多效蒸发器操作手册

多效蒸发器操作手册
多效蒸发器操作手册

文档编号:多效蒸发器操作手册.DOC

多效蒸发仿真培训系统

操作说明书

北京东方仿真软件技术有限公司

二零零七年八月

一.工艺流程说明

1、多效蒸发工作原理简述

通常,无论在常压、加压或真空下进行蒸发,在单效蒸发器中每蒸发1kg的水要消耗比1kg多一些的加热蒸汽。因此在大规模工业生产过程中,蒸发大量的水分必需消耗大量的加热蒸汽。为了减少加热蒸汽消耗量,可采用多效蒸发操作。

将加热蒸汽通入一蒸发器,则液体受热而沸腾,所产生的二次蒸汽,其压力和温度必较原加热蒸汽(为了易于区别,在多效蒸发中常将第一效的加热蒸汽称为生蒸气)的为低。因此可引入前效的二次蒸汽作为后效的加热介质,即后效的加热室成为前效二次蒸汽的冷凝器,仅第一效需要消耗生蒸汽,这就是多效蒸发的操作原理,一般多效蒸发装置的末效或后几效总是在真空下操作。将多个蒸发器这样连接起来一同操作,即组成一个多效蒸发器。每一蒸发器称为一效,通入生蒸汽的蒸发器称为第一效,利用第一效的二次蒸汽以加热的,称为第二效,以此类推。由于各效(末效除外)的二次蒸汽都作为下一效蒸发器的加热蒸汽,故提高了生蒸汽的利用率(又称为经济程度),即单效蒸发或多效蒸发装置中所蒸发的水量相等.则前者需要的生蒸汽量远大于后者。例如,若第一效为沸点进料,并忽略热损失、各种温度差损失以及不同压力下蒸发潜热的差别,则理论上在双效蒸发中,1kg的加热蒸汽在第一效中可以产生1kg的二次蒸汽,后者在第二效中又可蒸发1kg的水,因此,1kg的加热蒸汽在双效中可以蒸发2kg的水,则D/W=0.5。同理,在三效蒸发器中,1kg的加热蒸汽可蒸发3kg的水,则D/W=0.333。但实际上由于热损失,温度差损失等原因,单位蒸汽消耗量并不能达到如此经济的数值。

多效蒸发操作的加料,可有四种不同的方法:并流法、逆流法、错流法和平流法。工业中最常用的为并流加料法,溶液流向与蒸汽相同,既由第一效顺序流至末效。因为后一效蒸发室的压力较前一效为低,故各效之间可毋需用泵输送溶液,此为并流法的优点之一。其另一优点为前一效的溶液沸点较后一效的为高,因此当溶液自前一效进入后一效内,即成过热状态而自行蒸发,可以发生更多的二次蒸汽,使能在次一效蒸发更多的溶液。

2、工艺流程简介

本仿真培训系统以NaOH水溶液三效并流蒸发的工艺作为仿真对象。

仿真范围内主要设备为蒸发器、换热器、真空泵、简单罐和阀门等。

原料NaOH水溶液(沸点进料,沸点为143.8℃)经流量调节器FIC101控制流量(10000kg/h)后,进入蒸发器F101A,料液受热而沸腾,产生136.9℃的二次蒸汽,料液从蒸发器底部经阀门LV101流入第二效蒸发器F101B。压力为500KPa,温度为151.7℃左右的加热蒸汽经流量调节器FIC102控制流量(2063.4kg/h)后,进入F101A 加热室的壳程,冷凝成水后经阀门VG08排出。第一效蒸发器F101A蒸发室压力控制在327KPa,溶液的液面高度通过液位控制器LIC101控制在1.2m。第一效蒸发器产生的二次蒸汽经过蒸发器顶部阀门VG13后,进入第二效蒸发器F101B加热室的壳程,冷凝成水后经阀门VG07排出。从第一效流入第二效的料液,受热汽化产生112.7 ℃的二次蒸汽,料液从蒸发器底部经阀门LV102流入第三效蒸发器F101C。第二效蒸发器F101B 蒸发室压力控制在163KPa,溶液的液面高度通过液位控制器LIC102控制在1.2m。第二效蒸发器产生的二次蒸汽经过蒸发器顶部阀门VG14后,进入第三效蒸发器F101C 加热室的壳程,冷凝成水后经阀门VG06排出。从第二效流入第三效的料液,受热汽化产生60.1 ℃的二次蒸汽,料液从蒸发器底部经阀门LV103流入积液罐F102。第三效蒸发器F101C蒸发室压力控制在20KPa,溶液的液面高度通过液位控制器LIC103控制在1.2m。完成液不满足工业生产要求时,经阀门VG10卸液。第三效产生的二次蒸汽送往冷凝器被冷凝而除去。真空泵用于保持蒸发装置的末效或后几效在真空下操作。

