实验 局部放电测量

实验 局部放电测量
实验 局部放电测量

实验4局部放电测量0 实验目的

了解局部放电产生的基本原理。

学习局部放电的测量方法及仪器的正确使用。

分析局部放电起始电压、视在放电量与设备绝缘质量的关系。

了解各种局部放电信号的特点。

1.局部放电的产生和实验原理

电气设备绝缘内部常存在一些弱点,例如在一些浇注、挤制或层绕绝缘内部容易出

现气隙或气泡。空气的击穿场强和介电常数都比固体介质小,因此在外施电压作用下这

些气隙或气泡会首先发生放电,这就是电气设备的局部放电。放电的能量很弱,不会影

响到设备的短时绝缘强度,但日积月累会引起绝缘老化,最后可能导致整个绝缘在正常

电压下发生击穿。近数十年来,国内外已经越来越重视对设备进行局部放电测量。

图1固体介质内部气隙放电的三电容模型(a)通过气孔的介质剖面(b)等效电路

局部放电的产生机理常用三电容模型来解释,如图1所示。

图中C g代表气隙的电容;C b代表与C g串联部分的介质电容;C a代表其余部分的电容。若在电极上施加交流电压u t,则出现在C g上的电压为u g,即:

u

= [C b/(C g+C b)]u t= [C b/(C g+C b)]U max sinωt(1)

g

因为气隙很小,C g比C b大很多,故u g比u t小很多。局部放电时气隙中的电压和电流变化如图2所示。

u

随u t升高,当u t上升到u s(起始放电电压),u g达到C g的放电电压U g时,C g气隙放g

电,于是C g上的电压很快从U g下降到U r,放电熄灭,则:

U

= [C b/(C g+C b)]u c

r

式中u c为相应的外施电压;U r为残余电压(0≤U r

可以推导出回路真实放电量q r≈U g C g,但无法测得。

而介质两端的电荷变化量q = [ C b /( C g+ C b)] q r却是可以测得的,称为视在放电量,一般用它来表示电气设备的局部放电量。

图2局部放电时气隙中的电压(a)和电流(b)的变化2.局部放电的测量方法

高压设备局部放电的测量主要是将局部放电的微弱信号检出,然后加以放大并用示波器或数据采集仪等设备进行显示和定量。检测方法可分为电的和非电的两类。

长期采用的是测量电脉冲的方法,即所谓的脉冲电流法。基本的测试回路如图3所示。

图3脉冲电流法的局部放电检测回路(a)并联法(b)串联法(c)平衡法主要包括并联法、串联法和平衡法。图中S是电源即试验变压器,除长电缆和带绕组的试品外,一般情况下试品均可看作是集中参数的电容C x。C k为耦合电容,Zm为检测阻抗。

测量参数包括:用传统的局部放电测试仪测量放电起始电压、熄灭电压和视在放电量。

有条件时可以用数字式的数据采集仪测量放电次数、放电相位和放电量。

3.局部放电的标定

在指示仪表上测得的脉冲高度是与试品的视在放电量成比例的,但是具体的比例系数却不是固定的,它与回路及仪器本身的性能有关,为此必须进行回路灵敏度系数的校正。

图4是并联法进行标定的示意图

用一幅值为U0的方波发生器G串联一小的已知电容C0构成与C x并联的有源支路来模拟C x上发生的局部放电。分析可知当C0<

K c=q0/ H0(pC/格)

视在放电量校准器

视在放电量校准器是一标准电量发生器,是测量局部放电时必备的仪器,它的性能参数直接关系到测试结果的准确性。视在放电量校准器由校准脉冲电压发生器和校准电容串联组成。

试验前它以输出某固定电量加之试品两端,模拟该试品在此电量下放电时局部放电测试仪的响应,此时调整刻度系数,确定局部放电检测仪的量程,以便在试验时测量该试品在额定电压下的视在放电量。因该放电量时以标准电量发生器比较后间接测出,而非直接测出,故此放电量称为“视在放电量”。

JZF-10型校正电量发生器是一种小型的可充电电池供电的视在放电量校准器,它可以分别以四种放电量向试品两端注入z左右的校正脉冲,可用于先校准后试验的局放试验中,适合于国际电工委员会IEC-270所推荐的任何一种试验电路。

4.实验设备

测试设备

①TCD-9302 局部放电检测仪

②. 视在放电量器校准器(JZF-10校正电量发生器)

③. LB系列工频、中频滤波器

④.无局放耦合电容系列

⑤. YDTW无局放试验变压器系列.

⑥. 工频试验控制台

试品(测试对象):电流互感器,变压器,含有气泡的绝缘板等

5线路图

图5为实验接线图。

图5局部放电实验接线图

其中测试仪为传统的局部放电测试仪或者数字式局部放电数据采集系统。Zm为检测阻抗,T1为调压器,T2为试验变压器,R为保护水阻,C x为试品,C k为耦合电容。

同时还可以通过非电接触的方式(磁耦合)的方式来检测放电脉冲,这就是在线监测的原理。

6 试验操作步骤

6-1.按图5所示接好线路;

6-2. 在试品C x两端并联上方波发生器,对实验回路进行灵敏度系数的校正。(注意此时不接高压。)选择50PC标准脉冲进行校准;

①首先检查JZF-10校正脉冲发生器的电池电压,如面板上电压表指示,在8V以上方能正常工作;

②用视在放电量校准器(JZF-10校正脉冲发生器)的输出接于试品两端,红端接高压端(引线尽可能短,以防干扰),黑端接低压端,调节其输出放电量,将校正电量开关置于5、10、50、100、500中任何合适一档即可校正,例如50PC,频率可在z附近调节;

③调节放大器增益粗调及增益细调旋钮,使放电量表指示满度。此时放电量表指示满度即100%表示50PC的放电量,注意此时增益细调旋钮位置不可再动。测量盒应尽量靠近试品高压端。

④校准完毕后,拆除视在放电量校准器的连线,并关断其电源,防止高压损坏校准器。

6-3 局部放电测试仪设置

①仪器开机预热5分钟;

②预热同时对有关开关进行操作,“标准-扩展-直线”开关置于标准;

③放大器频带f L、f H分别置20KHz,300KHz,放大器增益粗调置3档,细调置中间位置,切不可一开始将粗调开关置最高档;

④根据不同频率的试验电源选择电源频率,以便观察合适的椭圆。电流互感器测试选用频率为 50Hz的试验电源;

