高级生物化学复习题及答案汇总

高级生物化学复习题及答案汇总
高级生物化学复习题及答案汇总

PART1核酸化学及研究方法

名词解释:

1.正向遗传学:通过生物个体或细胞的基因组的自发突变或人工诱变,寻找相关的表型或性状的改变。然后从这些特定性状变化的个体或细胞中找到相应的突变基因,并揭示其功能。

2.核小体组蛋白修饰:核小体组蛋白八聚体中每个组蛋白多肽链的N末端游离在核心之外,常被一些化学基团修饰。包括①乙酰化:赖氨酸的乙酰化②甲基化:赖氨酸和精氨酸的甲基化③磷酸化:丝氨酸的磷酸化④泛素化:赖氨酸的泛素化

3.位点特异性重组:是遗传重组的一类,这类重组依赖于小范围同原序列的联会。重组也发生在同源的短序列的范围之内,需要位点特异性的蛋白质分子参与催化。

4.转座机制:转座是一个DNA片段从基因组中的一个位置转移到另外一个位置的过程,该DNA片段称转座元件或转座子。①细菌转座子通过“剪切-黏贴”机制进行转录②转座酶两个不同亚基结合在转座子的特定序列上③两个亚基靠在一起形成有活性的二聚体,导致转座子的切除④转座酶-转座子复合物结合到靶DNA上,通过转座酶的催化将转座子整合到新位点上。

5.基因敲除:利用DNA同源重组原理,用设计的同源片段替代靶基因片段,外源DNA 与受体细胞基因组中序列相同或相近的基因发生同源重组,从而代替受体细胞基因组中的相同/相似的基因序列,整合入受体细胞的基因组中。此法可产生精确的基因突变,从而达到基因敲除的目的。

6.Sanger双脱氧终止法:主要用于DNA基因分析,是现在应用最多的核酸测序技术(也即第一代DNA测序技术)。核酸模板在核酸聚合酶、引物、四种单脱氧碱基存在条件下复制或转录时,如果在四管反应系统中分别按比例引入四种双脱氧碱基,只要双脱氧碱基掺入链端,该链就停止延长,链端掺入单脱氧碱基的片段可继续延长。如此每管反应体系中便合成以共同引物为5’端,以双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分四个泳道进行电泳。以分离长短不一的核酸片段(长度相邻者仅差一个碱基),根据片段3’端的双脱氧碱基,便可依次阅读合成片段的碱基排列顺序。

7.荧光实时PCR技术原理:是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。通过内参或者外参法对待测样品中的特定DNA 序列进行定量分析的方法。该技术在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。

8.双分子荧光互补(BiFC)技术原理:一种直观、快速地判断目标蛋白在活细胞中的定位和相互作用的新技术。该技术巧妙地将荧光蛋白分子的两个互补片段分别与目标蛋白融合表达,如果荧光蛋白活性恢复,则表明两目标蛋白发生了相互作用。同时检测到多种

蛋白质复合体的形成,还能够对不同蛋白质间产生相互作用的强弱进行比较。

问答题:

1.怎样将一个基因克隆到pET32a载体上;原核表达后,怎样纯化该蛋白?

利用序列特异性内切核酸酶(限制性核酸内切酶)切割目标DNA和pET32a载体;DNA 连接酶连接目标DNA和pET32a载体;将重组DNA转化到宿主中;选择或鉴定含有重组DNA的宿主细胞。

原核表达后,纯化蛋白:

pET32a表达的是6个HIS标签的蛋白,,可以特异结合二价的镍,可以通过亲和层析的方法纯化该蛋白。首先将包含重组蛋白的原核表达的产物加到镍的层析柱中,含有HIS 标签的重组蛋白被吸附到柱子上,其他蛋白流出,然后通过加入组氨酸将吸附到柱子上的重组蛋白洗脱下来。

2.通过哪几种方法可以获得cDNA的全长?简述其原理。

(1)cDNA末端快速扩增技术

基本思路:

根据基因家族各成员间保守氨基酸序列设计简并引物,并用简并引物进行RTPCR扩增,得到该基因的部分cDNA序列,再利用RACE获得cDNA全长。

①RT-PCR

②cDNA末端快速扩增技术(rapid amplification of cDNA ends,RACE)

通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得cDNA全长。RACE具体原理是基于PCR技术基础上由已知的一段cDNA片段,通过往两端延伸扩增从而获得完整的3‘端和5’端的方法。

