一种轻型货车车架有限元分析与优化

一种轻型货车车架有限元分析与优化
一种轻型货车车架有限元分析与优化

第30卷 第2期

2008年2月

武 汉 理 工 大 学 学 报

JOURNA L OF WUH AN UNIVER SIT Y OF TE CHN O LOG Y

Vol.30 No.2

 Feb.2008

一种轻型货车车架有限元分析与优化

叶 勤1,邓亚东1,王 彦2,谭 伟2

(1.武汉理工大学汽车工程学院,武汉430070;2.东风汽车股份有限公司,武汉430056)

摘 要: 车架作为整车的一个重要部件,对其进行结构分析与研究具有重要意义,而悬架机构以及连接部件的模拟是建立有限元模型的关键步骤。介绍了以组合单元建立货车车架有限元模型的方法,运用有限元法计算分析车架在典型工况下的应力水平和分布情况,在此基础上对车架进行优化设计,并提出了车架的改进意见。关键词: 车架; 有限元分析; 优化中图分类号: U 436.32

文献标识码: A

文章编号:167124431(2008)022*******

Finite E lement A nalysis and Optimization of a Light V ehicle F rame

Y E Qin 1,DEN G Ya 2dong 1,WA N G Yan 2,T A N Wei 2

(1.School of Autom otive Engineering ,Wuhan University of T echnology ,Wuhan 430070,China ;

2.Dong feng Autom obile C o Ltd ,Wuhan 430056,China )

Abstract : Frame is the key of vehicles ,s o it is important to analyze and study its structure ,above all ,the simulation of suspension

and connecting parts is an important step during the m odel built 2up period.A finite element m odel was established for the frame of light truck based on composite elements ,which was used to analyze the stress level and distribution on the frame in typical conditions.Under the guidance of the analyzed results ,the design of the frame was optimized and the suggestions to design improvement were presented.K ey w ords : 

vehicle frame ; finite element analysis ; optimization 收稿日期:2007209218.作者简介:叶 勤(19822),男,硕士生.E 2mail :a010301@https://www.360docs.net/doc/3316386104.html,

车架作为汽车的承载基体,安装着发动机、传动系、行驶系、货厢等簧上质量的有关机件,承受着传递给它的各种力和力矩。车架工作状态比较复杂,无法用简单的数学方法对其各部分的应力状态进行准确的分析计算,而采用有限元方法可以对车架的静动态特性进行较为准确的分析,从而使车架设计从经验设计进入到科学设计阶段。作者运用有限元方法对某货车车架进行强度、刚度分析,并根据分析结果,进行优化设计,提出了改进意见。

1 车架的有限元模型

该车架为边梁式,即车架由2根位于两边的纵梁和7根横梁组成,用铆接方式将纵梁和横梁连接成坚固的刚性结构。以往采用的车架有限元分析模型一般为梁单元模型。梁单元模型是将车架结构简化为由一组梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。此法无法详细分析车架应力集中问题,不能很好地模拟车架纵、横梁的连接状况。在实际工程中,车架是由一系列薄壁件组成,且形状复杂,应利用板壳单元进行离散处理。这种模型可以使分析结果更准确。1.1 部件连接及相互作用的模拟

车架纵、横梁多采用铆钉和螺栓连接。以点对点或节点耦合的方式建立铆接单元夸大了连接部位铆钉处的局部应力特征。实际在铆接预紧力作用下,铆钉孔周向的点大致与铆钉点的位移相协调,因此,可以采用梁

单元与rigid 刚性单元相结合的连接处理方式。铆钉采用梁单元处理可以很好地反映出拉压和剪切变形。铆钉孔周采用刚性单元主从节点的方式处理。为了使计算结果更加接近实际情况,在连接处添加接触单元来模拟连接处的接触受力情况。接触单元的刚度k 可按式(1)选取。

k =103×E ×h

(1)式中,E 为材料的弹性模量;h 为与接触单元相连接单元的单元尺寸。1.2 悬架的处理

车架是通过悬架系统、车桥和车轮支承在地面上。为了更准确地模拟实际使用工况,将悬架元件与车架组合起来分析。悬架的建模方法如图1所示。将钢板弹簧等效为一个水平布置的矩形截面梁,并以主从结点关系模拟梁的两端点与对应车架吊耳处结点之间的关系。等效水平

梁的宽度B 取为钢板弹簧的实际宽度,其高度H 可按式(2)选取[1]。 

H =3

KL /4EB

(2)式中,K 为钢板弹簧铅垂方向上的装车刚度;E 为材料的弹性模量;L 为钢板弹簧活动吊耳与固定吊耳之间的水平距离。

整个车架有限元模型共创建132908个单元,81079个节点,418729个自由度,其中接触单元1758个。1.3 车架的载荷及边界条件

根据静力等效原则,将发动机、驾驶室、驾乘人员等各部件的质量对车架的作用向其在车架上的作用点(安装点)简化为车架上集中载荷;货厢的质量与装载量之和对车架的作用按货厢与车架的实际接触面积计算简化为车架上的均布载荷。各部件的质量如表1所示。有限元分析模型的4个支承点分别取在对应4个车轮的轮心。车架弯曲工况和扭转工况的边界条件如表2所示。