3. 本工艺流程主要包括以下设备和主要控制:

3.1 设备列表:

3.2 仪表列表:

4. 控制方案:

4.1原料液流量控制

FV101控制原料液的入口流量,FIC101检测蒸发器的原料液入口流量的变化,并将信号传至FV101控制阀开度,使蒸发器入口流量维持在设定点。流量设置点为10000 kg/h。

4.2加热蒸汽流量控制

FV102控制加热蒸汽的流量,FIC102检测蒸发器的二次蒸汽流量的变化,并将信号传至FV102控制阀开度,使二次蒸汽流量维持在设定点。流量设置点为2063.4kg/h。

4.3 蒸发器的液位控制

LV101、LV102和LV103控制蒸发器出口料液的流量,LIC101、LIC102和LIC103检测蒸发器的液位,并将信号传给LV101、LV102和LV103控制阀的开度,使蒸发器

的料液及时排走,使蒸发器的液位维持在设定点。液位设定点为1.2m。

二.多效蒸发单元操作规程

1.冷态开车操作规程

(1)分别打开冷却水阀VG05、VG04

(2)开真空泵A,泵前阀VG11,控制冷凝器压力

(3)开阀门VG15,控制蒸发器压力

(4)开启排冷凝水阀门VG12

(5)开疏水阀VG06,VG07和VG08

(6)手动调节FV101,使FIC101指示值稳定到10000kg/h,FV101投自动(设定值为10000kg/h)

(7)开阀门LV101,调整F101A液位在1.2m左右,LIC101投自动(设定值为1.2m)(8)当F101A压力大于1atm时,开阀门VG13

(9)开阀门LV102,调整F101B液位在1.2m左右,LIC102投自动(设定值为1.2m)(10)当F101B压力大于1atm时,开阀门VG14

(11)调整阀门VG10的开度,使F101C中的料液保持一定的液位高度

(12)手动调节FV102,使FIC102指示值稳定到2063.4 kg/h,FV102投自动(设定值为2063.4kg/h)

(13)调整阀门VG13开度,使F101A压力控制在3.22atm,温度控制在143.8℃(14)调整阀门VG14开度,使F101B压力控制在1.60atm,温度控制在124.5℃(15)F101C温度控制在86.8℃