⑤椭圆旋转可不作调节。窗开关打在关位置,以后根据干扰出现的相位可开窗适当调旋转,根据干扰情况调窗宽、位置,使干扰在门窗之外,使局部信号在窗上,以便读取放电的数值;

⑥线性、对数开关置于线性位置。

6-4.接通高压试验回路的电源,逐步升高电压至规定电压,时刻注视PC表指示,此时放电量表的读数表示试品放电量的大小,

如指示在80%,则表示试品视在放电量为50×80%=40PC。

若此时试品放电量刚大于100%即超过满度,应立即将放大器增益粗调由原来的“3”切换到“2”档,此时放电量表100%,则表示500PC,假如此时放电量指示80%,由试品放电量为500×80%=400PC。

若此时试品放电量小于10%:

a. 应将放大器粗调由“3”档改至“4”档,此时放电量表100%则表示5PC,假如此时放电量表指示80%,则试品视在放电量为5×80%=4PC。

b.将仪器面板上对数、线性开关切换至对数位置,因对数刻度10%以下分辨率高,可直接读出对数刻度。

6-5 旋转“椭圆旋转”开关使椭圆转到预期的放电最利于观察之处。通常这个位置是零标脉冲分别处于椭圆上部左侧及下部右侧之处;

6-6 连续升高电压,注意第一次出现持续放电,当放电量超过规定的最低值时的电压即为局部放电起始电压。;

6-7 若有干扰信号在放电脉冲附近,可以用窗宽和窗位置将干信号扰拒之窗外,即合扰窗开关,用一个或两个时间窗并用窗宽、窗位置来改变椭圆上加亮区域的宽度与位置,

使其避开干扰脉冲,这样,放电量表的指示值只表示放电脉冲的大小,而不表示干扰信号的值,另外也可以改变频带的方法来提高抗干扰能力;

6-8局部放电的观测观察典型的电晕放电的波形,记录波形特点。

时间窗(门单元)

时间窗是为防止大于局部放电的干扰信号进入峰值检波电路而设计的一种电路装置。时间窗的工作原理是把椭圆扫描时基分成导通(加亮区域)和截止(未加亮区域)两部分,通过改变时间窗的位置和宽度将放电脉冲置于导通(加亮区域),干扰脉冲置于截止(未加亮区域),此时仪表读数即为放电脉冲数值,而干扰则不论大小,皆不会影响放电脉冲数值。若此时两个时间窗同时关闭,则仪表读数为整个椭圆上脉冲之峰值。

7 互感器局部放电测量的试验电压

①试验电压应在不大于1/3规定测量电压下接通电源,再开始缓慢均匀上升到预加电压保持10秒后,降到规定测量电压,保持1分钟以上,再读取放电量;最后降到1/3测量电压以下,方能切除电源。

②预加电压=试品耐压值×,互感器局部放电测量试验预加电压=Um×=

预加电压下椭圆放电明显

③局部放电测量电压一般为Um/√3的倍数,互感器为~倍,

互感器局部放电测量电压=Um/√3=

局部放电测量电压下,持续时间几分钟,测局部放电量;

6 注意事项

①. 在试验开始加压以前,试验人员必须详细而全面地检查一遍线路,以免线路接错。测试仪器处的接地线是否与接地体牢固连接,若连接不牢或在准备工作时掐头去尾线被脚踢断,这将可能引起人身和设备事故;

②.对于连接线应避免将尖端暴露在外,防止尖端电晕放电,尤其对于电压等级较高的局部放电试验,必要时要加粗高压连接线及加装防电晕罩,减小因场强过高引起的电晕放电。屏蔽罩不能与试品的瓷裙相接触;

③. 一般情况下,在试验过程中,被试品在耐压、预升压时局部放电量都比正常值大很多,此时仪器的仪表必然会超出满刻度。为防止仪器损坏,应将仪器的增益粗调旋

钮逆时针旋转一档或更多档,以不超出满刻度为标准。当电压降至测量电压时,再将增益粗调开关顺时针旋转一档或更多档,以便记录测量值;

④.校正电量发生器校正完毕后,一定要从高压端脱离,并关闭电源开关,且仪器的增益细调旋钮不可再调,在标定时仪器放大器旋钮的位置要与测量时保持一致。校正电量发生器使用后及时将调节电荷量的波段开关旋在关位置。

⑤.因增益粗调开关每相邻两档之间的关系是十倍,且档位有指示,故升压后根据放电量大小,可选择合适量程。逆时针旋转时,每降一档量程扩大十倍;反之,顺时针时,量程缩小十倍;

⑥.升压过程一定要缓慢,同时监视局放仪的输出;

⑦.读取视在放电量值时应以重复出现的、稳定的最高脉冲信号计算视在放电量。真正的局放信号具有一定的对称性和周期性,偶而出现的较高的脉冲可以忽略。

⑧试验完毕后,应对整个测试系统再进行一次复查校正,验证是否与试验前所校正出的刻度系数相等,以免测试仪器或其它环节在试验过程中发生故障而使测试结果不对。

⑨如校正电量发生器工作时表头指示在8V以下,则需充电,充电要适时,且时间要连续达到5小时。如校准电量发生器常期未用,则每月补充一次电。

7 数据表格

①.局部放电的测量

实验次数

放电起始电压

(kV)放电熄灭电压

(kV)

放电脉冲高度

(格)

视在放电量

(pC)

1

2

3

4 平均值

②.回路灵敏度的标定

标定脉冲电压

(V)分度电容容量

(pF)

注入电荷量

(pC)

标定脉冲高度

(格)

标定系数

(pC/格)

③.电晕放电的现象描述

8 思考题

①. 在实验中为什么要进行回路灵敏度系数的校正?如果更换试品了,是否需要重新标定?

②. 为什么能用方波进行回路灵敏度系数的标定?C0应如何选择?