表1 各部件质量

部件名称质量/kg

部件名称质量/kg

驾驶室

550车厢及载荷

2200驾乘人员195侧冷凝器20发动机500备胎70油箱(含油)

100

蓄电池

44

表2 边界条件

部位弯曲工况约束自由度

扭转工况约束自由度

左前轮X ,Z X ,Y ,Z 左后轮Z Y ,Z 右前轮X ,Y ,Z X ,Z

右后轮

Y ,Z

注:释放4点的全部转动自由度。

2 车架的计算分析

1)弯曲工况 弯曲工况的应力分布如图2,图3所示。车架的最大应力值59.3MPa 出现在第3根横梁的

发动机后安装点处,从图3中可以看出车架在弯曲工况下应力分布均匀,应力值远小于车架材料DL510的许用应力320MPa 。

2)扭转工况 车架在扭转工况下的最大应力为238MPa ,出现在纵梁的前板簧吊耳安装处,如图4所示。从车架模型可以看出板簧的前吊耳与纵梁的接触面积较小,高应力区域较集中,因而此处是车架易产生破坏的地方。车架的刚度特性可由变形云图看出,最大位移34.4mm 出现在车架右后端(右轮悬空

),如图5所示。

3 车架刚度优化

在车架的设计定型中,国外汽车企业采用车架刚度作为产品定型的关键指标之一,当按满足刚度准则的要

4

41 武 汉 理 工 大 学 学 报 2008年2月

求来确定结构时,则可同时充分满足强度准则。因此,以优化车架刚度入手以达到提高车架的整体性能。3.1 目标函数与状态变量的确定

在提高车架刚度的同时也会增加车架质量,为了达到优化设计,因而制定以结构总质量最小为目标函数,由于车架的弯曲、扭转刚度需通过弯曲和扭转工况下车架相应位置上的最大位移求得,因此,将弯曲和扭转刚度增加10%的约束换算为最大位移约束,以弯曲和扭转工况下的最大位移作为该优化模型的性能约束进行计算[2],同时将车架构件的最大应力值的上限定为200MPa 。3.2 设计变量的确定

由于该车架已基本定型,优化设计应与实际生产相结合,因而将组成车架各构件的料厚选为设计变量。通过优化各构件的料厚从而改变各构件的刚度来实现优化目标的收敛,见表3。

表3 变量初始值及变化范围

变量名

z1

H1H2Hs34Hx34H5H6H7Y b -h5s Y b -h5x Y b -h6s Y b -h6x Jqb -h5Jqb -h6初始值/mm 5.0

5.0 4.0 4.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0变化下限/mm 4.0 4.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0变化上限/mm

6.0

6.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

3.3 优化结果

车架刚度优化的目标函数Min -mass 以及约束变量的收敛情况如图6,图7所示。

以质量最小为目标函数,在保证相关约束的前提下进行优化的结果是对刚度贡献相

对较小的横梁和腹板进行了减重,在纵梁与第2、第3横梁接头处等部位增加了板厚,因而根据优化结果在相应部位安装加强板以实现增

加板厚。由图6,图7可知,在车架扭转刚度优化过程中,当车架扭转刚度提高到一定值后,车架总质量基本上在某个值附近波动,最大位移由34.4mm 收敛到30.0mm ,减小了12.8%,车架总质量出现先增加后减少的趋势,由268kg 上升到289kg ,提高了7.8%。车架在扭转工况下的最大应力由优化前的238MPa 下降到180MPa ,减小了24.4%,优化效果明显。综上所述,在轻型货车车架扭转刚度优化过程中,应协调车架刚度与车架总质量,车架构件最大应力之间的关系,在提高车架刚度的同时降低构件最大应力并尽可能少地增加车架总质量。

4 结 论

a.建立正确的有限元模型是有限元分析的关键,应经过多次试算并与实际情况相比较从而完善模型得到

可信的结果。

b.在设计车架优化方案时,应该协调车架总质量、车架构件最大应力与车架刚度之间的关系,与实际相结合选取优化变量,建立合理的优化模型以达到优化目标。

参考文献

[1] 廖日东,王 健,左正兴,等.有限元技术在载货车辆车架分析中的应用[J ].车辆与动力技术,2006,(2):54259.[2] 马 迅,过学讯,赵幼平,等.基于有限元法的结构优化与灵敏度分析[J ].机械科学与技术,2002,(7):5582561.

5

41第30卷 第2期 叶 勤,等:一种轻型货车车架有限元分析与优化

车架有限元分析

1前言 车架是汽车的主要部件。深人解车架的承载特性是车架结构设计改进和优化的基础。过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。 2车架的静态分析 2.1力学模型的选择 有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。组合单元模型则是既采用梁单元也采用板壳单元进行离散。在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。 2.2车架的计算方法 汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽

车架有限元分析

目录 一结构简介 (1) 二计算载荷工况 (2) 三有限元模型 (5) 四静强度分析结果 (10)

一、结构简介 本次作业以某转向架构架为几何模型,进行静强度分析,下图为本次计算针对的某型转向架几何模型,结构上由侧架、摇枕、转臂座、齿轮箱吊挂、轴箱吊挂、一系减震器座等组成。整个计算主要分为网格划分和静强度计算两个过程。 图1 某型转向架几何模型(a) 图2 某型转向架几何模型(b) 二、计算载荷工况