2.正常工况下工艺参数

(1)原料液入口流量FIC101为10000kg/h

(2)加热蒸汽流量FIC102为2063.4kg/h,压力PI105为500KPa

(3)第一效蒸发室压力PI101为3.22atm,二次蒸汽温度TI101为143.8℃(4)第一效加热室液位LIC101为1.2m

(5)第二效蒸发室压力PI102为1.60atm,二次蒸汽温度TI102为124.5℃(6)第二效加热室液位LIC102为1.2m

(7)第三效蒸发室压力PI103为0.25atm,二次蒸汽温度TI103为86.8℃(8)第二效加热室液位LIC103为1.2m

(9)冷凝器压力PIC104为0.20atm

3.停车操作规程

(1)关闭LIC103,打开泄液阀VG10

(2)调整VG10开度,使FIC101中保持一定的液位高度

(3)关闭FV102,停热物流进料

(4)关闭FV101,停冷物流进料

(5)全开排气阀VG13

(6)调整LV101的开度,使F101A的液位接近0

(7)当F101A中压力接近1atm时,关闭阀门VG13

(8)关闭阀门LV101

(9)调整VG14开度,当F101B中压力接近1atm时,关闭阀门VG14 (10)调整LV102开度,使F101B液位为0

(11)关闭阀门LV102

(12)逐渐开大VG10泄液

(13)关闭阀门VG10,VG15

(14)关闭真空泵A,泵前阀VG11

(15)关闭冷却水阀VG05,VG04

(16)关闭冷凝水阀VG12

(17)关闭疏水阀VG08,VG07,VG06

4.事故操作规程

(1)冷物流进料调节阀卡

原因:冷物流进料调节阀FV101卡

现象:进料量减少,蒸发器液位下降,温度降低、压力减少处理: 打开旁路阀V3,保持进料量至正常值。

(2)F101A液位超高

原因:F101A液位超高

现象:F101A液位LIC101超高,蒸发器压力升高、温度增加处理: 调整LV101开度,使F101A液位稳定在1.2m

(3)真空泵A故障

原因:运行真空泵A停

现象:画面真空泵A显示为开,但冷凝器E101和末效蒸发器F101C压力急剧上升处理:启动备用真空泵B。

附:仿真界面

四效降膜蒸发器设计参数及操作规程样本

1. 规格、参数、性能 1.1 蒸发器规格、型号 1.1.1 蒸发器名称、型号:RHJM-6000四效降膜蒸发器 1.1.2 蒸发水量规格:6000kg/h 1.2 蒸发器工艺参数 1.2.1 总物料流量:10000 kg/hr 1.2.2 总蒸发速率:6000 kg/hr 1.2.3 物料流程:四效→一效→二效→三效→出料 1.2.4 蒸汽流程:一效→二效→三效→四效→冷凝器 1.2.5 各效传热面积:一效(140m2)二效(100m2)三效(140m2)四效(100m2)1.3 蒸发器性能 1.3.1 物料:糖浆 1.3.2 物料进口:进四效 数量:10000kg/hr 温度:50-60℃ 浓度:30-32%(DS) 1.3.3 物料出口:从三效出料 数量:4000kg/hr 温度:65-70℃ 浓度:75-80%(DS) 蒸汽消耗量:1800kg/h (0.6MPa) 冷却水从35℃至43℃150m3/h 电能(安装功率)29kw 电流380/220v,50赫兹,3相 设备布置四效蒸发器、冷凝器 温度一效二效三效四效

加热温度℃104.5907660 蒸汽温度℃91776143 2. 工艺阐明 为了更好地理解请运用工艺流程图 为了得到对的成果,你应当理解现场安装,每条工艺线。 如果浮现故障或紧急状况,必要非常熟悉和组件物理位置和管道工程布置。 2.1 物料 将要浓缩物料输送到进料罐,通过进料泵将物料通过流量计打到四效上端管板上分布器以保证进入每一根加热管液量相似。 液膜在管子顶部向下流动过程中加速,由于重力及液体形成蒸汽作用下流速增长,蒸发器从外部加热、水蒸汽及某些浓缩物料离开蒸发器,大某些液体存储在下部料仓并由此离开,少量液体及水蒸汽通过连接管道运到分离器蒸汽与液体在此分离,留存在顶部水蒸汽进入冷凝器冷凝。从第四效蒸发器出来物料通过四效出料泵送到一效管板上分布器,液膜在向管子底部流动过程中加速,由于重力及液体形成蒸汽作用下流速增长,蒸发器从外部加热、水蒸汽及某些浓缩物料离开蒸发器,大某些液体存储在下部料仓并由此离开,少量液体及水蒸汽通过连接管道输送到分离器,蒸汽与液体在此分离,留存在顶部水蒸汽进入二效加热室或者通过热泵再次进入一效加热室,从第一效蒸发器出来物料通过一效物料转移泵输送到二效管板上分布器。依次类推,物料通过三效蒸发器出料,合格物料通过出料螺杆泵输送到成品罐,不合格物料打回流至蒸发前罐。 蒸发前储罐—→Ⅳ效—→Ⅰ效—→Ⅱ效—→Ⅲ效—→出料 2.2 加热设备蒸汽流程 Ⅰ效—→Ⅱ效—→Ⅲ效—→Ⅳ效—→冷凝器 2.3 冷凝液流程 Ⅰ效加热室冷凝水—→Ⅱ效加热室冷凝水—→Ⅲ效加热室冷凝水—→Ⅳ效加热室冷凝水—→分水罐—→冷凝水泵 2.4 空气流程(蒸发器排气)

三效降膜蒸发器说明书

目录 一、产品简介. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 二、设备特点. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 三、技术参数. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 四、工作原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 五、操作规程. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 六、维护与保养. . . . . . . . . . . . . . . . . . . . . . . . . 5 七、工艺流程图. . . . . . . . . . . . . . . . . . . . . . . . . 6 一、产品简介 本设备广泛适用于葡萄糖、淀粉糖、低聚糖、饴糖、山梨醇、