③. 试定性分析一下用脉冲电流法测量局部放电时,耦合电容C k的大小如何影响检测的灵敏度。

9 实验报告要求

①. 根据标定的结果计算试品的放电量。

②. 根据测量得到的数据,绘制放电次数-相位,和放电量-相位的关系图。并分析放电大致发生在哪个相位。(如果未测局部放电的相位,此项可不作。)

③. 解释所观察到的电晕放电现象。

10 局部放电图谱分析

①局部放电典型波形,放电未出现在试验电压的过峰值的一段相位上,每次放电的大小即放电脉冲的高度并不相等,且放电都出现在试验电压绝对值上升部分的相位上。,

②高位尖端对地板的电晕(外部尖端电晕),先在负半周峰值处出现放电脉冲,随电压升高脉冲数增多,但幅值不变,电压升的很高时正半周出现少量幅值很高的放电脉冲,正负半周很不对称。

波形如图3,特别是仅在试验电压的一个半波中出现,位于外施电压的峰值部分,等幅值,等间距。电压增加时,放电讯号波的根数增加,但幅值总不变。

起因:高压电极的尖端或边缘对空气中的放电。若干扰讯号位于椭圆时基的负关周,则尖端电晕处于高电压下,若干扰讯号位于时基椭圆的正半周,则尖端在接地部分,有时也可能高压、接地部分都有尖端电晕放电,则时基椭圆的正负半周就出现两组讯号。

(3)接触不良

这种干扰源如图1所示。其特点是干扰波位于椭圆时基的零点附近。在正负半波上对称出现,幅值相差不大。干扰在低电压时即出现。电压增大时,干扰占位区域也增大,由于叠加效果幅值增大较慢。有时在电压达到某一定数值后会完全消失。

造成这种干扰的原因有:试验回路中金属对金属接触不良,塑料电线半导电屏蔽层中粒子间接触不良,电容器卷绕铝箔电极与插接片接触不良等。

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

试验记录、试验报告和试验结果分析

试验记录、试验报告和试验结果分析 电气设备在运行中受到运行条件和外部条件的影响一些参数会发生变化,如负载电流的影响,各种过电压的影响,短路故障的影响,和温度、湿度的影响,另外绝缘介质在运行过程中会产生自然老化,承受内、外过电压影响时会产生绝缘积累效应。预防性试验的目的就是每隔一定的周期通过一定的试验项目把电气设备的运行状态和参数测试出来,从而判别电气设备是否能够安全运行,有无安全隐患。 一、试验记录及试验报告 试验记录应全面、准确的记录如下内容和数据 1、试验日期及天气条:如试验日期、天气、温度、湿度等。 2、被试设备的铭牌数据,产品序号,安装位置。 3、试验设备及仪表、仪器的型号,编号及校验状况。 4、试验方法和接线。 5、试验数据。 6、试验分析及结论。 7、试验人员的签名。 二、试验数据的确定 在高电压试验中除了要采用正确的试验方法和接线外,重要的是能够根据试验数据对被试设备的状态进行正确的分析和判断,这就要求试验人员熟悉每项试验项目的作用,熟悉电气设备的结构和每个试验项目所能反映的问题。还要能够及时的排除试验误差。在试验时应一般采用如下方法对试验数据和结果进行处理: (1)试验接线、试验方法误差,接线试验方法是否正确,试验电压、电流测量是否准确,比如做直流泄漏试验时,试验电压是否从高压测直接测量,微安表所接的位置是否合适,是否加了合格的滤波电容?特别是在做避雷器等非线性

元件的直流泄漏电流试验时如果电压测量不准则会造成泄漏电流较大的误差。还有做介质损试验时接线不同测量结果也会有较大的差异。 (2)仪表、仪器误差,仪表、仪器在长途运输,搬运和使用中会损坏,或产生较大误差,如不能及时检查、校对就会对试验结果造成严重形响。特别是一些测量表计、仪器如分压器、互感器,各种仪表等损坏后如不能及时发现,就会对试验结果产生较大的影响。还有仪器的容量问题和仪表的读数范围问题,如仪器的容量不足,或型乎选择不对也会对试验结果产生较大的影响。而对仪表的选择,则是应这择在仪表读数刻度的30℅--80℅范围内,如果靠近上限或下限读数则误差就较大。 (3)被试品的表面状况,对绝缘试验来说,被试品的表面状况对试验结果会产生很大的影响,所以在试验前应彻底清擦被试品表面或采取屏蔽措施排除被试品表面污秽对试验结果的影响。 (4)环境条件,特别是温度、湿度对试验结果会造成很大的影响,所以一般绝缘试验不要在阴雨天气进行,不要在气温低于5c0,和高于40c0时做,不要在空气湿度大于80℅时做,如能换算到标准状态的应尽量换算到标准状态。 (5)各种干扰的影响,对于发电厂、变电所的电气设备,往往处于电场干扰、磁场干扰等复杂的电磁环境下,而大多项目如绝缘介质损试验,局部放电试验等,容易受干扰的影响,会使试验结果产生较大的偏差,因而在试验时要采取切实可行的措施来排除干扰对试验的影响。 在完成某个试验项目后,特别是当某个试验数据有问题时,不要急着对被试品下结论,而是要对试验接线、试验方法,仪、器仪表进行反复检查,对试验条件、外部环境进行仔细分析,对被试品表面状况进行认真处理,对各种干扰进行排除,必要时要采用不同的方法,不同的仪器、仪表,不同的接线进行复试。当这些都排除后,再确定试验数据。 三、试验结果的分析 我们对电气设备做一系列的试捡项目,目的就是通过试验来判定被试设备的运行状态,有无潜伏性故障。那么我们应如何对试验数据进行分析,从而得出结论性的东西呢?一般我们对试验结果做如下处理:

局部放电试验原理

局部放电试验 第一节局部放电特性及原理 一、局部放电测试目的及意义 局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。 局部放电的种类: ①绝缘材料内部放电(固体-空穴;液体-气泡); ②表面放电; ③高压电极尖端放电。 局部放电的产生:设备绝缘内部存在弱点或生产过程中造成的缺陷,在高压电场作用下发生重复击穿和熄灭现象-局部放电。 局部放电的特点: ①放电能量很小,短时间内存在不影响电气设备的绝缘强度; ②对绝缘的危害是逐渐加大的,它的发展需要一定时间-累计效应-缺陷扩大-绝缘击穿。 ③对绝缘系统寿命的评估分散性很大。发展时间、局放种类、产生位置、绝缘种类等有关。 ④局部放电试验属非破坏试验。不会造成绝缘损伤。 局部放电测试的目的和意义: 确定试品是否存在放电及放电是否超标,确定局部放电起始和熄灭电压。发现其它绝缘试验不能检查出来的绝缘局部隐形缺陷及故障。 局部放电主要参量: ①局部放电的视在电荷q: 电荷瞬时注入试品两端时,试品两端电压的瞬时变化量与试品局部放电本身所引起的电压瞬变量相等的电荷量,一般用pC(皮库)表示。 ②局部放电试验电压: 按相关规定施加的局部放电试验电压,在此电压下局部放电量不应超过规定的局部放电量值。 ③规定的局部放电量值: 在规定的电压下,对给定的试品,在规程或规范中规定的局部放电参量的数值。 ④局部放电起始电压Ui: 试品两端出现局部放电时,施加在试品两端的电压值。 ⑤局部放电熄灭电压Ui: 试品两端局部放电消失时 的电压值。(理论上比起始电 压低一半,但实际上要低很多 5%-20%甚至更低) 二、局部放电机理: 内部放电:绝缘材料中含有气隙、油隙、杂质等,在电场的作用下会出现介质内部或介质与电极之间的放电。等效原理图:

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

局部放电试验

局部放电测量指导书 一、适用范围 本指导书适用于电力设备在交流电压下进行局部放电试验,包括测量在某一定电压下的局部放电量、设备局部放电的起始电压和熄灭电压。 二、测量基本方法与步骤 2.1试验方法:根据接线方式可分为并联法、串联法,即检测阻抗与被试品串联进行测量,称为串联法;检测阻抗与被试品并联进行测量,称为并联法,此时,需加测量用耦合电容器。对于变压器来说,一般通过套管末屏处测量,类似并联法。 (1)并联法: 2.2试验步骤: 2.2.1试验接线:应根据被试品的特点完成接线,检查试验加压回路、测量系统回路;

2.2.2试验回路校准:在加压前应对测试回路中的仪器进行例行校正,以确定接入试品时测试回路的刻度系数,该系数受回路特性及试品电容量的影响。在已校正的回路灵敏度下,观察未接通高压电源及接通高压电源后是否存在较大的干扰,如果有干扰应设法排除。 2.2.3试验前试品应按有关规定进行预处理: (1)使试品表面保持清洁、干燥,以防绝缘表面潮气或污染引起局放。 (2)在无特殊要求情况下,试验期间试品应处于环境温度。 (3)试品在前一次机械、热或电气作用以后,应静放一段时间再进行试验,以减少上述因素对本次试验结果的影响。 2.2.4测定局放起始电压和熄灭电压 拆除校准装置,其他接线不变,在试验电压波形符合要求的情况下,电压从远低于预期的局放起始电压加起,按规定速度升压直至放电量达到某一规定值(一般为局放仪在测量时可观测到的设备放电)时,此时的电压即为局放起始电压。其后电压再增加10%,然后降压直到放电量等于上述规定值,对应的电压即为局放熄灭电压。测量时,不允许所加电压超过试品的额定耐受电压,另外,重复施加接近于它的电压也有可能损坏试品。 2.2.5测定局部放电量 (1)无预加电压的测量 试验时试品上的电压从较低值起逐渐增加到规定值,保持一定 时间再测量局放量,然后降低电压,切断电源。有时在电压升

局部放电测试分析仪

PDM-1506数字化局部放电测试分析仪的介绍: 局部放电现象,主要指的是高压电气设备、电力设备的绝缘在足够强的电场作用下局部范围内发生的放电。轻微的局部放电对电力设备绝缘的影响较小,绝缘强度的下降较慢;而强烈的局部放电,则会使绝缘强度很快下降使高压电力设备绝缘损坏。 成都智云测控仪器有限公司生产的PDM-1506数字化局部放电测试分析仪是对电气设备等产生的局部放电信号进行检测、记录、显示、单波分析、图谱自动识别、图谱智能学习等于一体的数字化智能设备。基于工业级平板测量仪器设计,集多种信号调理、数据采集、信号分析于一体,集成液晶触摸显示屏,可通过触摸屏直接进行操作。内置大容量锂电池,无需供电即可现场使用。 本仪器按照DL/T846.4-2004《局部放电测量仪》、GB7354-2003、《局部放电测量》、JJG(机械)145-93《局部放电检测装置》检定规程的要求研制。设备便携、坚固,适宜于野外试验、工业现场等应用场景。配置WIFI、LAN接口,可组网应用。 特点: ★工业平板电脑的应用:工业级平板测量仪器,内置大容量锂电池,10英寸触摸屏,集成USB3.0接口、网口、外部天线,适宜于配电站现场、机房等应用场景。 ★便于携带、体积小、无现场供电干扰:传统的局部放电检测仪体积大,占用空间大,不易于携带;该发明与传统局放仪器相比,优势特点明显。 ★高性能局放信号数据采集: 通道数:1~4通道/台,各通道高速同步并行采集; 采样率:50MSps; A/D分辨率:14Bit; 输入范围:±1mV~±30V; 信号带宽:0~10MHz; 信号滤波:多阶连续信号滤波器,支持多档频率的带通滤波; ★大容量无损记录:可一次记录数百周期的局部放电信号,数据全部记录在采集设备缓存中,通过专用数据分析软件逐段浏览分析,便于对比。 ★高速实时监测:仪器支持高速实时监测显示,在较长周期的监测过程中,在无损记录的同时,设备可实时读取数据,并经过典型压缩后,进行实时传输和显示,保证用户在第一时间查阅到真实的测量信号波形。 ★典型局部放电信号单波识别分析:设备内置多种标准放电图谱库,可对局部放电信号进行单波对比识别,判断放电类型,方便维护或者维修被测电气设备。 ★智能化图谱学习系统:对于图谱库中未存在的放电类型,可智能学习并保存新图谱,为以后的实验提供分析判断依据。 应用: ★绝缘材料内部放电(固体-空穴;液体-气泡)测试分析; ★电力设备、器材表面放电测试分析; ★高压电极尖端放电测试分析;

电气设备试验报告的格式

电气设备试验报告的格式 (2016版) XXXXXX公司编制

目录 1 规范性引用文件 (1) 2 术语和定义 (1) 3 基本规定 (2) 表1.1 同步发电机试验报告 (4) 表1.2 中频发电机试验报告 (13) 表2.1 高压交流电动机试验报告 (17) 表2.2 100KW及以上低压交流电动机试验报告 (24) 表2.3 100KW以下低压交流电动机试验报告 (30) 表3.1 直流发电机试验报告 (31) 表3.2 直流电动机试验报告 (37) 表4.1 1600kVA以上三相油浸式电力变压器试验报告 (43) 表4.2 1600kVA以上单相油浸式电力变压器试验报告 (55) 表4.3 1600kVA以上三相三圈有载调压油浸式电力变压器试验报告 (66) 表4.4 1600kVA以上单相油浸式自耦电力变压器试验报告 (84)