根据要求,对转向架采取如下的加载方式: 1、约束 图3 约束要求 如下的局部视图中圈出处即为所加的约束之一; 图4 模型中所加约束之一 在此点出建立Z 方向的 位移约束 在此点出建立X 、Z 方 向的位移约束 在此点出建立X 、Y 、Z 方向的位 移约束 在此点出建立Y 、Z 方 向的位移约束

2、载荷 图5 受力要求 模型中加载作用力的局部视图如下(注:图中坐标系中红色为X 轴,绿色为Y 轴,蓝色为Z 轴); 图6 Z 轴正向26.2kN 的力 在此处加26.2KN 的力,力的方向为Z 轴负方向 在此处加26.2KN 的力,力的方向为Z 轴正方向 在此处加45.6KN 的力,力的方向为X 轴正方向中心销半圆内部分(Z 方向距上盖板80mm,距下盖板131mm ,X 方向距离圆心7mm )

图7 Z轴负向26.2kN的力 图8 中心处加载X轴正向45.6kN的力计算工况如下表1所示 表1 工况 工况 横向 (X向) 纵向 (Y 向) 垂向 (Z向) 1 -- -- +

整个模型由两类网格组成:构架采用壳网格单元建立模型,转臂座构件采用六面体网格建立模型;其中壳网格单元以四边形网格为主。有限元模型重量为1422.015kg,结点总数为81382,单元总数为74991。有限元模型如图9~12所示。 图9 壳单元模型(1/4模型) 图10 转臂座实体网格模型

有限元分析及应用大课后复习

有限元分析及应用作业报告

目录 有限元分析及应用作业报告....................................... I 目录 ........................................................ II 试题1 . (1) 一、问题描述 (1) 二、几何建模与分析 (2) 三、第1问的有限元建模及计算结果 (2) 四、第2问的有限元建模及计算结果 (7) 五、第3问的有限元建模及计算结果 (13) 六、总结和建议 (16) 试题5 (17) 一、问题的描述 (17) 二、几何建模与分析 (18) 三、有限元建模及计算结果分析 (18) 四、总结和建议 (26) 试题6 (27) 一、问题的描述 (27) 二、几何建模与分析 (27) 三、有限元建模及计算结果分析 (27) 五、总结和建议 (35)

试题1 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 图1-1模型示意图及划分方案

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数:按以上假设大坝材料为钢,设定:ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 → OK 4)生成几何模型: a. 生成特征点:ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS→依次输入三个点的坐标:

一种轻型货车车架有限元分析与优化

第30卷 第2期 2008年2月 武 汉 理 工 大 学 学 报 JOURNA L OF WUH AN UNIVER SIT Y OF TE CHN O LOG Y Vol.30 No.2  Feb.2008 一种轻型货车车架有限元分析与优化 叶 勤1,邓亚东1,王 彦2,谭 伟2 (1.武汉理工大学汽车工程学院,武汉430070;2.东风汽车股份有限公司,武汉430056) 摘 要: 车架作为整车的一个重要部件,对其进行结构分析与研究具有重要意义,而悬架机构以及连接部件的模拟是建立有限元模型的关键步骤。介绍了以组合单元建立货车车架有限元模型的方法,运用有限元法计算分析车架在典型工况下的应力水平和分布情况,在此基础上对车架进行优化设计,并提出了车架的改进意见。关键词: 车架; 有限元分析; 优化中图分类号: U 436.32 文献标识码: A 文章编号:167124431(2008)022******* Finite E lement A nalysis and Optimization of a Light V ehicle F rame Y E Qin 1,DEN G Ya 2dong 1,WA N G Yan 2,T A N Wei 2 (1.School of Autom otive Engineering ,Wuhan University of T echnology ,Wuhan 430070,China ; 2.Dong feng Autom obile C o Ltd ,Wuhan 430056,China ) Abstract : Frame is the key of vehicles ,s o it is important to analyze and study its structure ,above all ,the simulation of suspension and connecting parts is an important step during the m odel built 2up period.A finite element m odel was established for the frame of light truck based on composite elements ,which was used to analyze the stress level and distribution on the frame in typical conditions.Under the guidance of the analyzed results ,the design of the frame was optimized and the suggestions to design improvement were presented.K ey w ords :  vehicle frame ; finite element analysis ; optimization 收稿日期:2007209218.作者简介:叶 勤(19822),男,硕士生.E 2mail :a010301@https://www.360docs.net/doc/3316386104.html, 车架作为汽车的承载基体,安装着发动机、传动系、行驶系、货厢等簧上质量的有关机件,承受着传递给它的各种力和力矩。车架工作状态比较复杂,无法用简单的数学方法对其各部分的应力状态进行准确的分析计算,而采用有限元方法可以对车架的静动态特性进行较为准确的分析,从而使车架设计从经验设计进入到科学设计阶段。作者运用有限元方法对某货车车架进行强度、刚度分析,并根据分析结果,进行优化设计,提出了改进意见。 1 车架的有限元模型 该车架为边梁式,即车架由2根位于两边的纵梁和7根横梁组成,用铆接方式将纵梁和横梁连接成坚固的刚性结构。以往采用的车架有限元分析模型一般为梁单元模型。梁单元模型是将车架结构简化为由一组梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。此法无法详细分析车架应力集中问题,不能很好地模拟车架纵、横梁的连接状况。在实际工程中,车架是由一系列薄壁件组成,且形状复杂,应利用板壳单元进行离散处理。这种模型可以使分析结果更准确。1.1 部件连接及相互作用的模拟 车架纵、横梁多采用铆钉和螺栓连接。以点对点或节点耦合的方式建立铆接单元夸大了连接部位铆钉处的局部应力特征。实际在铆接预紧力作用下,铆钉孔周向的点大致与铆钉点的位移相协调,因此,可以采用梁

