价格有三种运动的可能:从开始的S 上升到原先的u 倍,即到达Su ;保持不变,仍为S ;下降到原先的d 倍,即Sd 。u p 、m p 、d p 分别为每个结点价格上升、持平和下降的概率。当t ?的高阶小量可以忽略时,满足资产价格变化均值和方差的参数分别为:

u e = 1d u =

2126

d p r q σ?=--+??

2126u p r q σ?=--+??

23m p = 三叉树图的计算过程与二叉树图的计算过程相似。

S 3

2Su S Sd

3

2

图11.5 资产价格的三叉树图

3. 控制方差技术

控制方差技术是数值方法的一个辅助技术,其基本原理为:期权A 和期权B 的性质相似(比如其他条件都相同的欧式期权和美式期权),我们可以得到期权B 的解析定价公式,而只能得到期权A 的数值方法解。用B f 代表期权B 的真实价值(解析解),A f 表示关于期权A 的较优估计值,?A f 和?B

f 表示用同一个二叉树过程得到的估计值。这时,我们假设用数值方法计算出的期权B 的误差应等于用数值方法计算出的期权A 的误差:

?B B f f -=?A A

f f - 进而得到期权A 的更优估计值为:?A A

f f =?B B f f +- 可以证明,当?A f 和?B f 之间的协方差较大时,()()

?var var A A f f <,也就是说这个方法减少了对期权A 的价值估计的方差,我们利用B f 和?B

f 的信息改进了对期权A 的价值的估计。

可以看出,控制方差技术实际上是利用数值方法计算两个类似期权之间的价格差异而不

是计算期权价格本身。虽然从计算工作量来看,我们需要计算两个估计值?A f 和?B

f ,但是由于两个期权的性质相似或路径相同,实际增加的工作量并不大。

三、二叉树定价模型的深入理解

由上可见,二叉树模型的基本出发点在于:假设资产价格的运动是由大量的小幅度二值运动构成,用离散的随机游走模型模拟资产价格的连续运动可能遵循的路径。同时二叉树模型与风险中性定价原理相一致,即模型中的收益率和贴现率均为无风险收益率,资产价格向上运动和向下运动的实际概率并没有进入二叉树模型,模型中隐含导出的概率p 是风险中性世界中的概率,从而为期权定价。实际上,当二叉树模型相继两步之间的时间长度趋于零的时候,该模型将会收敛到连续的对数正态分布模型,即Black-Scholes 偏微分方程。

取当前时刻为t t -?(这是为了后面计算的方便,并不影响结论),在给定参数p 、u 和d 的条件下(注意这里并未限定求p 、u 和d 的第三个条件,而是一般适用的),当0t ?→时,二叉树公式:

()()()(),,1,r t f S t t pf Su t p f Sd t e -?-?=+-????

可以在(),S t 进行泰勒展开,最终可以化简为: ()()()()()22221,,,,02f f f S t rS S t S S t rf S t o t t S S

σ???++-+?=??? t ?的高阶小量()o t ?可以忽略,从而说明离散二叉树模型和连续Black-Scholes 模型是十分相似的,在0t ?→时,二叉树模型收敛于Black-Scholes 偏微分方程。

最后,二叉树模型和Black-Scholes 模型的另一个相似点在于:它们都可以通过选取适当的?值,构造一个由?份的标的资产多头和一份期权空头组成的无套利组合。二叉树模型中的?值满足1u d u d

f f S S -?=-;Black-Scholes 模型中的?则满足2f S ??=?,之后两者都可以利用这个无套利组合为期权定价。这里我们可以看到1?的极限就是2?,又一次验证了二叉树模型和Black-Scholes 模型的一致性。但是,三叉树图模型则无法实现这样一个无套利组合,需要运用别的方法来构造。

【本章小结】

1. 为了给期权定价,我们假设期权标的资产遵循几何布朗运动,据此可以推导出著名的

Black-Scholes 微分方程:

rf S

f S S f rS t f =??+??+??222221σ 2. 根据Black-Scholes 期权定价模型,无收益资产欧式看涨期权和看跌期权的定价公式为:

)()(2)(1d N Xe d SN c t T r ---=

()()21()()r T t r T t p c Xe S Xe N d SN d ----=+-=---

其中,

t T d t

T t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln()

)(2/()/ln( 3. 在为衍生证券定价时,我们可以假设所有投资者都是风险中性的,这就是风险中性定价

原理。它可大大简化衍生证券的定价,然而得出的结论也适用于投资者厌恶风险的情况。

4.Black-Scholes定价公式可用于为欧式期权和美式看涨期权定价。美式看跌期权定价只能

用二叉树模型等数值方法以及解析近似方法求出。

5.在运用Black-Scholes模型为期权定价时,无风险利率和标的资产价格波动率是两个需

要估计的重要参数。

6.Black-Scholes期权定价模型可以用来评估组合保险成本,为可转债定价和为认股权证估

值。

7.二叉树树图方法用离散的随机游走模型模拟资产价格的连续运动在风险中性世界中可

能遵循的路径,每个小的时间间隔中的上升下降概率和幅度均满足风险中性原理。从二叉树树图的末端开始倒推可以计算出期权价格。

8.二叉树模型不仅可以为欧式期权定价,而且可以为美式期权定价;不仅可以为无收益资

产定价,而且可以为有收益资产定价,应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。

9.当二叉树模型相继两步之间的时间长度趋于零的时候,该模型将会收敛到连续的对数正

态分布模型,即Black-Scholes偏微分方程。

【参考阅读】

1.施兵超著. 金融期货与选择权. 台北:五南图书出版有限公司,1999

2.[美]约翰·赫尔著,张陶伟译. 期权、期货和衍生证券. 中译本. 北京:华夏出版社,1997 3.郑振龙主编. 金融工程. 第1版. 北京:高等教育出版社,2003