3’RACE的原理

一)加入oligo(dT)17和反转录酶对mRNA进行反转录得到(-)cDNA;

二)以oligo(dT)l7和一个35bp的接头(dT17-adaptor)为引物,其中在引物的接头中有一在基因组DNA中罕见的限制酶的酶切位点。这样就在未知cDNA末端接上了一段特殊的接头序列。再用一个基因特异性引物(3amp)与少量第一链(-)cDNA退火并延伸,产生互补的第二链(+)cDNA。

三)利用3amp和接头引物进行PCR循环即可扩增得到cDNA双链。扩增的特异性取决于3amp的碱基只与目的cDNA分子互补.而用接头引物来取代dT1-adaptor则可阻止长(dT)碱基引起的错配。

5’RACE的原理

5’RACE与3’RACE略有不同。首先,引物多设计了一个用于逆转录的基因特异引物GSP-RT;其次,在酶促反应中增加了逆转录和加尾步骤,即先用GSP-RT逆转录mRNA 获得第一链(-)cDNA后,用脱氧核糖核酸末端转移酶和dATP在cDNA5’端加poly(A)

尾,再用锚定引物合成第二链(+)cDNA,接下来与3’RACE过程相同。用接头引物和位于延伸引物上游的基因特异性引物(5amp)进行PCR扩增

全长cDNA的获得

通过RACE方法获得的双链cDNA可用限制性内切酶酶切和southem印迹分析并克隆。通常的克隆方法是同时使用一个切点位于接头序列上的限制性内切酶和一个切点位于扩增区域内的内切酶。由于大多数非特异性扩增的cDNA产物不能被后一个限制性内切酶酶切,因而也就不会被克隆.从而增加了克隆的选择效率。还可以用在基因特异性引物的5’端掺人一个限制性内切酶的酶切位点的方法来克隆。最后,从两个有相互重叠序列的3’和5’RACE产物中获得全长cDNA。或者通过分析RACE产物的3’和5’端序列,合成相应引物来扩增mRNA的反转录产物,从而获得全长cDNA。

(2)采用SMART技术,构建全长cDNA的文库。

在合成cDNA的反应中事先加入的3'末端带Oligo(dG)的SMART引物,由于逆转录酶以mRNA为模板合成cDNA,在到达mRNA的5'末端时碰到真核mRNA特有的“帽子结构”,即甲基化的G时会连续在合成的cDNA末端加上几个(dC),SMART引物的Oligo (dG)与合成cDNA末端突出的几个C配对后形成cDNA的延伸模板,逆转录酶会自动转换模板,以SMART引物作为延伸模板继续延伸cDNA单链直到引物的末端,这样得到的所有cDNA单链的一端有含Oligo(dT)的起始引物序列,另一端有已知的SMART 引物序列,合成第二链后可以利用通用引物进行扩增。由于有5'帽子结构的mRNA才能利用这个反应得到能扩增的cDNA,因此扩增得到的cDNA就是全长cDNA。

3.什么是DNA探针、种类及标记的方法有哪些?

①探针(probe):指能与特定核苷酸序列发生特异互补杂交,杂交后又能被特殊方法检测的,已知被标记(同位素或非同位素标记)的核苷酸链

探针种类:

ⅰ基因组DNA探针为某一基因的全部或部分序列,或某一非编码序列。

ⅱcDNA探针以mRNA为模板经逆转录酶催化产生的互补于mRNA的DNA链。

ⅲRNA探针以DNA两条链中的任意一条为模板转录生成RNA。具高杂交效率,但易于降解和标记方法复杂。

ⅳ寡核苷酸探针

Ⅱ标记物(略看)

ⅰ放射性同位素标记物:

核酸标记中,32P和35S使用频率高。32P标记核苷酸的α位或γ位,35S则是标记核苷酸的α位.