车架有限元分析word版

以ANSYS软件为分析工具对从国外引进的某重型车的车架进行了有限元分析、模态分析和以路面谱为输入的随机振动分析,通过用壳单元离散车架及MPC单元模拟铆打传力建立计算模型,研究该车架静、动态性能,了解该车架的优缺点。 车架是汽车的重要组成部分,在汽车整车设计中占据着重要位置,车架结构设计历来为广大汽车厂商所重视。本文以某汽车公司从欧洲引进的某重型车车架为研究对象,对该车架结构的动、静态特性进行分析计算,消化、吸收欧洲的先进技术并在此基础上进行自主创新设计。分析手段主要是通过建立正确的有限元分析模型,对车架进行典型工况的静态分析、模态分析和路面不平度引起的随机振动分析,以此了解车架的静态和动态特性,了解该车架的优越性能及其不足之处,为新车架的改型设计提供依据。 1 有限元分析模型的建立 该车架为边梁式,由两根位于两边的纵梁和若干根横梁组成,用铆接或焊接方式将纵梁和横梁联接成坚固的刚性结构,纵梁上有鞍座,其结构如图1 所示。由于车架是由一系列薄壁件组成,有限元模型采用壳单元离散能详细分析车架应力集中问题,可以真实反映车架纵、横梁联接情况,是目前常采用的一种模型。该车架是多层结构,纵梁断面为槽形,各层间用螺栓或铆钉联接,这种结构与具有连续横截面的车架不同,其力的传递是不连续的。 该车架长7m,宽约0.9 m,包括双层纵梁、横梁、外包梁、背靠梁、鞍座、飞机板、铸铁加强板、发动机安装板、三角支撑板和后轴等部分。考虑到车架几何模型的复杂性,可在三维CAD软件UG里建立车架的面模型,导人到Hypermesh软件中进行网格划分等前置处理,然后提交到ANSYS解算。车架各层之间的铆钉联接,可以用Hypermesh-connectors中的bar单元来模拟铆钉联接,对应的是ANSYS的MPC单元,因车架各层间既有拉压应力,又有剪应力,故MPC 的类型应选择Rigid Beam方式。由于该车是多轴车,为超静定结构,为了得到车架结构的真实应力分布,必须考虑悬挂系统的变形情况。整个车架结构应力分析的有限元模型由车架有限元模型和悬挂系统等效有限元模型组成,其中纵横梁、加强板等为薄壁结构,以壳单元shell63离散;钢板弹簧、轮胎以弹簧单元模拟;前悬弹赞的模型为在每边纵梁上采用2个弹簧单元,每个弹簧单元通过MPC 与车架联接,后悬弹簧的模型为在每边纵梁上采用1个弹簧单元与车架后轴联接。离散后,壳单元总数为46 770个,MPC单元为1 338个,材料为欧洲高强度材料,屈服极限500 MPa,杨氏模量为200GPa,泊松比0.3。

有限元分析及优化设计

《有限元分析及优化设计》实验指导书 桂林电子科技大学机电工程学院 庄未编 2012年05月

实验一:平面问题的结构分析计算 1.实验目的 ?了解ANSYS软件的基本功能与应用范围; ?熟悉在计算机上运用ANSYS软件的基本步骤和方法; ?结合具体平面问题实例,利用ANSYS软件进行计算分析; ?时间许可,可对上述实例利用有限元方法进行计算,并与ANSYS计算结 果进行分析比较. 2.实验内容 1. 结合具体平面问题实例,利用ANSYS软件进行计算分析; 2. 利用ANSYS软件进行建模,并施加约束和载荷; 3 对计算结果进行比较分析与讨论; 4. 时间许可,可对上述实例利用ANSYS的非交互模式(Batch Mode/命令流 的方式)再进行一次计算,并与用ANSYS交互模式的计算结果进行分 析比较. 3.实验预习报告内容要求 实验预习报告在实验前写好,其主要内容应包括: 复习有限元法基本原理、解题方法与步骤等,建立有限元模型应包含的内容; 提供具体平面问题的结构简图,画出计算模型; 对给定的平面问题实例的结果进行预估,以供计算后进行比较讨论用; 4.上机实践举例 一)如图1所示的6结点4单元平面应力平板问题.各三角形单元的直角边的长度为α=10mm,假设平板的厚度t=5mm,材料均匀,其弹性模量E=200GPa, 泊 松比μ=0.3.今在结点1处,竖直向下作用一个力P=1,若不计平板重量( 即设容重γ=0 ).利用ANSYS软件进行分析。

图1 二)、求解下图所示的平面问题。 图2 实验二:轴对称实体结构静力有限元分析 1. 实验目的 ? 了解ANSYS 软件的基本功能与应用范围; ? 熟悉在计算机上运用ANSYS 软件的基本步骤和方法; ? 结合具体实体问题实例,利用ANSYS 软件进行计算分析; ? 时间许可,可对上述实例利用有限元方法进行计算,并与ANSYS 计算结 果进行分析比较.