4.Black, F., and Scholes (1973) “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, 81( May-June), p. 637-659

5.J. Cox, J., Ross, S., and Rubinstein: Option Pricing (1979) “a Simplified Approach”, Journal of Financial Economics, September

6.Robert, W. Kolb (1999) Futures, Options and Swaps, 3rd(ed.), London: Blackwell Publishers 【思考与练习】

1.阐述风险中性定价原理。

2.计算基于无红利支付股票的欧式看跌期权的价格,其中执行价格为50元,现价为50元,

有效期为3个月,无风险年收益率为10%,年波动率为30%。

3.若两个月后预期支付的红利为1.5元,则上题中的计算会有何变化?

4.什么是历史波动率和隐含波动率?通过期权价格如何计算隐含波动率?

5.运用无套利原理和风险中性定价原理推导二叉树模型。

6.一个无红利股票的美式看跌期权,有效期为3个月,目前股票价格和执行价格均为50

美元,无风险利率为每年10%,波动率为每年30%,请按时间间隔为一个月来构造二叉树模型,为期权定价。并应用控制方差技术对这一估计进行修正。

7.一个两个月期基于某股票指数的美式看涨期权,执行价格为500,目前指数为495,无

风险利率为年率10%,指数红利率为每年4%,波动率为每年25%。构造一个四步(每步为半个月)的二叉树树图,为期权定价。

8.如何理解二叉树模型?

第11章 期权定价模型

第11章 布莱克-舒尔茨-默顿期权定价模型 一、基本思路 1. 基本思路 我们为了给股票期权定价,必须先了解股票本身的走势。因为股票期权是其标的资产(即股票)的衍生工具,在已知执行价格、期权有效期、无风险利率和标的资产收益的情况下,期权价格变化的唯一来源就是股票价格的变化,股票价格是影响期权价格的最根本因素。 用几何布朗运动表示股票价格的变化过程,具体形式如下: dS dt dz S μσ=+ 或者表示为dS Sdt Sdz μσ=+ 伊藤引理表明,当股票价格服从上述随机过程时,作为衍生品的期权价格f 将服从 22221()2f f f f df S S dt Sdz S t S S μσσ????=+++???? 两式表明:股票价格及其衍生品——期权价格都只受到同一种不确定性的影响,只是两者对随机因素变化的反应程度不同而已。 从数学上看,将两式联立,解方程组可消掉随机项。其金融含义可看作:买入股票、卖空期权构造一个短期内没有不确定性的投资组合。在一个无套利市场中,该投资组合必然只能获得无风险利率收益。由此可得到一个期权价格满足的微分方程,此即为BSM 期权定价模型的微分形式,具体为 2222 12f f f rS S rf t S S σ???++=??? 由于该公式中不包含反映投资者风险偏好的参数——预期收益,因此可以在风险中性世界里求解该微分方程。求解该方程可得到期权定价公式。无股利欧式看涨期权的价格为 ()12()()r T t c SN d Xe N d --=- 其中, 21221d d d = ==- 根据无股利欧式看涨期权和看跌期权平价公式 ()21()()r T t p Xe N d SN d --=--- 可求出无股利欧式看跌期权定价公式 ()21()()r T t p Xe N d SN d --=--- 无收益美式看涨期权是不会提前执行的,因此无收益美式看涨期权定价公式和欧式看涨期权定价公式相同, ()12()()r T t C SN d Xe N d --=- 对于有收益欧式期权,需要在股票价格中抛去收益的现值,对有收益的美式看涨期权,需要考虑其提前执行的情况,由于不存在美式期权之间的平价公式,因此无法给出美式看跌期权

BS期权定价模型

Black-Scholes期权定价模型 (重定向自Black—Scholes公式) Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型 Black-Scholes 期权定价模型概述 1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。 斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。 [编辑] B-S期权定价模型(以下简称B-S模型)及其假设条件 [编辑] (一)B-S模型有7个重要的假设 1、股票价格行为服从对数正态分布模式; 2、在期权有效期内,无风险利率和金融资产收益变量是恒定的; 3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割; 4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃); 5、该期权是欧式期权,即在期权到期前不可实施。 6、不存在无风险套利机会;

布莱克舒尔斯期权定价模型

第六章 布莱克-舒尔斯期权定价模型 一、 影响期权价值的主要因素 由前面的分析知道决定期权价值(价格)C V 的因素是到期的股票市场价格m S 和股票的执行价格X 。但是到期m S 是未知的,它的变化还要受价格趋势和时间价值等因素的影响。 1)标的股票价格与股票执行价格的影响。标的股票市场价格越高,则买入期权的价值越高,卖出期权的价值越低;期权的执行价越高,则买入的期权价值越低,卖出期权的价值越高。 2)标的股票价格变化范围的影响。在标的股票价格变动范围增大的,虽然正反两方面的影响都会增大,但由于期权持有者只享受正向影响增大的好处,因此,期权的价值随着标的股价变动范围的增大而升高。如下图: )(s f )(1s f )(2s f x s 股票的价格由密度函数)(1s f 变为)(2s f ,S>X 的可能性增大,买入期权的价值增大,对卖出期权的价值则相反。 3)到期时间距离的影响。距离愈长,股价变动的可能性愈大。由于期权持有者只会在标的股价变动中受益,因此,距离期