广泛用于味精、酒精、鱼粉等行业的废液处理。 该设备在真空低温条件下进行连续操作,具有蒸发能力高、节能降耗、运行费用低、能最大地保持被处理物料原有的色、香、味和成份。在食品、医药、粮食深加工、饮料、轻工、环保、化工等许多行业均得到广泛的应用。 BNJM03型蒸发器(即三效降膜蒸发器)可以根据不同被处理物料的特点,设计成不同的工艺流程,也可根据不同用户要求配备自动化控制系统。 二、设备特点 A、接触物料材质:不锈钢SUS304。 B、设备由一、二、三效加热器,一、二、三效蒸发分离器、列管式冷凝器、热压泵、真空泵、物料泵、平衡罐、电控箱、工作台及所有管路、阀门组成。 C、蒸发温度低,部分二次蒸汽经喷射式热压泵重新吸入一效加热器,热量得到充分利用,蒸发温度相对较低。 D、浓缩比大,降膜式蒸发,使粘度较大的料液容易流动蒸发,不容易结垢,浓缩时间短,浓缩比可达到1:5。 E、电源、各进/出物料泵、真空泵等控制及真空系统仪表及温度仪表全集中于操作箱控制盘控制,实现自动化操作生产。三、技术参数 名称:三效降膜式蒸发器 设备配臵清单:一、二、三效加热器、蒸发器、送料泵,进料

三效蒸发器操作说明书

三效减压强制循环蒸发设备 操 作 说 明 书

目录 一、设备简介....................................................................... - 3 - 二、设备工艺介绍 ............................................................... - 6 - 三、操作规程....................................................................... - 8 - 四、故障分析..................................................................... - 13 - 附图: 工艺流程图

1、设备生产厂家:陕西长城长食品工业有限公司 2、设备名称:三效卧式强制循环蒸发器 3、设备型号:SWQZ-Ⅲ-1500型 4、设备参数

6、设备特性简介 (1)加热室 各效加热室均采用卧式安装,管程均进行分段排布,总体物料流向为混流(有效的降低了强制循环泵所需的流量扬程从需降低了泵的功率)。各效效体上部均装有不凝汽管路,不凝汽管口装置节流垫片,可调节各效真空度与温度,这样可有效的保证各效真空度与温度达到技术参数表所标数据。各效均装置冷凝水管口。 (2)分离器 各效分离器上均装置真空表、温度计与灯孔视镜,时时观测各效真空、温度与物料蒸发状态;各效下部出料口均装置防旋装置。(3)预热器 预热器为列管式预热器,卧式安装。预热器热源利用各效加热室与物料换热产生的二次蒸汽,可有效的节省了蒸汽耗量,提高了热源的利用率;预热器因安装于三效分离器与冷凝器之间,在预热物料的同时对二次蒸汽进行冷凝,降低了冷凝器的负担并降低了冷却用水量。 (4)冷凝器 冷凝器为间接表面接触式冷凝器,卧式安装。以温度相对较低的冷却水在冷却管内冷却在管外的流动可凝气体,冷凝后的冷凝水下降至冷凝器底部后,用冷凝水泵抽出,不存在与冷却水的混合,杜绝了二次污染。

多效蒸发器设计计算

多效蒸发器设计计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

多效蒸发器设计计算 (一)蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发 器、刮膜蒸发器)、流程和效数。 (2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。 (4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5)根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。(二)蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量(1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W1 + W2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即

(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'

三效蒸发器安全操作规程讲解

三效蒸发器安全操作规程 一开车: 1、首先开启循环水,各个水泵的冷却水(进料泵、出料泵、一效循环泵、 二效循环泵、三效循环泵、冷凝水泵、真空泵), 检查冷却水出水口是否有冷凝水流出,在冷却水未开启前,禁止开启设备。 2、打开进料泵的回流阀,开启进料泵,物料经预热后进入一级分离器,进 到指定位置时,开启一效循环泵,保证进二效分离器、三效分离器的阀门在开启状态,向二效、三效分离器进料,当各个分离器内物料的液位保持平衡后,开启二效、三效强制循环泵。 3、开启真空泵,三效分离器负压到0.09-0.095Mpa 时,开启蒸汽主阀门,然 后开启冷凝水泵,缓慢的使一效蒸发器升温至75-85℃。 4、系统运行时,要经常查看各效的温度表、真空表。若三效分离器温度偏 低时,应调小循环水量,温度偏高时应加大循环水量,使三效分离器温度始终保持在45-55℃。 5、一效加热时,负压不得低于0.01Mpa ,低于0.01Mpa 时,调小蒸汽阀门。 若低于0.00Mpa ,会出现设备超压。 6、废液经三效浓缩后,检查出料口的浓度,看透视镜,若出现结晶体说明 已达标,即可打开出料阀,通过出料泵输送至结晶罐。进料时要及时打开结晶罐搅拌。 7、