表4.5 1600kVA及以下油浸式电力变压器试验报告 (96) 表4.6 干式电力变压器试验报告 (106) 表4.7 油浸式电抗器试验报告 (115) 表4.8 干式电抗器试验报告 (125) 表4.9 消弧线圈试验报告 (129) 表5.1 油浸式电压互感器试验报告 (135) 表5.2 电容式电压互感器试验报告 (146) 表5.3 干式固体结构电压互感器试验报告 (157) 表5.4 油浸式电流互感器试验报告 (166) 表5.5 干式固体结构电流互感器试验报告 (183) 表5.6 套管式电流互感器试验报告 (194) 绝缘电流互感器试验报告 (206) 表5.7 SF 6 表6.1 SF 断路器试验报告 (221) 6 封闭式组合电器试验报告 (238) 表6.2 SF 6 气体含水量测试报告 (241) 表6.3 GIS密封性及SF 6

变压器局部放电试验基础和原理-新版.pdf

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使 用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操 作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期 运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用 下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在- 定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。 这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。 通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体 周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生 电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量 的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙 上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空

电缆局放试验的特点和要求

电缆局放试验的特点和要求 一、电缆局放试验的特点(与其它高压输变电设备产品相比) (1)试品电容量大。整盘电缆的出厂试验电容量更可观。 例如:变压器,套管,绝缘子等大都是nF级电容,高压电容器有uF级的电容,但属集中参数。 电缆:35kV,630mm25km 1.4μF/5km 110kV,1600mm210km 2.85μF/10km 220kV,2000mm210km 2.25μF/10km 500kV,2500mm210km 2.04μF/10km 试品电容大,导致:1.高压试验容量巨大,普通试验变压必须改为采用串联谐振电抗;2.局放检测灵敏度降低。(图1) (2)电缆试品占空间大 以110kV电缆为例,电缆螺旋状卷绕在外缘直径5米的大铁盘上。试验时带2个水终端长达约3米。500kV电缆水终端长达6米多。电缆卷绕后如螺旋卷天线,试品展开空间又大,都是易受空间电磁场感应影响的因素。这样对屏蔽室要求高。 (3)电缆的等效电路是电容分布参数电路 分布参数试品在进行脉冲电流的检测中有高频脉冲的传播,反射,叠加等传输特性反映到显示器上,影响检测结果。 应用电缆上局放脉冲的传播特性来进行局放故障定位。(图2)

(4)交联聚乙烯是优质绝缘材料。 用于500kV级的交联乙烯电缆最大工作场强可达3.1kV/mm(35kV电缆): 5.3kV/mm,(110kV电缆):10.1kV/mm,(220kV电缆):13.5kV/mm,(500kV 电缆但它又易受局部放电作用的发生劣化。 这样电缆局放试验标准的允许放电量要求比其它设备或其它品种绝缘低好多,所以要求试验灵敏度高,即背景噪声水平小。 这样将全面要求:屏蔽室,接地,电源,设备性能都精确优良。 目前,国外正在开发800kV/1000kV级XLPE电缆的应用,这就需要更高参数,极低背景噪声水平的局放屏蔽试验系统。 总之:在技术上,高压交联电缆的局放检测,公认是各种试品局放试验中要求最高的。 二、电缆局放试验设备的要求 (1)串联谐振电抗器(图3) 电缆局放试验用可调高压串联谐振电抗器代替普通变压器,试验时供电抗(L)调到与试品电缆电容(C)谐振。从而电抗与电缆的无功功率相互补偿(抵消),电源网络只需承担电抗器,电缆和回路有功损耗部分(R=R LR+R CR+R1)该损耗功率为电抗器输出功率的1/Q倍 对交联电缆,Q=40-80 因而,达到了节能,节约投资,缩小设备体积。当然,该串联谐振设备应在额定工作电压下无局放(例为<2PC) (2)电源采用独立变压器(图4、5)

局部放电检测仪

PDV5局部放电检测仪

目录 PDV 5 (1) 1 产品概述 (3) 2 检测原理 (4) 3 仪器操作 (4) 4传感器操作 (5) 5仪器的功能 (6) 5.1 频谱扫描 (7) 5.2 启/停测量 (7) 5.3结果显示 (7) 5.4放电类型识别 (8) 5.5抗干扰 (8) 5.5.1 主要干扰类型 (9) 5.5.2 仪器对干扰的抑制 (9) 5.6 数据回读浏览 (9) 5.7 自动更新 (10) 5.8 数据导出 (10) 5.9 帮助 (10) 6使用条件 (10) 7性能指标 (10) 8现场测量方法与注意事项 (11) 附录A GIS 局部放电的典型图谱 (14) 附录B 干扰信号的典型图谱 (15) 附录C 检测数据的要求 (16) 附录D 术语和定义 (16)

1 产品概述 局部放电测量有助于发现以SF6气体作为绝缘介质的气体绝缘金属封闭开关设备(以下简称GIS,包括HGIS和罐式断路器等)内部的多种绝缘缺陷,是诊断GIS健康状态的重要手段。在GIS制造、安装、运行和检修的各个环节,凡是具备条件的,都应该进行局部放电检测。 为此,我们精心设计了PDV5局部放电检测仪,专门用于定量检测GIS等电力变电设备内部的局部放电的状况,直观分析局部放电的严重程度,衡量设备内部绝缘的劣化程度,使维护人员在变电设备出现绝缘劣化时能够及时发现,采取相应措施,避免设备出现短路等严重故障。 PDV5局部放电检测仪采用目前流行的超高频和超声波检测局部放电的方法,通过外置的UHF天线接收GIS内部局部放电辐射和产生的超高频和超声波信号,能有效检测到设备内部产生的微弱局部放电信号。PDV5在使用上以超高频为主要检测方法,超声波为辅助检测手段。 PDV5具有如下特点: ①单通道设计,可以选择接入超高频传感器或者超声波传感器。 ②便携式设计,维护人员能随身携带,并且一个人就能实施局部放电的检测过程。 ③操作过程简单,通过仪器上的快捷按键就能轻松完成整个检测,方便现场人员使用。 ④在检测过程中自动实时进行局部放电智能化诊断,并且将判断结论显示在仪器界面上,帮助现场工作人员分析局部放电类型。 ⑤具备连续检测和存储数据的能力,数据能通过外插U盘的方式导出。 ⑥在检测过程中实时显示放电幅度趋势图,Q-N-Φ图(PRPD), 特征棒图,有经验的现场分析人员可以清楚的观测到设备内部产生的局部放电的时域和相域的特征,从而判断局部放电严重程度和类型。