汽车车架有限元分析参考文献

[1] 曲昌荣, 郝玉莲,戚洪涛. 汽车车架有限元分析[J].轻型汽车技术,2007,12:54~56 [2] 石常青,丁厚明, 杨胜梅. 货车车架的有限元分析及车厢对其性能的影响[J].汽车技术,2004 ,4:5~8 [3] 郭立群, 潘淑华. 中重型汽车车架结构强度有限元建模与分析方法研究[J].汽车技术,2008,6:4~7 [4] 尹辉俊, 韦志林, 黄昶春等. 面向设计的微型车车架强度分析[M].机械设计,2008,1:62~64+67 [5]历辉,李万琼.货车车架的等效载荷简化[J].汽车工程,1994,5:310~314 [6] 黄金陵.有限元法应用于汽车车架结构分析中的几个问题[J].吉林大学学报,1980,1:76~81+83~88 [7] 于学兵, 许先锋..BJ2027型皮卡车车架的有限元分析[D].大连理工大学,2004,2(17) [8] 张勇, 张力等.重型车车架组合结构的有限元分析[J].机械与电子,2005,2:16~18 [9] 张云, 詹隽青等.基于ANSYS的整装整卸挂车车架有限元分析[D].军事交通学院学报,2007,2:39~42 [10] 尹辉俊, 韦志林, 沈光烈. 货车车架的有限元分析[M].机械设计,2005,11:26~28 [11] 李志勋.LT3242重型自卸车车架结构有限元分析[D].农业机械化工程,2009,2(20). [12] 李德信, 吕江涛, 应锦春.SX360自卸车车架异常断裂原因分析[J].汽车工程,2002,4:348~352 [13] 陈铭年, 庄继德.汽车车架计算方法和结构优化变量综述[J].汽车工程,1996,5:285~289+300 [14] 黄金陵.汽车车架结构元件参数的优选[J].汽车技术,1984,1:17~25 [15] M. Barbato and J.P. Conte.Finite element response sensitivity analysis: a comparison between force-based and displacement-based frame element models [J].2005,4(8):1479~1512 [16] M.H. El Haddad.Finite element analysis of infilled frames considering cracking and separation phenomena [D]2003,2

优化设计有限元分析总结

目录 目录 (1) 1. 优化设计基础 (2) 1.1 优化设计概述 (2) 1.2 优化设计作用 (3) 1.3 优化设计流程 (3) 2. 问题描述 (4) 3. 问题分析 (5) 4. 结构静力学分析 (6) 4.1 创建有限元模型 (6) 4.2 创建仿真模型并修改理想化模型 (7) 4.3 定义约束及载荷 (7) 4.4 求解 (8) 5. 结构优化分析 (9) 5.1 建立优化解算方案 (9) 5.2 优化求解及其结果查看 (11) 6. 结果分析 (13) 7. 案例小结 (14)

1.优化设计基础 1.1优化设计概述 优化设计是将产品/零部件设计问题的物理模型转化为数学模型,运用最优化数学规划理论,采用适当的优化算法,并借助计算机和运用软件求解该数学

模型,从而得出最佳设计方案的一种先进设计方法,有限元被广泛应用于结构设计中,采用这种方法任意复杂工程问题,都可以通过它们的响应进行分析。 如何将实际的工程问题转化为数学模型,这是优化设计首先要解决的关键问题,解决这个问题必须要考虑哪些是设计变量,这些设计变量是否受到约束,这个问题所追求的结果是在优化设计过程要确定目标函数或者设计目标,因此,设计变量、约束条件和目标函数是优化设计的3个基本要素。 因此概括来说,优化设计就是:在满足设计要求的前提下,自动修正被分析模型的有关参数,以到达期望的目标。 1.2优化设计作用 以有限元法为基础的结构优化设计方法在产品设计和开发中的主要作用如下: 1)对结构设计进行改进,包括尺寸优化、形状优化和几何拓扑优化。2)从不合理的设计方案中产生出优化、合理的设计方案,包括静力响应优化、正则模态优化、屈曲响应优化和其他动力响应优化等。 3)进行模型匹配,产生相似的结构响应。 4)对系统参数进行设别,还可以保证分析模型与试验结果相关联。 5)灵敏度分析,求解设计目标对每个设计变量的灵敏度大小。 1.3优化设计流程 不同的优化软件其操作要求及操作步骤大同小异。一般为开始、创建有限元模型、创建仿真模型、定义约束及载荷,然后进行结构分析,判断是否收