设备出现故障时,必须先关闭蒸汽总阀,再处理故障。 8、三效浓缩蒸发器不允许段料操作。若段料后,必须停止使用设备。 二停车: 1、停车前,首先关闭主蒸汽阀,然后关闭分气阀,打开蒸发分气缸底部排 气阀。 2、等每效的温度降至35-45℃后,关闭所有的泵。 3、停机后将一效、二效、三效蒸发器、分离器内的物料排净。 4、物料排净后,依次按照进料程序加入自来水,开启循环泵,清洗设备, 然后放净,防止设备内部结垢。

三效蒸发器操作说明书

*************有限公司 三效蒸发结晶装置 操作说明书 一、安全事项 警告: 1.本装置电气控制柜内部严禁进水或受潮。 2.操作人员必须严格按照本公司所提供的操作说明操作。 3.操作人员必须具备基本的电气常识和机械常识,并经过培训考核合格后才能操作。 4.严禁在无介质的状态下运转本装置。 5.严禁在介质蒸发干后,继续运转。 6.操作人员在操作之前应该注意到本装置的警示标志。 7.本装置安装有报警装置,一旦发现异常,立刻按照程序处理。 安全注意事项 1.请牢记停止开关的位置,以便出现异常时可以立即停机; 2.无论进行何种保养,检查,调整,请务必关闭机台及主开关; 3.停电时请关闭主电源开关。 安全标志 1.在机台上必要的地方张贴防止事故的警告等的安全标志,并请务必遵守标志中显 示的注意事项; 2.请勿剥除机台上所附的警告等安全标志,若标志丢失或因污损等原因使其无法辩 认时,请与本公司联系并设法替换。 二、设备基本组成 详见三效蒸发装置竣工图(PID图)。

三、操作说明 开车前的检查、准备工作: 1.操作人员必须事先经过培训后才能操作该设备,并遵循操作说明书的要求; 2.检查设备各法兰,阀门,管道有没有漏气,漏水的现象; 3.检查各泵的油位是否充足,应在二分之一处; 4.启动密封水泵,保证各泵有充足的冷却密封水供应; 5.提前确认相关连接部分,蒸汽系统、冷却水系统、配电室等,蒸汽、电、冷却水、 原水正常情况下开车; 6.开机前确保主电源正常,设备电源在接通状态。所有阀门在设定的开关状态,仪 表正常工作; 7.开机前确认浓缩装置原水池液位,浓缩装置物料槽在高液位时可以进行处理。如 不在设定液位时,需要处理,必须随时掌握处理进度; 8.本设备实现自动化,执行一键开机运行,设备按设置程序自动运行。 自动时,执行以下操作: 1.首次启动时需要往真空泵补水,。若真空泵之前有运行过,则无需再次补水。 此操作只需打开手动补水阀,补水完成请关闭手动补水阀。 2.真空泵的冷却是通过真空泵内循环的水循环冷却,系统启动首先启动冷却水循环 泵,开机前请检查确定冷却塔循环泵选择开关却换到自动状态,打开冷却水管路 手动阀。 3.真空泵确认正常后,触摸屏的选择开关切换到自动状态。 4.进料泵为一备一用,启动前确认进料手动阀是否打开,触摸屏的选择开关切换到 自动状态,根据原液槽和一效分离器的液位许可,两个液位都许可时,自动启动。 5.一效进料电动阀是进料泵的出口电动阀,一效进料阀选择开关切换到自动状态后, 进料泵才可以切换到自动状态。二效、三效进料阀选择开关切换到自动状态后,在分离器液位为L以下时自动打开,补充物料到H液位。 6.强制循环泵是密闭循环泵,密封需要自来水冷却,机封冷却水电磁阀控制冷却自 来水,机封冷却水电磁阀选择开关切换到自动状态,确认完冷却水电磁阀后,强 制循环泵选择开关切换到自动状态。 7.一效出料泵也是密封循环泵,机封需要自来水冷却。系统启动后一直启动状态,

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝 器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温 差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则 应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 p ?1p k p '∑∑? -'-=?)(1k T T t ∑?t 1T k T '∑?