电力电缆检验报告

唐山市海丰线缆有限公司 电力电缆试验报告JL-CX-8-01-03-6 试样名称:聚氯乙烯绝缘阻燃电力电缆型号规格:ZR-VV-0.6/1 2×10 试验类别:s试样数量:1.5米编号11-04-v25001 试验依据:GB/T12706-2008试样来源:成品仓库试验项目标准要求实测值结论受检线芯标志红蓝√ 导体结构 根数不少于6 根7 7√ 扇高(参考值)㎜ 4.05 4.05 √ 绝缘厚度平均厚度 1.0 ㎜ 1.2 1.2 √最薄点不小于0.80 ㎜ 0.87 √

0.85 护套厚度平均厚度不小于1.8 ㎜ 2.4√最薄点不小于1.24㎜ 2.23√ 外径尺寸(参考值)㎜20.40√ 20℃导体电阻不大于 1.83Ω/km 1.76 1.77 √耐压试验 3.5 kV / 5 min通过,通过,√钢带铠装层×厚度————电缆标识清晰,耐擦。符合要求√4h交流耐压不击穿————局部放电试验1.73U0不大于10pC————热延伸试验

负荷下伸长率≤175%———— 永久变形率≤15%————- 结论:符合GB/T12706-2008 标准要求。 注:“√”为合格,“—”为不做要求,“×”为不合格。 试验员:杨杰审核:王勇报告日期: 2011年8月24日 唐山市海丰线缆有限公司 交联聚乙烯绝缘电缆出厂试验报告 JL-CX-8-01-03-3 试样名称:交联聚乙烯绝缘阻燃 电缆型号规格: ZR-YJV22-8.7/10 3×150 生产日期; 试验类别;S试样数量:1.5米编号: 10-06-j15002 试验日期:试验依据:GB/T12706-2008试样来源:车间 项目试验标准要求实测值结论

局部放电测量

局部放电测量 随着电力设备故障诊断技术的发展,人们发现电气设备的许多故障和事故与局部放电有关,因此对局部放电的测量越来越重视,在《交接规程》和《预试规程》中列为试验项目。 一、局部放电的基本概念: 1、什麽是局部放电 局部放电是指电气设备在电压的作用下,绝缘结构内部的气隙、油膜或导体的边缘发生非贯穿性的放电现象。 以变压器为例:变压器绝缘结构复杂,内部发生局部放电的原因很多,如果设计不当,局部场强过高,工艺上有缺陷使绝缘中含有气泡,在运行中油质劣化分解出气泡,机械振动和热胀冷缩造成局部开裂出现气泡。在这些情况下,在外施电压下都会发生局部放电。一旦发生局部放电,放电就会持续发展,造成绝缘老化,严重的会造成绝缘击穿。 2、视在放电量: 是指在试品两端注入一定电荷量,使试品端电压的变化量和局部放电时端电压的变化量相同。此时注入的电荷量称为局部放电的视在放电量。以皮库(PC)表示。 3、局部放电起始电压 是指试验电压从不产生局部放电的较低电压逐渐增加,能观察到试品开始出现局部放电时,试品两端施加的最低电压称局部放电起始电压 4、局部放电熄灭电压

试品发生局部放电后,在逐渐降低外施电压的过程中,试验装置尚能观察到局部放电时,试品两端施加的最低电压称局部放电熄灭电压。(外施电压在降低就观察不到局部放电了) 5、局部放电的几种检测方法 1、电荷法测量局部放电 常规的电荷法局部放电测量,是通过放电量的变化发现缺陷。 2、高频法测量局部放电 用产生的高频信号达到发现缺陷的目的。测量频率在40MHZ---300MHZ。 3、振动法测量局部放电 通过放置在外壳上的传感器接受放电产生的振动脉冲打到检测放电故障的目的 4、声测法测量局部放电 测量原理与振动法相似,通过放置在外壳上的声传感器接受放电产生的超声信号,达到发现缺陷的目的。 5、测分解物法 在局部放电作用下。可能有分解物或生成物出现,可以用色谱及光谱分析来确定各种分解物或生成物,从而判断局部放电的程度。 二、局部放电的试验回路和测量仪器 1、局部放电试验基本回路

局部放电测试仪校准装置

JFD-401 局放仪校验装置使用说明书 一、概述 按照DL/T846.4-2004《局部放电测量仪》、GB7354-2003《局部放电测量》、JJG(机械)145 -93《局部放电检测装置》检定规程的要求,检定局放仪需用仪器有:示波器、正弦信号发生器、脉冲发生器、双脉冲发生器、频率计、电压表、电流表、电容电桥、兆欧表等。上述仪器中除脉冲发生器、双脉冲发生器外,均为常规测试仪器。而脉冲发生器要求电压覆盖围宽,脉冲波形满足特殊规定要求;双脉冲发生器需输出脉冲时延可调的双脉冲,固均需专门研制。本校准系统的核心即为一台高性能的校准脉冲发生器和一台双脉冲发生器,校准脉冲发生器可以满足局放仪视在放电量测量线性度误差、正负脉冲响应不对称误差、开关换档误差、检测灵敏度等主要检定项目检定的要求;双脉冲发生器可以满足局放仪低重复率脉冲响应误差、脉冲分辨时间测量、脉冲频率测量、数字式局放仪等检定项目检定的要求。另配的校准回路箱提供屏蔽的校准回路,使检定时干扰水平大大降低,保证检定的顺利进行以及检定的测量精度。 二、原理和结构 JFD-401 校准系统分为四大部分:JFD-401C校准脉冲发生器、JFD-401J 积分系统、JFD-401S双脉冲发生器和JFD-401H校准回路箱。校准脉冲发生器可输出幅值大围可调、波形符合要求的校准脉冲。双脉冲发生器可输出脉冲频率可调、两脉冲间隔脉冲时延可调、波形符合要求的校准脉冲并可进行脉冲计数、积分系统用于以积分方式检定局放仪方波发生器。校准回路箱可以调节试品电容及耦合电容,使其满足检测阻抗的调谐围。上述四部分分别装在独立的金属机箱里,保证屏蔽效果良好。 三、技术参数 JFD-401C 校准脉冲发生器的技术指标如下: 1、校准脉冲上升时间:<60nS 2、校准脉冲电压幅值可调围:粗调档分0db,-20db,-40db三档;细调档可从1.0V至110V无级调节;实际上可以做到从10mV至100V连续可调。 3、校准脉冲电容档:20pF,50PF,100pF,500pF,1000PF,2000PF 共六档。