EQ1075G车架有限元分析

EQ1075G车架有限元分析 An FEM Analysis of the EQ1075G Frame 蒋光福刘永超耿广锐李智勇刘道勇 (东风汽车公司技术中心) 摘要: 本文对EQ1075G车架进行自由模态和静态应力有限元分析,针对分析结果给出了改进设计建议方案。 主题词:汽车车架模态应力优化设计有限元分析 Abstract This paper has introduced mode and stress FEM analysis for the EQ1075G frame and has put forward improved design structure on this analyzed resolution. Keywords: Automobile Frame Mode Stress Optimization design FEM analysis 一、前言 根据EQ1075G车架产品开发的需要,本文对车架原设计方案进行有限元模态和应力分析,并根据分析结果,提出了改进设计建议方案;同时,对该改进设计建议方案也进行了有限元模态和应力分析,并作出了相应的评价。 二、结构模型化 由于该车架主要是板材结构,因此模型化时主要采用板单元;车架上所有的铆钉连接用梁单元和刚性单元模拟;钢板弹簧用弹簧单元模拟;车架有限元模型如图1所示。 车架有限元模型规模:节点84900个,单元81318个,其中板单元81062个,弹簧元12个,梁单元24个。

图1 车架有限元分析模型 三、计算参数 钢板弹簧的刚度系数: =86.926N/mm 前钢板弹簧的垂直刚度系数:C 前 后钢板弹簧的主簧的垂直刚度系数:C =92.904N/mm 后主 后钢板弹簧的副簧的垂直刚度系数:C =115.15N/mm 后副 EQ1075G车架采用特高强度热轧冷成型钢Domex 700MC材料,该材料的物理性能为:弹性模量E=210000N/mm2,泊松比μ=0.3;该材料的机械性能为:最小屈服强度是700000KPa,最小抗拉强度是750000KPa,最大抗拉强度是950000KPa.。 本文应力分析时,取动荷系数为1.0。 四、边界条件 本文分析车架应力时,施加了作用于车架上的所有载荷,其中重力包括动力总成5855.5N,油箱及托架1117.2N,水箱及中冷器588N,驾驶室及乘员5880N,蓄电池及其框架686N,贮气筒及其框架980N,车厢9310N以及载荷39200N。 本文分析了三种工况下的车架应力分析规律及其最大应力值,各工况定义如下: 工况1:弯曲工况,汽车满载(4000kg)匀速行驶在水平路面上,只约束前后车轮竖直方向的位移。 工况2:扭转工况,汽车满载(4000kg)匀速行驶在有凸台的路面上,一

基于ANSYS的自行车车架结构有限元分析

基于ANSYS的自行车车架结构有限元分析 摘要:采用有限元分析软件ANSYS对自行车车架的两种不同结构进行分析,并确定结构合理的类型,并 对其进行改进优化,并用ANSYS进行验证。 关键词:自行车;车架;结构;ANSYS Finite element analysis for bicycle frame based on ANSYS WANG Shunmin (Faculty of Automotive engineering,WHUT,wuhan 430070,china) Abstract:Using the finite element analysis software ANSYS to analyze two different structure of the bicycle frame, and determine the reasonable one, and according to the analysis results,the sharp optimization was accomplished, with ANSYS for verification. Key words:bicycle;frame;structure;optimization 自行车从诞生到现在已经有200多年的历史,因为其具有结构简单、售价低廉、自重轻、维护容易、不需能源、无污染、无噪声、使用方便灵活等优点而独具特色。随着全球现代化的发展,交通拥堵、空气污染、油价上涨等问题日益严重,自行车作为传统的交通工具,在人们的生活中仍然具有举足轻重的地位。 自行车在日常生活中使用广泛,而自行车车架作为自行车上面主要的承受道路复杂载荷的作用的部分,对其进行结构的强度和刚度分析在自行车的设计分析中占有很大比重。由于自行车受力比较复杂,传统的经验设计有很多的盲目性,不能定量的分析结构强度,很容易造成车架的结构设计不合理以致出现过分的应力集中。采用有限元分析软件ANSYS对自行车车架进行分析,可以在设计初期发现不合力的结构以及可能存在的缺陷。目前市面上最常见的两种车架结构形式如下图1、2所示,分别为“四边形+三角形”和“两三角形”结构的形式,本文通过对这两种车架结构进行分析,确定其中结构合理者,并对其进行改进和优化。 1.自行车车架的有限元模型的建立, 1.1车架线框和实体模型的建立 建立准确、可靠的自行车车架模型是进行有限元分析最重要的步骤之一,首先对自行车的尺寸数据进行测量,本文主要通过对图片尺寸进行测量,然后乘以相应的比例关系,得到实际车架的数据。本文通过CATIA软件强大的测量功能分别得到两个车架的坐标数据。主要得到车架关键点的坐标数据,包括前叉部位、把手、车座、后轮轴部位、脚蹬等部位,以及梁连接点位置,一共包括14个点的坐标值。在ANSYS中进行建模,根据所测得的数据建立模型,得到两个车架结构线框模型分别如图3、4。在建模过程中选择梁单元beam4,指定材料的弹性模量为2.11E11Pa,泊松比为0.3。梁选择圆管类型,内外径分别根据自行车实际尺寸进行设置。 1.2 划分网格,设置单元大小为0.005m,对整个模型进行划分。 1.3 施加边界条件,自行车在实际的使用过程中,道路和行驶状况差异很大,受力等边界条