权到期的时间越长,期权的价值就越高。 4)利率的影响。利率越高,则到期m S 的现值就越低,使得买入期权价值提高,而卖出期权价值降低。 5)现金股利的影响。股票期权受到股票分割或发放股票股利的保护,期权数量也适应调整,而不受影响,但是期权不受现金股利的保护,因此当股票的价格因公司发放现金股利而下降时,买入期权的价值下降,卖出期权的价值便上升。 二、布莱克-舒尔斯期权定价模型的假设条件 B-S 模型是反映欧式不分红的买入期权定价模型,它的假定条件,除了市场无摩擦(例如无税、无交易成本、可以无限制自由借贷等)以外,还有: 1. 股票价格是连续的随机变量,所以股票可以无限分割。 2. T 时期内各时段的预期收益率 r i 和收益方差σi 保持 不变。 3. 在任何时段股票的复利收益率服从对数正态分布,即 在t 1-t 2时段内有: ()()()2221211()ln ,()S t N t t t t S t μσ?? -- ? ?? 因为股票的价格可以用随机过程{},...2,1)(=t t S 表示,其中S (t )表示第t 日股票的价格,它是一个随机变量. 则第t 日股票的收 益率(年收益率)为R t :3651)1() (t R t S t S +=- 股票的年收益率(单利)R 应该是:

第10章二叉树法期权定价及其Python应用

第10章二叉树法期权定价 及其Python应用 本章精粹 蒙特卡罗模拟法便于处理报酬函数复杂、标的变量多等问题,但是在处理提前行权问题时却表现出明显的不足。本章将要介绍的二叉树法可以弥补蒙特卡罗模拟法的这种不足。 二叉树的基本原理是:假设变量运动只有向上和向下两个方向,且假设在整个考察期内,标的变量每次向上或向下的概率和幅度不变。将考察期分为若干阶段,根据标的变量的历史波动率模拟标的变量在整个考察期内所有可能的发展路径,并由后向前以倒推的形式走过所有结点,同时用贴现法得到在0时刻的价格。如果存在提前行权的问题,必须在二叉树的每个结点处检查在这一点行权是否比下一个结点上更有利,然后重复上述过程。

10.1 二叉树法的单期欧式看涨期权定价 假设: (1) 市场为无摩擦的完美市场,即市场投资没有交易成本。这意味着不支付税负,没有买卖价差(Bid-Ask Spread)、没有经纪商佣金(Brokerage Commission)、信息对称等。 (2) 投资者是价格的接受者,投资者的交易行为不能显著地影响价格。 (3) 允许以无风险利率借入和贷出资金。 (4) 允许完全使用卖空所得款项。 (5) 未来股票的价格将是两种可能值中的一种。 为了建立好二叉树期权定价模型,我们先假定存在一个时期,在此期间股票价格能够从现行价格上升或下降。 下面用实例来说明二叉树期权定价模型的定价方法。 1. 单一时期内的买权定价 假设股票今天(t =0)的价格是100美元,一年后(t =1)将分别以120美元或90美元出售,就是1年后股价上升20%或下降10%。期权的执行价格为110美元。年无风险利率为8%,投资者可以这个利率放款(购买这些利率8%的债券)或借款(卖空这些债券)。如图10-1所示。 今天 1年后 t =0 t =1 u S 0=120 上升20% 1000=S d S 0=90 下降10% u 0max(u ,0)max(120110,0)10C S X =-=-= ?0=C d 0max(d ,0)max(90110,0)0C S X =-=-= 图10-1 买权价格 图10-1表示股票买权的二叉树期权定价模型。现在股价为100美元,1年后股价有两种状态:上升20%后,股价记作u S ,为120美元,下降10%后,股价记作d S ,为90美元,执行价格为110美元,根据前面的介绍,股票买权的到期价格分别为10美元和0,那么在t =0时买权的真实值(内在价值)0?C = 为了给这个买权定价,我们可以用这个股票和无风险债券的投资组合来模拟买权的价值。这个投资组合在没有套利机会时等于这个买权的价格;相反,如果存在套利机会,投资者可以购买两种资产中较便宜的一种,出售较贵的另一种,而得到获利的机会。然而,这只能在很短的时间出现。这个投资组合不仅给出了买权的定价方法,而且还提供了一种对冲(套期保值)的方法。 假设投资者购买N 股股票且投资0B 在无风险债券上,那么投资组合今天的值为

期权定价模型分类及其实际应用

摘要 随着社会的进步,金融市场的发展逐步完善,越来越多的金融衍生品走进了人们的视野。期权作为重要的金融衍生品之一,受到许多投资者与研究者的关注。本文就是对期权的产生与发展和期权相关的定价模型进行了讨论。本文先简要介绍了期权的发展史以及现阶段的概况,随后对期权进行分类详解,接着以B-S 模型和二叉树模型这两种经典定价模型为例进行了深入讨论并举例说明他们的实际应用,最后又分析了几种新型期权和他们的定价模型,并简要介绍了他们的实际用途。 关键词:期权发展历程;期权的分类;B-S定价模型;二叉树模型