第4章-局部放电测量的基本原理

第4章 局部放电测量的基本原理 脉冲电流法的基本原理可用图4.1所示电路阐述:当试品C X 产生一次局部放电时,脉冲电流经过耦合电容C k 在检测阻抗两端产生一个瞬时的电压变化,即脉冲电压 U ,脉冲电压经传输、放大和显示等处理,可以测量局部放电的基本参量。脉冲电流法是对局部放电频谱中的较低频段(一般为数千赫兹至数百千赫兹或至多数兆赫兹,局部放电信号能量主要集中在该段频带内)成分进行测量,以避免无线电干扰。传统的测量仪器一般配有脉冲峰值表指示脉冲峰值,并有示波管显示脉冲大小、个数和相位。放大器增益很大,其测试灵敏度相当高,而且可以用已知电荷量的脉冲注入校正定量,从而测出放电量q 。 图4.1 脉冲电流法基本原理示意图 4.1 脉冲电流法的基本测量线路 (a)并联法测量回路 (b )串联法测量回路 (c )平衡法测量回路 图4.2 脉冲电流法的基本试验测量线路示意图 脉冲电流法的基本试验测量线路有三种,如图4.2所示,其中图4.1(a )、(b)统称为直接法测量回路,(c )称为平衡法测量回路。每种测量回路应包括以下基本部分: (1)试验电压u ; (2)检测阻抗Zd ,将局部放电产生的脉冲电流转化为脉冲电压; (3)耦合电容C k ,与试品C x 构成使脉冲电流流通回路,并具有隔离工频高电压直接加在检测阻 抗上Z d 的作用; (4)高压滤波器Zm ,一方面阻塞放电电流进入试验变压器,另一方面抑制从高压电源进入的 谐波干扰。 (5)测量及显示检测阻抗输出电压的装置M 。 e

并联法多用于试品电容较大或试品有可能被击穿的情况下,过大的工频电流不会流入检测阻抗Z d而将Zd烧损并在测试仪器上出现过电压的危险。另外,某些试品在正常测量中无法与地分开,只能采用并联法测量线路。 串联法多用于试品电容较小情况下,耦合电容具有滤波作用,能够抑制外部干扰,而且测量灵敏度随C k /C x 的增大而提高。在相同的条件下,串联法比并联法具有更高的灵敏度,这是因为高压引线的杂散电容及试验变压器入口电容(无电源滤波器时)也被利用充当耦合电容。另外,C k 可利用高压引线杂散电容来充当,线路更简单,可以避免过多的高压引线以降低电晕干扰,在220kV 及更高电压等级的产品试验中多被采用。 平衡法需要两个相似的试品,其中一个充当耦合电容。它是利用电桥平衡的原理将外来的干扰消除掉,因而抗干扰能力强。电桥平衡的条件与频率有关,只有当C x 1与Cx 2的电容量和介质损失角δtg 完全相等,才有可能完全平衡消除掉各种频率的外来干扰;否则,只能消除掉某一固定频率的干扰。在实际测量中,试品电容的变化范围很大,若要找到与每个试品有相同条件的电容是困难的。因而,往往采用两个同类试品作为电桥的两个高压臂以满足平衡条件。 4.2 检测阻抗 检测阻抗,也称为输入单元,其主要作用是取得局部放电所产生的高频脉冲电流信号,并对试验电源的工频及其谐波低频信号则予以抑制。检测阻抗是连接试品与仪器主体部分的关键部件,对仪器的频率特性与灵敏度有直接关系。检测阻抗可分为RC 型及LCR 型两大类,如图 4.3所示,图中电容C d主要由至仪器主体连接电缆的电容、放大器输人电容等组成。 4.2.1 RC 型检测阻抗 图4.3表示接有RC 型检测阻抗时的等效局部放电检测电路。当试品C x 产生局部放电时,视在放电量为q ,C x 两端会产生一个脉冲电压u ?,理想情况下u ?是一个直角脉冲波,但在实际情况中u ?具有一定的上升时间并具有以下的形式 )1(t m f e U u α--=? (4.1) 式中脉冲电压幅值)]/(/[d k d k x m C C C C C q U ++=,f α为放电衰减常数。 对于理想情况,在放电瞬间,电荷q 引起的C k 和C d 上响应的脉冲电压可认为按电容反比例分配,则C d 上的脉冲电压幅值为 图4.3 检测阻抗 图4.4 接RC 检测阻抗的测试回路

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图 3-5 。图中C x 代表试品电容,Z m (Z' m )代表测量阻抗,C k代表耦合电容,它的作用是为 C x与Z m之间提供一个低阻抗的通道。Z代表接在电源与测量回路间的低通滤波器,Z可以让工频电压作用到试品上,但阻止被测的高频脉冲或电源中的高频分量通过。 图3-5(a)为并联测量回路,试验电压U经Z施加于试品C x,测量回路由C k与Z m串联而成,并与C x并联,因此称为并联测量回路。试品上的局部放电脉冲经C k耦合到Z m上,经放大器A送到测量仪器M。这种测量回路适合于试品一端接地的情况,在实际工作中应用较多。 图3-5(b)为串联测量回路,测量阻抗Z m串联接在试品C x低压端与地之间,并经由C k形成放电回路。因此,试品的低压端必须与地绝缘。 图3-5(c)为桥式测量回路,又称平衡测量回路。试品C x与耦合电容C k均与地绝缘,测量阻抗Z m与Z m分别接在C x与C k的低压端与地之间。测量仪器M测量Z m与Z m’上的电压差。