载重货车车架设计及有限元分析

摘要 汽车车架是整个汽车的基体,是汽车设计中一个重要的环节。车架支撑着发动机离合器、变速器、转向器、非承载式车身和货箱等所有簧上质量的重要机件,承受着传给它的各种力和力矩。因此,车架必须要有足够的弯曲刚度,也要有足够的强度,以保证其有足够的可靠性与寿命。同时,随着现在汽车的发展,载重货车的乘坐舒适性,操控性能也在不断提高,因此车架的设计还应同时兼顾舒适性和操控性。 本文以商用载重货车为研究目标,结合货车的各项参数,对车架进行设计。确定了车架总成以及纵梁横梁的各项参数。运用solidworks软件做出了车架的三维模型图。同时利用ANSYS WORKBENCH有限元分析软件对车架的四种典型工况做出静力分析,得到各种工况下的变形情况和应力分布情况,同时对车架进行了模态分析。最后根据分析结果对车架做出优化建议。 关键词: 载重货车;车架;结构设计;有限元分析 I

ABSTRACT The vehicle frame is the base of the car, is one of the most important parts in the automobile design. Frame supports the engine clutch, transmission, steering gear, non bearing body and the container all spring quality the important parts, bear and pass it on to all kinds of force and moment. Therefore, the frame must have enough bending stiffness, also want to have enough strength, to ensure sufficient reliability and life. At the same time, with now the development of automobile and truck ride comfort, handling performance also continues to increase, so design of the frame should also combine comfort and handling. In this paper, the commercial truck as the research objective, combined with the parameters of the truck, the frame design. Frame assembly and the longitudinal beam parameters were determined. The 3D model chart of the frame was made by SolidWorks software.. At the same time, the finite element analysis software ANSYS Workbench of the frame of four kinds of typical working conditions to make static analysis, obtained under various conditions of deformation and stress distribution, and the modal analysis of the frame. Finally, according to the results of the analysis of the frame to make optimization recommendations. Keywords:Truck; frame;structure design;finite element analysis II

车架的有限元分析及优化

车架的有限元分析及优化 作者:马迅盛…文章来源:湖北汽车工业学院点击数:1687 更新时间:2008-8-5 有限元法将设计人员丰富的实践经验与计算机高速精确的计算完美地结合在一起,大大提高了设计计算精度,缩短了产品开发时间。 概念设计阶段车架的结构方案 参考某一同类型车架,考虑到车身安装和其他总成的布置,将概念设计阶段的车架大致结构拟定如下:选用框架式平行梯形车架结构,由2根左右分开的纵梁和8根横梁组成,全长6.3m,宽0.8m,轴距3.65m。各梁的大致形状尺寸及板材厚度如表1所示。 除第3、4根横梁外,其他各横梁的尺寸与参考的同类型车架几乎相同。由于参考车架的第3、4根横梁为上下两片形状复杂的钢板组合而成,无法用梁单元模拟,在概念车架中将之改用两根方型截面的等直梁代替。第1、6横梁为非等截面梁,其宽和高分别由两个尺寸表示。参考车架纵梁的前后两段和中间段的连接采用的是线性渐变的截面,在概念车架中用一等直梁来代替,等直梁的高度等于渐变梁的中间高度。纵横梁上所有的孔及连接板都不予以考虑。 车架的有限元模型 为了后续的优化设计,必须对车架进行参数化建模。选择表1中车架纵横梁的截面尺寸为模型参数,先建立左半个车架的几何模型,选用ANSYS中的二节点12自由度梁单元BEAM188号单元采用不同的梁单

元截面形式对其进行网格剖分;再将左边的几何模型和网格模型进行映射得到右边车架模型,最终合并对称面上的节点使左右车架模型“牢固的”“粘结起来”。 在ANSYS中用BEAM188单元实施网格剖分时,为了保证单元的正确方向,应事先定义该单元的方向点并检查所要剖分的线的法向。单元截面形状和偏置量需用命令SECTYPE、SECOFFSET和SECDATA设定。单元总数为312,节点总数为626。网格剖分并映射后车架模型如图1所示。图中显示出了梁单元的截面形状。 图1 车架的有限元模型 边界条件 车架刚度有多种,其中最重要的是车架的弯曲刚度和扭转刚度。参照车架的刚度试验方法确定车架弯扭刚度的边界条件。 1.弯曲工况的边界条件 计算时约束前后桥在车架纵梁上的竖直投影点的垂直位移,让车架形成一简支梁结构,并在前后支承点中点处加一垂直向下的力,让车架产生纯弯曲变形,如图2所示。