Abstract With the development of the society, finance market has been impr oving gradually, more and more financial derivative instruments have come to the eyesight of people. Option, as the important tool of fina ncial derivative instrument, has been cast more attention by the inve stor and the researcher. This essay would focus on the generation of option and Capital Asset Pricing Model of the option. First, this dis sertation introduces the history and nowadays state of the option development. Then, it focuses its attention on classifying and description of the option. This paper raises the Black-Scholes Model and Binary Tree Model as typical example to talk deeply about their appliance. Finally, this paper analysis so me kinds of new options and their asset pricing model, and introduce the practical use of the new option to all readers. Keywords: history of option development Option classifying Black-Scholes Model Binary Tree Model

B-S期权定价模型的推导过程

B-S期权定价模型(以下简称B-S模型)及其假设条件 (一)B-S模型有7个重要的假设 1、股票价格行为服从对数正态分布模式; 2、在期权有效期内,无风险利率和金融资产收益变量是恒定的; 3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割; 4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃); 5、该期权是欧式期权,即在期权到期前不可实施。 6、不存在无风险套利机会; 7、证券交易是持续的; 8、投资者能够以无风险利率借贷。 (二)荣获诺贝尔经济学奖的B-S定价公式[1] C = S * N(d 1) ? Le? rT N(d2) 其中: C—期权初始合理价格 L—期权交割价格 S—所交易金融资产现价 T—期权有效期 r—连续复利计无风险利率H

σ2—年度化方差 N()—正态分布变量的累积概率分布函数,在此应当说明两点: 第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。r0必须转化为r方能代入上式计算。两者换算关系为:r = ln(1 + r 0)或r0=Er-1。例如r0=0.06,则r=ln(1+0.06)=0.0583,即100以5.83%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。 第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则。 B-S定价模型的推导与运用[1] (一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是: E[G] = E[max(S t? L,O)] 其中,E[G]—看涨期权到期期望值 S t—到期所交易金融资产的市场价值 L—期权交割(实施)价 到期有两种可能情况: 1、如果S t > L,则期权实施以进帐(In-the-money)生效,且max(S t? L,O) = S t? L 2、如果S t < L,则期权所有人放弃购买权力,期权以出帐(Out-of-the-money)失效,且有: max(S t? L,O) = 0 从而: 其中:P:(S t > L)的概率E[S t | S t > L]:既定(S t > L)下S t的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:

(定价策略)期权定价理论

期权定价理论 期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世(有关期权定价的发展历史大家可以参考书上第358页,有兴趣的同学也可以自己查找一下书上所列出的经典文章,不过这要求你有非常深厚的数学功底才能够看懂)。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。现在,几乎所有从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。为此,对期权定价理论的完善和推广作出了巨大贡献的默顿和Scholes在1997年一起荣获了诺贝尔经济学奖(Black在1995年去世,否则他也会一起获得这份殊荣)。 原始的B—S模型仅限于这类期权:资产可用于卖出期权;能够评估价值,资产价格行为随时间连续运动。随后建立在原始的B—S模型上的研究以及许多其他期权定价模型的变体相继出现,用于处理其他类型的标的资产以及其他类型的价格行为。在大多数情况下,期权定价模型的推倒基于随机微积分(Stochastic Calculus)的数学知识。没有严密的数学推演,演示这种模型只是摸棱两可的。可是,这并非要紧的问题,因为确定期权公平价格的必要计算已自动化,且达到上述目的的软件在大型计算机及微机中均可获得。因此,在这里,我只简单介绍一下B—S模型的关键几个要素,至于具体的数学推导(非常复杂),感兴趣的同学可以在课后阅读一下相关资料(一般都是在期权定价理论章节的附录中)。 首先,我们来回顾一下套利的含义 套利 套利(arbitrage)通常是指在金融市场上利用金融产品在不同的时间和空间上所存在的定价差异、或不同金融产品之间在风险程度和定价上的差异,同时进行一系列组合交易,获取无风险利润的行为。注意,这种利润是无风险的。 现代金融交易的目的主要可以分为套利、投机和保值,这也是我们在以前的课程中接触过的。那么,我们怎样来理解套利理论的含义呢? 我们说,市场一般是均衡的,商品的价格与它的价值是相一致的。如果有时候因为某种原因使得价格与价值不相符,出现了无风险套利的机会,我们说这种套利的机会就会马上被聪明的人所发现和利用,低买高卖,赚取利润,那么通过投机者不断的买卖交易,原来价值被低估的商品,它的价格会上涨(投机者低价买入);原来价值被高估的商品,它的价格会下跌(投机者高价卖出),交易的结果最终会使得市场价格重新回到均衡状态。(就像书中列举的两家书店卖书的例子一样…) 同样的道理我们不难理解,现代期权定价技术就是以无风险套利原理为基础而建立起来的。我们可以设计一个证券资产组合,使得它的价值(收益)与另外一个证券资产组合的价值相等。那么,根据无风险套利理论,这两种证券资产组合应该以同样的价格出售。从而,可以帮助我们确定,在价格均衡状态下,期权的公平定价方式。 具体来说,对期权跌——涨平价原理的推导就采用了无风险套利的原理。 跌——涨平价原理(put——call parity) 看涨期权的价格与看跌期权的价格(也就是期权费)之间存在着非常密切的联系,因此,只要知道看涨期权的价格,我们就可以推出看跌期权的价格(通过平价原理)。这样,就省去我们再费心研究看跌期权的定价公式了。只要我们通过B——S模型计算出看涨欧式期权的定价之后,我们就可以相应地推出欧式看跌期权的定价(注意,B——S模型只适用于欧式看涨期权)。