三效蒸发器操作规程正式样本

文件编号:TP-AR-L1915 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 三效蒸发器操作规程正 式样本

三效蒸发器操作规程正式样本 使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1. 工艺要求 1.1 产出合格的水; 1.2 达到废液浓缩要求; 1.3 做好液体平衡工作,控制处理量、接收量、 排放量平衡; 2.岗位任务 接收精冶工段、化验室废水,利用炉前岗位蒸汽 热能,通过本岗位设备,将废液中水利用蒸发冷凝分 离出回用,浓缩后废液再处理的工艺。 3. 开、停车程序及注意事项 3.1 开车前准备

3.1.1 确认在试水过程中出现问题的设备均已检修完毕,通知公用工程准备开车;检查所有放空、放净、取样、冲洗阀门均处于关闭状态。 3.1.2. 协调前工段操作人员准备向本工段进料。 3.1.3. 检查一次水已经供至车间,各用水点排气完毕,水质无明显的铁锈及杂物。 3.1. 4.打开各泵的机械密封冷却水的阀门,机械密封不能在无冷却液的情况下运转。 3.1.5.检查循环冷却水供水压力(0.4MPaG),打开间接冷凝器(E05)进口管线CWS01阀门和出口管线CWR01阀门,并调整阀门开度,检查循环冷却水上水压力(PG05)、温度(TG05)及回水温度(TG06)仪表示参数是否准确。 3.2 上料

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强 及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环 蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有 效总温差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相 等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5), 直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) )110x x F W -=(n W W i =i i W W W F Fx x ---=210

对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; — 由于蒸发器中溶液的静压强而引起的温度差损失,℃; — 由于管路流体阻力产生压强降而引起的温度差损失,℃。 n p p p k '-=?1p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'?''?'''

空调器设计(毕业设计)

摘要 R22(CHF2Cl,二氟一氯甲烷)是目前应用十分普遍的一种制冷剂,其ODP 为0.034,GWP为1700,由于它含有氯原子,对臭氧层有破坏作用,即将被禁用。从对环境的长期影响来看, 自然工质比合成工质具有不可比拟的优势,比如 R1270(俗称丙烯)。 丙烯优点是易于获得,价格低廉,凝固点低,对金属不腐蚀。丙烯可燃, 消耗臭氧潜能值为零, 环保性能好,对人体的毒性也近于零毒性,饱和蒸汽压接近R22。丙烯的单位容积制冷量和COP与R22接近, 压缩比和排气温度也低于R22,这有利于提高压缩机的运行寿命。 随着科学不断地发展,新型制冷剂将逐步取代R22等对环境有破坏的制冷剂。本文的内容是设计出以R1270为工质的分体式家用空调器,制冷量为3500W。首先选以R22作工质的压缩机型号,我选择的的型号是SL211CV,然后进行热力计算,算得制冷量为3747W,冷凝热负荷为4707W。冷凝器的迎风面积为0.3957m2,蒸发器的迎风面积为0.4997m2。节流装置选用直径2mm,长1.46m的毛细管,最后用SolidWorks绘制室外机三维图。 关键词:R22 ,R1270,替代工质,空调,设计

ABSTRACT R22 (CHF C)is a very common application of refrigerant, the ODP is 2 0.034, GWP is 1700, because it contains chlorine atoms, has damaging effects on the ozone layer, is about to be disabled. From long-term impact on the environment, the synthesis of natural refrigerant than refrigerant has unparalleled advantages, such as R1270 (commonly known as propylene). Propylene advantage of easy access, low cost, low freezing point, non-corrosive metal. Propylene flammable, zero ozonedepleting potential, good environmental performance, the toxicity of the human body may be close to zero toxicity, saturation vapor pressure close to R22. Propylene refregeration unit volume and the R22 and COP close to the compression ratio and exhaust temperature is also lower than the R22, which is conducive to enhance the operational life of the compressor. With the continuous development of science, the new refrigerant R22 will be gradually replaced by damage to the environment, such as refrigerants. This article is designed for the working fluid in the R1270 home split air conditioners, refrigeration capacity of 3500W. First elected to conduct a qualitative R22 compressor models, I chose to model is the SL211CV, and then proceed to the heat, the cooling capacity can be said for the 3747W, condensing heat load of 4707W. Condenser area of the wind 0.3957m2, evaporator area of the wind 0.4997m2. Selection of cutting device diameter 2mm, length of capillary 1.46m, and finally with SolidWorks of three-dimensional graph drawing outdoor unit. Key words:R22 ,R1270,substitute,air conditioning,project