中型载货汽车车架有限元静力学分析

摘要 汽车车架作为汽车关键的承载部件,它将发动机和车身等总成连成一个有机的整体,承受着来自道路及各种复杂载荷的作用,而且汽车上许多重要总成都是以车架为载体,因此设计出重量轻且各方面性能达到要求的车架结构是一项重要工作。传统的车架结构设计是采用类比的思想进行经验设计,车架的这种设计模式导致的问题包括两个方面:一是车架简化计算精度不够,为保证强度及刚度要求而使车架的设计过于安全,造成设计出的车架结构过重,增加了设计成本;二是造成车架的设计与计算分离,不利于提高车架设计人员的设计水平。设计出的车架结构除了个别部位的应力水平比较高外,大部分部位的应力水平较低。因此,有必要采用有限元法对车架结构进行优化设计,以降低车架的重量,减少汽车的制造成本,提高市场竞争力。 本文以解放J4R中型载货汽车车架为研究对象,在现有CAD图纸的情况下进行简化,通过对ANSYS软件的学习,以Pro/E软件创建车架实体模型,对车架的静力以及模态进行了分析。得到一些有益的结论,并掌握了一般静力分析中的网格划分、约束加载、分析求解等过程进行了认真的学习,为车架的设计和改进提供了指导作用。 关键词:中型载货汽车;车架;ANSYS;静力分析;模态分析

ABSTRACT As an important component, frame carrying the whole vehicle, such as assembly, take the engine and body together into an organic whole,endure the loads from the road and many kind of complex loads, and many important assemblys are based on frame,use the frame as a vector. So design a lightweight and all aspects of performance to meet the requirements of the frame structure is an important work. The frame structure of traditional design is the idea of experience with analog design, this methed caused two problems: First, simplify the calculation accuracy of the frame is not enough to ensure the strength and stiffness requirements of leaving the frame design is too safe, resulting the frame structure designed overweight. Second is caused by separation of design and calculation of the frame, the frame is not conducive to raising the level of the designer's design. In addition to the frame structure designed for individual parts of the stress level is relatively high, most parts of the stress level low. Therefore, it is necessary to use finite element method to optimize the design of the frame structure to reduce the chassis weight, reduce vehicle manufacturing costs, improve market competitiveness. In this paper, use FAW J4R medium truck frame for the study, in study of ANSYS software ,and use Pro / E software to create solid models of the static frame and the mode were analyzed. Get some useful conclusions, and mastery of the general process of static analysis for improved frame design and provide guidance. Key words: MediumTruck ;Frame;ANSYS;Static Analysis;Modal Analysis

有限元分析及应用例子FEM14

第9章受内外压筒体的有限元建模与应力变形分析(Project 2) 计算分析模型如图9-1 所示, 习题文件名: cylinder。 X (a) σO=100N/mm2 σI =200N/mm2 γ =7.85g/cm3 μ =0.3 E =210000N/mm2 (b) 图9-1 计算分析模型 9.1进入ANSYS 程序→ANSYSED 6.1ed →Interactive →change the working directory into yours→input Initial jobname: cylinder→Run 9.2 设置计算类型 ANSYS Main Menu: Preferences…→select Structural →OK 9.3 选择单元类型 ANSYS Main Menu: Preprocessor → Element Type →Add/Edit/Delete… → Add… →select Solid Quad 4node 42 →Apply →select Solid Brick 8node 45 → OK → Close (the Element

Types window) 9.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Materials Models →Structural→Lineal →Elastic→Isotropic…→input EX:2.1e5, PRXY:0.3→ OK 关闭材料定义窗口 9.5构造筒体模型 ?生成模型截平面 ANSYS Main Menu: Preprocessor →Modeling→Create →Keypoints →In Active CS… →按次序输入横截平面的十个特征点和旋转对称轴上两点坐标(十个特征点:(300,0,0), (480,0,0), (480,100,0), (400,100,0), (400,700,0), (480,700,0), (480,800,0), (300,800,0), (300,650,0), (300,150,0),对称轴上两点:(0,0,0), (0,800,0))(每次输入完毕,用Apply结束,0可以不输入) →Cancel (back to Create window) →-Areas- Arbitrary → Through KPs →依次连接截面边线上的十个特征点(注意在选完第10点后结束,不要再选第1点)→ OK ?对平面进行网格划分 ANSYS Main Menu: Preprocessor →Meshing→Mesh Tool →(Size Controls) Globl: Set →input SIZE (element edge length): 50 →OK (back to MeshTool window)→Mesh → Pick All (in Picking Menu) → Close( the MeshTool window) ?用旋转法生成筒体模型 ANSYS Main Menu: Preprocessor →Modeling→Operate →Extrude→Elem Ext Opts→select TYPE:SOLID 45→Element sizing options for extrusion No. Elem divs: 1→OK (back to Extrude window)→Areas →About Axis →Pick All(in Picking Menu)→OK→Pick the two keypoints (11,12) of the Symmetrical Axis → OK→input ARC: 90; NSEG: 3→ OK 9.6 模型加位移约束 ANSYS Main Menu: Solution→Define Loads →Apply→Structural→Displacement ?两截面分别加Z, X方向的约束 ANSYS Utility Menu: Select → Entities…→Nodes → By Location →select X coordinates →input 0→ OK (back to Displacement window)→On Nodes → Pick All(in Picking Menu) → select Lab2:UX →OK →ANSYS Utility Menu: Select → Everything ANSYS Utility Menu: Select → Entities…→ Nodes → By Location →select Z coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) → select Lab2:UZ →OK →ANSYS Utility Menu: Select →Everything ?底面加Y方向的约束 ANSYS Utility Menu: Select → Entities… → Nodes → By Location →select Y coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) →

相关文档
最新文档