(定价策略)二项期权定价模型

摘要: 在可转债的定价过程中,期权部分的定价最为复杂,本文介绍了对可转债价值中期权部分的一种定价方法——二项期权定价模型,以单一时期内买权定价为例进行了。 一般来说,二项期权定价模型(binomal option price model , BOPM )的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM 的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一证券组合的主要功能是给出了买权的定价方法。与期货不同的是,期货的套头交易一旦建立就不用改变,而期权的套头交易则需不断调整,直至期权到期。 一、对股票价格和期权价格变化的描述 假设股票当期(t =0)的价格S 为100元,时期末(t =1)的价格有两种可能:若上升,则为120元,记做uS ;若下降,则为90元,记做dS 。执行价格为110元。相对应地来看,期权价格则分别记做0C 、up C 、down C ,则在t =1时,up C 、down C 分别等于max (120-110,0)、max (90-110,0),即10元和0。此时的状态可以用下图描述: uS =120 股价上升时 分 析 师:高谦 报告类型:可转换债券研究 二项期权定价模型

S =100 dS =90 股价下降时 up C =10 max (120-110,0) 0C =? down C =0 max (90-110,0) 二、构建投资组合求解买权 (一)构建投资组合 在上图中,唯一需要求解的是0C 。为求解0C ,也即给t =0时的买权定价,可以证明0C 的价格可以通过建立期权和相关资产的零风险套利交易来得到,具体来说,就是考虑一个包括股票和无风险债券在内的投资组合,该组合在市场上不存在无风险套利机会时等于买权的价格,因此可以用来模拟买权的价格。 我们可以考虑这样一个投资组合: (1) 以价格0C 卖出一份看涨期权; (2) 以价格100买入0.333股股票; (3) 以无风险利率8%借入27.78元。 (二)投资组合的净现金流分析 根据上述投资组合,可以得到t =0时期的净现金流为:0C -(0.333×100+27.78)。根据前述对股票和期权价格变化的描述,在到期日时会出现两种可能的结果,这两种结果在到期日时的现金流可以描述如下: 股价上升时的现金流 股价下跌时的现金流 买进一份看涨期权 -10(由max 【120-110】得到) 0(由max 【90-110】得到) 股票变现 40(由0.333×120得到) 30(由0.333×90得到) 偿付贷款 -30(由-27.78×1.08得到) -30(由-27.78×1.08得到) 净现金流 0 0 这表明,不管相关资产的价格是上升还是下降,这个投资组合的最终结果都

期权定价模型与数值方法

参考文献 1、期权、期货和其它衍生产品,John Hull,华夏出版社。 2、期权定价的数学模型和方法,姜礼尚著,高等教育出版社。 3、金融衍生产品定价的数学模型与案例分析,姜礼尚等著,高等教育 出版社。 4、金融衍生产品定价—数理金融引论,孙建著,中国经济出版社。 5、金融衍生工具中的数学,朱波译,西南财经大学出版社。 6、N umerical methods in finance and economics—a MATLAB-based introduction, Paolo Brandimarte,A JOHN WILEY & SONS,INC.,PUBLICATION 7.金融计算教程—MATLAB金融工具箱的应用,张树德编著,清华大学出 版社。 8、数值分析及其MATLAB实现,任玉杰著,高等教育出版社。 9、数学物理方程讲义,姜礼尚著,高等教育出版社。 10、英汉双向金融词典,田文举主编,上海交通大学出版社。 11、偏微分方程数值解法,孙志忠编著,科学出版社。 第三部分期权定价模型与数值方法 期权是人们为了规避市场风险而创造出来的一种金融衍生工具。理论和实践均表明,只要投资者合理的选择其手中证券和相应衍生物的比例,就可以获得无风险收益。这种组合的确定有赖于对衍生证券的定价。上个世纪七十年代初期,Black 和 Scholes 通过研究股票价格的变化规律,运用套期保值的思想,成功的推出了在无分红情况下股票期权价格所满足的随机偏微分方程。从而为期权的精确合理的定价提供了有利的保障。这一杰出的成果极大的推进了金融衍生市场的稳定、完善与繁荣。

一、期权定价基础 1.1 期权及其有关概念 1.期权的定义 期权分为买入期权(Call Option)和卖出期权(Put Option) 买入期权:又称看涨期权(或敲入期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格买入一定数量某种资产的权利的一种法律合同。 卖出期权:又称看跌期权(或敲出期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格卖出一定数量某种资产的权利的一种法律合同。 针对有效期规定不同期权又分为欧式期权(European Option)与美式期权(American Option) 欧式期权只有在到期日当天或在到期日之前的某一规定的时间可以行使的权利 美式期权在到期日之前的任意时刻都可以行使的权利。 2.期权的要素 期权的四个要素:施权价(exercise price或striking price);施权日(maturing data);标的资产(underlying asset);期权费(option premium)对于期权的购买者(持有者)而言,付出期权费后,只有权利而没有义务;对期权的出售者而言,接受期权费后,只有义务而没有权利。 3.期权的内在价值 买入期权在执行日的价值 C为 T 其中, E为施权价, S为标的资产的市场价。 T