蒸发器操作规程通用版

操作规程编号:YTO-FS-PD234 蒸发器操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

蒸发器操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1、开启电源,确保氯瓶至蒸发器,蒸发器至加氯机相互之间的粉道畅通。 2、水位观察窗的水位是由自动调节的,正常值为三分之二或四分之三量程刻度。 3、当蒸发器水温处于180F左右时,慢慢地打开蒸发器供液阀V1,打开蒸发器出氯阀V2, 同时开上加氯机。 4、蒸发器压力表T1:正常工作该表的压力为30~140Psi。水温表T2:该表显示了水体的温度,其正常工作温度为160~220F.阴极度保护电流表:正常的工作电流为250Ma,或位于刻度的中间。 5、蒸发器出现任何报警信号要马上停蒸发器并切换到备用蒸发器,同时报告厂部。 6、停蒸发器:关闭蒸发器供液阀V1,不得停止加氯,用加氯机排空蒸发器及管道内残存 的氯气。 7、蒸发器压力表T1读数指向零,关闭出氯阀V2,若

暖通空调专业-毕业设计外文翻译

Refrigeration System Performance using Liquid-Suction Heat Exchangers S. A. Klein, D. T. Reindl, and K. BroWnell College of Engineering University of Wisconsin - Madison Abstract Heat transfer devices are provided in many refrigeration systems to exchange energy betWeen the cool gaseous refrigerant leaving the evaporator and Warm liquid refrigerant exiting the condenser. These liquid-suction or suction-line heat exchangers can, in some cases, yield improved system performance While in other cases they degrade system performance. Although previous researchers have investigated performance of liquid-suction heat exchangers, this study can be distinguished from the previous studies in three Ways. First, this paper identifies a neW dimensionless group to correlate performance impacts attributable to liquid-suction heat exchangers. Second, the paper extends previous analyses to include neW refrigerants. Third, the analysis includes the impact of pressure drops through the liquid-suction heat exchanger on system performance. It is shoWn that reliance on simplified analysis techniques can lead to inaccurate conclusions regarding the impact of liquid-suction heat exchangers on refrigeration system performance. From detailed analyses, it can be concluded that liquid-suction heat exchangers that have a minimal pressure loss on the loW pressure side are useful for systems using R507A, R134a, R12, R404A, R290, R407C, R600, and R410A. The liquid-suction heat exchanger is detrimental to system performance in systems using R22, R32, and R717. Introduction Liquid-suction heat exchangers are commonly installed in refrigeration systems With the intent of ensuring proper system operation and increasing system performance.Specifically, ASHRAE(1998) states that liquid-suction heat exchangers are effective in: 1) increasing the system performance 2) subcooling liquid refrigerant to prevent flash gas formation at inlets to expansion devices 3) fully evaporating any residual liquid that may remain in the liquid-suction prior to reaching the compressor(s) Figure 1 illustrates a simple direct-expansion vapor compression refrigeration system utilizing a liquid-suction heat exchanger. In this configuration, high temperature liquid leaving the heat rejection device (an evaporative condenser in this case) is subcooled prior to being throttled to the evaporator pressure by an expansion device such as a thermostatic expansion valve. The sink for subcooling

多效蒸发器设计计算

多效蒸发器设计计算 Prepared on 22 November 2020

多效蒸发器设计计算(一)蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮 膜蒸发器)、流程和效数。 (2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。 (4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5)根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所 求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二)蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量(1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W1 + W2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即

(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'