局部放电试验一般步骤

局部放电试验一般步骤 局部放电试验是非破坏性试验项目,从试验顺序而言,应放在所有绝缘试验之后。通常是以工频耐压作为预加电压持续数秒,然后降到局部放电测量电压(一般为Um/√3的倍数,变压器为倍,互感器为~倍),持续时间几分钟,测局部放电量; 预加电压是模拟运行中的过电压(例如雷击),预加电压激发的局部放电量不应由局部放电试验电压所延续,即系统上有过电压时所激发的局部放电量不会由长期工作电压所延续。这一方法是使变压器或互感器在Um/√3长期工作电压下无局部放电量,以保证变压器能安全运行,使局部放电起始电压与局部放电熄灭电压都能高于Um/√3。 具体步骤: 1.选择试验线路确定试验电源 局部放电试验回路的连接方法,应依照国标GB7354-2003《局部放电测量》及行标 DL417-91《电力设备局部放电现场测量导则》进行。 选择试验线路的同时应参考目前拥有试验电源及容量 对试验电源的要求: 电压互感器: 为防止励磁电流过大,电压互感器试验的预加电压,推荐采用150Hz或其它合适频率的试验电源。一般可采用电动机—发电机组产生的中频电源,三相电源变压器开口三角接线产生的150Hz电源,或其它形式产生的中频电源。 当采用磁饱和式三倍频发生器作电源时,因容易造成波形严重畸变,使峰值与真有效值电压之间的幅值关系不是√2倍的倍数关系,可能造成一次绕组实际电压峰值过高,造成试品损坏,故必须在被试品的高压侧接峰值电压表监测电压。 电压波形应接近正弦波形。当波形畸变时,应以峰值除以√2作为试验电压值。 电流互感器: 一般可选用频率为50Hz的试验电源。 变压器: 一般采用50Hz的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。 2、确定局放允许水平选择标准脉冲进行校准 依据DL/T596-1996《电力设备预防性试验规程》和有关反事故技术措施之规定,结合地区局部放电标准和行业标准,确定试品的局部放电允许水平(试验判据)。

实验 局部放电测量

实验4 局部放电测量 0 实验目的 了解局部放电产生的基本原理。 学习局部放电的测量方法及仪器的正确使用。 分析局部放电起始电压、视在放电量与设备绝缘质量的关系。 了解各种局部放电信号的特点。 1.局部放电的产生和实验原理 电气设备绝缘内部常存在一些弱点,例如在一些浇注、挤制或层绕绝缘内部容易出现气隙或气泡。空气的击穿场强和介电常数都比固体介质小,因此在外施电压作用下这些气隙或气泡会首先发生放电,这就是电气设备的局部放电。放电的能量很弱,不会影响到设备的短时绝缘强度,但日积月累会引起绝缘老化,最后可能导致整个绝缘在正常电压下发生击穿。近数十年来,国内外已经越来越重视对设备进行局部放电测量。 图1 固体介质内部气隙放电的三电容模型(a)通过气孔的介质剖面(b)等 效电路 局部放电的产生机理常用三电容模型来解释,如图1所示。 图中C g代表气隙的电容;C b代表与C g串联部分的介质电容;C a代表其余部分的电容。若在电极上施加交流电压u t,则出现在C g上的电压为u g,即:

u g= [C b/(C g+C b)]u t= [C b/(C g+C b)]U max sinωt(1)因为气隙很小,C g比C b大很多,故u g比u t小很多。局部放电时气隙中的电压和电流变化如图2所示。 u g随u t升高,当u t上升到u s(起始放电电压),u g达到C g的放电电压U g时,C g气隙放电,于是C g上的电压很快从U g下降到U r,放电熄灭,则: U r= [C b/(C g+C b)]u c 式中u c为相应的外施电压;U r为残余电压(0≤U r

局部放电试验常规步骤

局部放电试验一般步骤 一、局部放电试验一般步骤 局部放电试验是非破坏性试验项目,从试验顺序而言,应放在所有绝缘试验之后。通常是以工频耐压作为预加电压持续数秒,然后降到局部放电测量电压(一般为Um/√3的倍数,变压器为1.5倍,互感器为1.1~1.2倍),持续时间几分钟,测局部放电量; 预加电压是模拟运行中的过电压(例如雷击),预加电压激发的局部放电量不应由局部放电试验电压所延续,即系统上有过电压时所激发的局部放电量不会由长期工作电压所延续。这一方法是使变压器或互感器在Um/√3长期工作电压下无局部放电量,以保证变压器能安全运行,使局部放电起始电压与局部放电熄灭电压都能高于Um/√3。 具体步骤: 1.选择试验线路确定试验电源 局部放电试验回路的连接方法,应依照国标GB7354-2003《局部放电测量》及行标DL417-91《电力设备局部放电现场测量导则》进行。 选择试验线路的同时应参考目前拥有试验电源及容量 对试验电源的要求: 1.1电压互感器: 为防止励磁电流过大,电压互感器试验的预加电压,推荐采用150Hz或其它合适频率的试验电源。一般可采用电动机—发电机组产生的中频电源,三相电源变压器开口三角接线产生的150Hz电源,或其它形式产生的中频电源。 当采用磁饱和式三倍频发生器作电源时,因容易造成波形严重畸变,使峰值与真有效值电压之间的幅值关系不是√2倍的倍数关系,可能造成一次绕组实际电压峰值过高,造成试品损坏,故必须在被试品的高压侧接峰值电压表监测电压。 电压波形应接近正弦波形。当波形畸变时 ,应以峰值除以√2作为试验电压值。 1.2电流互感器:

一般可选用频率为 50Hz的试验电源。 1.3变压器: 一般采用50Hz的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。 2、确定局放允许水平选择标准脉冲进行校准 依据DL/T 596-1996《电力设备预防性试验规程》和有关反事故技术措施之规定,结合地区局部放电标准和行业标准,确定试品的局部放电允许水平(试验判据)。 确定试验判据以后,可选择标准脉冲进行试验回路的校准。如局放允许水平为50PC,可选择50PC标准脉冲进行校准 3、加压测量 3.1互感器试验: 试验电压应在不大于1/3规定测量电压下接通电源,再开始缓慢均匀上升到预加电压保持10秒后,降到规定测量电压,保持1分钟以上,再读取放电量;最后降到1/3测量电压以下,方能切除电源。 3.2变压器试验: 试验电压应在不大于1/3规定测量电压下接通电源,再开始缓慢均匀上升至规定测量电压,保持5分钟;然后试验电压升到预加电压,5秒后降到规定测量电压,30分钟内无上升趋势时即可降低电压到1/3测量电压以下,切除电源。如对所测量局放不稳定的变压器,应延长测量时间,在不危及变压器安全的前提下,达到局放稳定时为止。对 局放大的变压器,应测量局放的起始放电电压和熄灭放电电压,以便确定故障的性质。 起始放电电压:电压从低值缓慢均匀上升,一直到放电量刚刚超过局放规定值,此时所加电压即为起始放电电压 熄灭放电电压:当电压升过起始放电电压后(一般高10℅),然后将电压缓慢均匀下降,直到放电量刚刚小于局放规定值,此时所加电压即为熄灭放电电压 4、局部放电的观测 读取视在放电量值时应以重复出现的、稳定的最高脉冲信号计算视在放电量。真正的局放信号具有一定的对称性和周期性,偶而出现的较高的脉冲可以忽