期权定价模型

二、期权价值评估的方法 (一)期权估价原理 1、复制原理 基本思想复制原理的基本思想是:构造一个股票和贷款的适当组合,使得无论股价如何变动投资组合的损益都与期权相同,那么创建该投资组合的成本就是期权的价值。 基本公式每份期权价格(买价)=借钱买若干股股票的投资支出=购买股票支出-借款额 计算步骤(1)确定可能的到期日股票价格Su和Sd 上行股价Su=股票现价S×上行乘数u 下行股价Sd=股票现价S×下行乘数d (2)根据执行价格计算确定到期日期权价值Cu和Cd: 股价上行时期权到期日价值Cu=上行股价-执行价格 股价下行时期权到期日价值Cd=0 (3)计算套期保值率: 套期保值比率H=期权价值变化/股价变化=(CU-Cd)/(SU-Sd) (4)计算投资组合的成本(期权价值)=购买股票支出-借款数额 购买股票支出=套期保值率×股票现价=H×S0 借款数额=价格下行时股票收入的现值 =(到期日下行股价×套期保值率)/(1+r)= H×Sd/(1+r) 2、风险中性原理 基本思想假设投资者对待风险的态度是中性的,所有证券的预期收益率都应当是无风险利率;假设股票不派发红利,股票价格的上升百分比就是股票投资的收益率。 因此: 期望报酬率(无风险收益率)=(上行概率×股价上升时股价变动百分比)+(下行概率×股价下降时股价变动百分比) =p×股价上升时股价变动百分比+(1-p)×股价下降时股价变动百分比 计算步骤 (1)确定可能的到期日股票价格Su和Sd(同复制原理) (2)根据执行价格计算确定到期日期权价值Cu和Cd(同复制原理) (3)计算上行概率和下行概率 期望报酬率=(上行概率×股价上升百分比)+(下行概率×股价下降百分比) (4)计算期权价值 期权价值=(上行概率×Cu+下行概率×Cd)/(1+r) (二)二叉树期权定价模型 1、单期二叉树定价模型 基本原理风险中性原理的应用 计算公式(1)教材公式 期权价格= U=股价上行乘数=1+股价上升百分比

回归大作业-基于多元线性回归的期权价格预测模型

基于多元线性回归的期权价格预测模型 王某某 (北京航空航天大学计算机学院北京100191)1 摘要:期权是国际市场成熟、普遍的金融衍生品,是金融市场极为重要的金融工具。2015年2月9日,上海证券交易所正式推出了我国首支场内交易期权——上证50ETF期权,翻开了境内场内期权市场的新篇章。50ETF期权上市以来,市场规模逐步扩大,其发展情况境外期权产品相同时期。本文以此为研究背景,以“50ETF购12月1.95”这支期权为研究对象,以今日开盘价、收盘价、最高价、最低价、结算价、成交量、成交额、持仓量、涨停价和跌停价为解释变量,通过多元线性回归模型,预测该期权的明日收盘价。本次研究以多元线性回归的全模型(模型1)为出发点,通过异方差检验、残差的独立性检验、误差的正太分布检验以及多重共线性检验,说明该模型不违反回归的基本假设条件。进而通过主成分回归(模型4)和逐步回归(模型5)进行降维,结果表明因变量与解释变量之间存在强烈的线性相关关系,且主成分回归和逐步回归相比全模型有更好的预测能力。 关键词:期权价格多元线性回归50ETF 多重共线性因子分析 一、引言 期权(option)是依据合约形态划分的一种衍生品,指赋予其购买方在规定期限内按买卖双方约定的价格(即协议价格或行权价格)购买或者出售一定数量某种金融资产(即标的资产)的权利的合约。期权购买方为了获得这个权利,必须支付给期权出售方一定的费用,称为权利金或期权价格[1]。 2015年2月9日,上海证券交易所正式推出了我国首支场内交易期权——上证50ETF,翻开了境内场内期权市场的新篇章。期权是与期货并列的基础衍生产品,是金融市场极为重要的金融工具之一。 自50ETF上市以来,市场规模逐步扩大。2015年2月日均合约成交面值为5.45亿元,12月就达到了47.69亿元,增长了7.75倍;2月日均合约成交量为2.33万张,12月就达到了19.81万张,增长了7.5倍;2月权利金总成交额为2.48亿元,12月就达到了35.98亿元,增长了13.51倍[1]。 我国股票市场有上亿的个人投资者,是一个较为典型的散户市场[1]。相较于专业投资机构讲,散户缺乏时间,精力以及专业分析,投资具有很大的投机行为。对于这些投资者来说,期权价格的变动则是他们最为关注的问题,其变化直接影响到自身的收益。在实际情况中,影响股票价格的因素很多,涉及到金融政策、利率政策以及国际市场等因素,其作用机制也相当复杂[2]。因此,对于期权价格预测的研究,则可以降低投资者的投资风险,及时调整投资结构,从而保障自身的收益。 1作者简介:王某某,北京航空航天大学研究生邮箱:bnuwjx@https://www.360docs.net/doc/322278520.html,。

期权定价模型

第14章期权定价模型 中央财经大学 刘志东2010-06-162 期权的应用 激励方式 一些证券具有期权的特征:可回购债、可转债 Hedging, (speculative) investing, and asset allocation are among the top reasons for option trading. In essence, options and other derivatives provide a tailored service of risk by slicing, reshaping, and re packaging the existing risks in the underlying security. The risks are still the same, but investors can choose to take on different aspects of the existing risks in the underlying asset.

2010-06-163 期权定价方法的应用 期权定价的技巧被广泛的应用到许多金融领域和非金融领域,包括各种衍生证券定价、公司投资决策、自然资源开发、核废料处理等。 学术领域内的巨大进步带来了实际领域的飞速发展。期权定价的技巧对产生全球化的金融产品和金融市场起着最基本的作用。 近年来,从事金融产品的创造及定价的行业蓬勃发展,从而使得期权定价理论得到不断的改进和拓展。 所以,无论从理论还是从实际需要出发,期权定价的思想都具有十分重要的意义。2010-06-164 1. 一些基本定义 例子1: 投资者B 和W 计划签定一份合同:现在B 支付给W 200元,交换条件是在接下来的六个月的任何时间,允许B 自愿从W 那里以150元/股的价格购买100股IBM 公司股票。IBM 公司股票现在的价格为145元/股。问题: B 和W 为什么都愿意签定这个合同? B 如果不支付给W 200元,W 是否愿意签定这个合同?