蒸发器的设计

蒸发器主体为加热室和分离室,蒸发器的主要结构尺寸包括:加热室和分离室的 直径及高度;加热管的规格、长度及在花板上的排列方式、连接管的尺寸。这些 尺寸的确定取决于工艺计算结果,主要是传热面积。 3.1加热管的选择和管数的初步估计 3.1.1管子长度的选择根据溶液结垢的难易程度、溶液的起泡性和厂房的高度等 因素来考虑。本次设计选用外循环式蒸发器,国产外循环式蒸发器蒸发器的管长 一般从2560到3000mm不等,具体参考《糖汁加热与蒸发》[1]第139页表6-1, 再根据糖汁的黏度情况,选择加热管以及板管型号如下表3-1所示: 表3-1加热选择参数 管长(mm)15CrMoR型管板后度(mm)管子规格(mm)管间距 离(mm) φ42×354300030 因加热管固定在管板上,管板选择考虑到管板厚所占有的传热面积,以及因焊接 所需要每端留出的剩余长度,则计算理论管子数n时的管长实际可以按以下公式 计算: L=(L0-0.1)m=3-0.1=2.9 m 前面已经计算求得各效面积A取500m2 n= = =1307 加热管的排布方式按正三角形排列,查《常用化工单元设备设计》[3]第163页表 4-6,知道当管数为1303时,排布为a=19层,1307与1303相差不大,在这可 以取19层进行计算。其中排列在六角形内管数为 =1027根,其余排列在弓形面

积内,如果按标准间距即管间距离54mm排列,则有四根管排不下,四根管的总面积为: A3=3.1415926×0.042×2.9×3=1.53 m2 鉴于前面已经取1.11的安全系数,如果现在取1303根管,则总面积为: =500-1.53=498.47 安全系数为 K= =1.108 在安全系数范围内,所以可以不要三根管,取1303根。 3.1.2加热壳体的直径计算 D=t(b-1)+2e D-----壳体直径,m; t------管间距,m; b-----沿直径方向排列的管子数目; ,在此取 e-----外层管的中心到壳体内壁的距离,一般取e=(1.0~1.5)d 1.5。 b =2a-1=2×19-1=37 D=0.054×(37-1)+2×1.5×0.042=2.07m 参考《糖厂技术准备第三册》[6]第198页表9-2,本次设计常用标准形式的外循环式蒸发器,型号为TWX-550,有关参数如下表所示 取标准的壳体直径为2400mm,具体参数如下表3-2-1,3-2-2所示:

蒸发式冷凝器操作规程通用版

操作规程编号:YTO-FS-PD281 蒸发式冷凝器操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

蒸发式冷凝器操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、使用蒸发式冷凝器时,要开启其进汽阀、出汽阀、压力表阀、混合气体阀、出液阀、安全阀。 二、在使用蒸发式冷凝器的过程中,冷凝压力不得超过1.47MPa,如超过此数值,必须查明原因,待解决问题后方可使用。 三、在使用蒸发式冷凝器的过程中,应按规定先向冷凝器水盘中加水,使水深度在203~250 毫米之间。 四、接通电源,启动冷凝器风机及水泵,在设备运转过程中,要观察风机及水泵的电流是否在额定范围内,并做好记录。 五、开停风机和水泵的周期最大值为每小时6 次,因尽量减少开停次数,以免因风机及水泵的电机过热而造成损坏。 六、操作人员须注意观察冷凝器是否有不正常的噪音、摆动以及集水盘中的使用水位,如有异常,应及时排除。 七、冬季,在使用蒸发式冷凝器时,须关闭补水管路

三效降膜蒸发器说明书讲解

目录 一、产品简 介. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 二、设备特 点. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 三、技术参 数. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 四、工作原 理. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 五、操作规 程. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

六、维护与保 养. . . . . . . . . . . . . . . . . . . . . . . . . 5 七、工艺流程 图. . . . . . . . . . . . . . . . . . . . . . . . . 6 一、产品简介 本设备广泛适用于葡萄糖、淀粉糖、低聚糖、饴糖、山梨醇、鲜奶、果汁、维C、麦芽糊精、化工、制药等水溶液的浓缩。并可广泛用于味精、酒精、鱼粉等行业的废液处理。 该设备在真空低温条件下进行连续操作,具有蒸发能力高、节能降耗、运行费用低、能最大地保持被处理物料原有的色、香、味和成份。在食品、医药、粮食深加工、饮料、轻工、环保、化工等许多行业均得到广泛的应用。 BNJM03型蒸发器(即三效降膜蒸发器)可以根据不同被处理物料的特点,设计成不同的工艺流程,也可根据不同用户要求配备自动化控制系统。 二、设备特点 A、接触物料材质:不锈钢SUS304。 B、设备由一、二、三效加热器,一、二、三效蒸发分离器、列管式冷凝器、热压泵、真空泵、物料泵、平衡罐、电控箱、工作台及所有管路、阀门组成。

相关文档
最新文档