基于期权理论的股票定价模型

基于期权理论的股票定价模型 摘要:传统的股利回现模型对股票定价不能精确确定投资者的收益率和未来支付的现金股利。股票具有期权的特性,公司的股票实质上是基于公司价值的看涨期权,该期权的执行价格就是公司债券到期时的还本付息的金额,于是可以用期权定价模型来进行股票定价。该法不需要估计未来现金股利和投资者的语气收益率,在一定程度上客服了传统股票定价方法的缺陷。 关键字:股票定价期权二叉树模型 B-S模型 第1章绪论 自股票产生400多年以来,股票价值就一直是困惑投资者的最大难题。股票价值之谜就如同哥德巴赫猜想一样,历经数百年,吸引了无数的人类精英去探索,但至今仍是不得其解。许多的经济学家和管理学家试图寻找到一个数学模型来确定股票价值,从而为股票市场的正常运行提供依据,但至今为止,这样的模型仍是一个不解之谜。无数的股票投资者苦恼于股票的神秘,他们往往不得不凭猜测压赌注,到头来也往往是血本无归。更有一些别有用心的人,利用股票价值的神秘感,在股市上兴风作浪,趁火打劫。 股票的价值体现在他的未来回报,其评估过程也是一个“从过去预测未来,从未来计算现在”的过程。由于时空的限制,我们无法穿越时间的隧道,准确预知未来。所以我们只能在黑暗中摸索股票价值。我们只能利用科学知识和技术手段,从历史的蛛丝马迹中去分析推测并演算出股票现在的价值。 第2章基于期权理论的股票定价模型

2.1期权的定义及期权定价模型 期权(option)是又称为选择权,是指买方向卖方支付期权费(指权利金)后拥有的在未来一段时间内(指美式期权)或未来某一特定日期(指欧式期权)以事先规定好的价格(指履约价格)向卖方购买或出售一定数量的特定标的物的权利,但不负有必须买进或卖出的义务(即期权买方拥有选择是否行使买入或卖出的权利,而期权卖方都必须无条件服从买方的选择并履行成交时的允诺)。 由此可见,期权是一种交易双方签订的、按约定价格、约定时间、买卖特定数量的商品或有价证券合约。与其他一般合约不同的是,期权购买人在合约规定的交割时间有权选择是否执行这一合约,而期权出售人则必须服从购买人的选择。即:期权交易是一种权利买卖。 期权分为看涨期权(call option)和看跌期权(put option)。看涨期权是持有者有权在约定时间按约定价格向期权出售人购买特定数量的商品或有价证券,而不管这种商品或有价证券到时价格发生如何的变动,而出售者必须履行合约,按照约定的价格出售资产。与此相反,卖进看跌期权,购买人就有权利在期权的有效期内,按约定价格向出售人出售约定数量的商品或者有价证券,而不论此期间他们的价格如何变动。 期权定价模型(OPM)由布莱克与斯科尔斯在20世纪70年代提出。该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关。模型表明,期权价格的决定非常2复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。 2.2传统股票定价的缺陷 传统股票定价思路是将与其的未来现金流量按预期报酬率进行折现、即股票的价值是预期的所有未来股息现金流量折现值之和。公司股票价值的计算可表示为 其中,V e是公司股票的内在价值,D t是在t年末预期收到的股利,K e是股票的期望收益率,包括无风险利率和风险补偿率。若假定预期的股利以固定的增长率g增长,在k>g的条件下,上式可简化为:

关于期权定价模型

关于期权定价模型

期权定价问题的数学模型 白秀琴杨宝玉(平顶山工业职业技术学院,基础部,河南平顶山467001) 摘要:介绍了资产定价理论近十年来的发展状况和历史背景,阐述了期权定价的基本概念 和基本假设的直观模型。 关键词:期权;套利;数学模型 Mathematical Model of OPricing Model BAI Xiu-qin,Yang Bao-yu (Pingdingshang Industrial College Of Technology,Pingdingshan,Henan,467001) Abstract: Introducing the historical background of asset pricing theory and the development during the past 10 years .Expounding the intuitive model of the basic concept and the basic assumptions of option pricing Key words: option arbitrage

mathematicai model 金融数学是研究经济运行规律的一门新兴学科,是数学与金融学的交叉,建立数学模型是对金融理论和实践进行数量分析和研究的主要方法。金融数学的几个主要理论是投资组合选择理论,资本资产定价理论,期权定价理论。本文主要探讨期权定价理论的数学模型及应用。 一 、期权定价理论的基本思想及其发展 期权是一种选择权,是其购买者在支付一定数额的期权费后,即拥有在某一特定时间内以某一确定的价格买卖某种特定商品契约的权利,但又无实施这种权利(即必须买进或卖出)的义务。它按交易性质可分为看涨期权和看跌期权,前者赋予期权拥有者在未来按履约价格购买期权标的物权利,又称买入期权;后者赋予期权拥有者在未来履约价格售出期权标的物权利,又称为卖出期权。期权按权利行使时间的不同,还可以分为欧式期权和美式期权,欧式期权只有在权利到期日才能履约交易,美式期权则在期权有效期内的任何时间都可以行使权利。 期权的交易由来已久,但金融期权到20世纪70年代才创立,并在80年代得到广泛应用。1973年4月26日美国率先成立了芝加哥期权交易所,使期权合约在交割数额,交割月份以及交易程序等方面实现了标准化。在标准化的期权合约中,只有期权的价格是唯一的变量,是交易双方在交易所内用公开竞价方式决定出来的。而其余项目都是事先规定的。因此,我们的问题就是如何确定期权的合理价格。目前两个经典的期权定价模型是Black-Scholes 期权定价模型和Cox-Ross-Rubinstein 二项式期权定价公式。尽管它们是针对不同状态而言的,但二者在本质上是完全一致的。 在讨论期权定价模型之前,我们先对金融价格行为进行分析。 二、金融价格行为 资产价格的随机行为是金融经济学领域中的一个重要内容。价格波动的合理解释在决定资产本身的均衡价格及衍生定价中起着重要的作用。资产价格波动的经典假设,也是被广泛应用的一个假设是资产价格遵循一扩散过程,称其为几何布朗运动,即 )()()()(t dB t S dt t S t dS σα+= (1) 其中,S(t)为t 时刻的资产价格,μ为飘移率,σ为资产价格的波动率,B(t)遵循一标准的维纳过程。为说明问题的方便,下面我们引入It?引理: 设F(S,t)是关于S 两次连续可微,关于t 一次可微的函数,S(t)是满足随机微分方程(1)的扩散过程,则有以下随机变量函数的It?微分公式 dt F dS F dt F t S dF SS S t 2 21),(σ++= (2) Black-Scholes 期权定价模型的一个重要假设是资产价格遵循对数正态分布,即)(ln ),(t S t S F =。将该式与(1)式同时代入(2)式,有 )()()(ln 2 2 1t dB dt t S d σσα+-= (3) 从而有

期权定价二项式模型.doc

二项期权定价模型 二项期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。对于美式权证,由于可以提前行权,每一节点上权证的理论价格应为权证行权收益和贴现计算出的权证价格两者较大者。 二项式期权定价模型概述 1973年,布莱克和休尔斯(Blackand Scholes)提出了布莱克-休尔斯期权定价公式,对标的资产的价格服从正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(John Cox)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。 1979年,罗斯、考科斯和马克·鲁宾斯坦(Mark Rubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简单的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。 二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定价模型建立在一个基本假设基础上,即在给定的时间间隔内,证券的价格运动有两个可能的方向:上涨或者下跌。虽然这一假设非常简单,但由于可以把一个给定的时间段细分为更小的时间单位,因而二项式期权定价模型适用于处理更为复杂的期权。 随着要考虑的价格变动数目的增加,二项式期权定价模型的分布函数就越来越趋向于正态分布,二项式期权定价模型和布莱克-休尔斯期权定价模型相一致。二项式期权定价模型的优点,是简化了期权定价的计算并增加了直观性,因此现在已成为全世界各大证券交易所的主要定价标准之一。 一般来说,二项期权定价模型的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一证券组合的主要功能是给出了买权

对CAPM模型的详细总结

关于CAPM模型的总结 资产定价理论是关于金融资产的价格决定理论,这些金融资产包括股票、债券、期货、期权等有价证券。价格决定理论在金融理论中占有重要的地位,定价理论也比较多,以股票定价为例,主要有:1.内在价值决定理论。这一理论认为,股票有其内在价值,也就是具有投资价值。分析股票的内在价值,可以采用静态分析法,从某一时点上分析股票的内在价值。一般可以用市盈率和净资产两个指标来衡量;也可以采取动态分析法。常用的是贴现模型。贴现模型认为股票的投资价值或者价格是股票在未来所产生的所有收益的现值的总和。2.证券组合理论。现代证券组合理论最先由美国经济学者Markowitz教授创立,他于1954年在美国的《金融》杂志上发表了一篇文章《投资组合选择》,提出了分散投资的思想,并用数学方法进行了论证,从而决定了现代投资理论的基础。3.资本资产定价理论(Capital Assets Pricing Model,CAPM模型)。证券组合理论虽然从理论上解决了如何构造投资组合的问题,但是这一过程相当繁杂,需要大量的计算,和一系列严格的假设条件。这样就使得这一理论在实际操作上具有一定的困难。投资者需要一种更为简单的方式来进行处理投资事宜。于是资本资产定价模型就产生了。1964年是由美国学者Sharpe提出的。这个模型仍然以证券组合理论为基础,在分析风险和收益的关系时,提出资产定价的方法和理论。目前已经为投资者广泛应用。4.套利定价模型(Arbitrage Pricing Theory,APT)。1976年由Ross提出,与CAPM 模型类似,APT也讨论了证券的期望收益与风险之间的关系,但所用的假设与方法与CAPM 不同。CAPM可看作是APT在某些更严格假设下的特例。APT在形式上是把CAPM的单因子模型变为一个多因子模型。 本文主要就CAPM理论进行一些探讨,从几个方面对这个重要的资产定价模型进行剖析。 一.CAPM模型介绍 Sharpe在一般经济均衡的框架下,假定所有投资者都以自变量为收益和风险的效用函数来决策,导出全市场的证券组合的收益率是有效的以及资本资产定价模型(CAPM)。 CAPM的基本假定: ①投资者根据与其收益和收益的方差来选择投资组合; ②投资者为风险回避者; ③投资期为单期;

相关文档
最新文档