优缺点:射线对人体有伤害,放射性物质需特殊的处理,半衰期短不宜存放使用

ⅱ非放射同位素标记物:

常用的有地高辛(digoxigenin,Dig)、生物素(biotin)、荧光素

优缺点:分辨率不如同位素标记,检测时间短,操作简便,不需特殊的防护设备,不存在放射性污染

探针标记方法:

(1)随机引物法(random priming)

利用DNA聚合酶来合成与模板互补的新的DNA链。

将6-8寡核苷酸片段与已变性的DNA单链或RNA模板退火,在大肠杆菌DNA聚合酶I Klenow片段作用下,以同位素标记的dNTP为原料,寡核苷酸为引物的3’-OH端开始沿5’至3’方向,合成一条与模板互补的新DNA链。

(2)切口平移法

胰DNA酶Ⅰ在DNA双链上随机切开若干切口,切口处形成3’-OH末端。大肠杆菌DNA 聚合酶Ⅰ从切口处开始作用,以另一条DNA链为模板。4种三磷酸脱氧核苷酸为原料,沿切口水解5’端核苷酸和3’端修复加入标记核苷酸同时进行,切口平行推移。生成的两条链都被同位素均匀标记。

(3)末端标记法

5’端标记法

T4噬菌体多苷酸激酶(T4polynucleotide kinase)a.用碱性磷酸酶切除DNA双链分子或RNA单链5’末端的磷酸基团,使其成为5’-OH,

b.然后在(γ-35S)ATP存在下,经T4噬菌体多苷酸激酶催化,将γ位上的35S转移到DNA或RNA分子的5’OH末端,使DNA片段或RNA或寡核苷酸5’端均带35S标记。3’端标记法

利用末端转移酶(Terminal transferase,TdT):催化单链或双链DNA的3’末端-OH掺入核苷酸

标记分为两步:1)TdT在DNA的3‘末端掺入SH-GTP

2)–SH不稳定,用Maleimide(顺丁烯二酰亚胺)进行偶联反应。

(4)PCR方法

PCR标记法是在PCR反应底物中,将一种dNTP换成标记物标记成dNTP的一种方法,这样标记的dNTP就在PCR反应的同时掺入到新合成的DNA链上。

4.哪些方法可以检测转录水平(mRNA水平)的表达差异?简述原理。

根据分析方法的原理和功能特性,可将基因表达分析分为:

封闭性系统研究方法:例如DNA微阵列、Northern印迹、实时RT-PCR等方法,其应用范围仅限于已测序的物种,只能研究已知的基因。

开放性系统研究方法:如差异显示PCR、双向基因表达指纹图谱、分子索引法、随机引物PCR指纹分析等,可以发现和分析未知的基因。

⑴Northern印迹杂交

应用DNA探针检测特异mRNA的一种杂交技术,主要用于分析mRNA的转录或mRNA 分子大小,其方法类似于Southern印迹杂交。

⑵反转录PCR(RT-PCR)

可用于mRNA的半定量分析是一种简单、快捷地对RNA进行定性、定量分析的方法。RT-PCR技术一般用于RNA的定性分析;如果设置阳性参照,则可对待测RNA样品进行半定量分析。该方法适合对待测样品进行初步筛选。

⑶实时定量PCR

是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。通过内参或者外参法对待测样品中的特定DNA序列进行定量分析的方法。该技术在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。

⑷基因芯片(gene chip):

又称DNA微阵列、DNA芯片,已成为基因表达谱分析的常用方法

基因芯片是将大量已知序列的核酸片段(包括寡核苷酸、cDNA、基因组DNA、microRNA 等)集成在同一基片上,组成密集分子排列,通过与标记样品进行杂交、检测、获取细胞或组织的基因信息。

基因芯片操作步骤(略):

ⅰ固相支持物的选择:半导体硅片,普通玻璃,尼龙膜,磁珠等ⅱDNA探针的制备及固化:在芯片上原位合成寡核苷酸,或在芯片以外制备DNA探针,并以显微打印将其固化于基质上ⅲ用放射性同位素或荧光物标记来自不同细胞、组织或器官的DNA或mRNA反转录的cDNA进行杂交ⅳ用检测系统对每个杂交点进⑸高通量测序技术是新一代基因表达谱分析方法

高通量测序技术可以一次对几十万到几百万个DNA分子片段进行序列测定,从而快速获得转录组或基因组的全貌,又被称为深度测序(deep sequencing)。

在RNA水平上,可以对RNA片段进行扫描、定量与鉴定,对全基因组进行广谱表达研究。高通量测序另一个被广泛应用的领域是小分子RNA或非编码RNA(noncoding RNA)研究。测序方法能轻易地解决芯片技术在检测小分子时遇到的技术难题(短序列,高度同源),而且小分子RNA的短序列正好配合了高通量测序的长度,同时测序方法还能在实验中发现新的小分子RNA。

5.试述绿色荧光蛋白的结构特征及其在分子生物学中的应用。

绿色荧光蛋白(green fluorescent protein,GFP),由gfp基因编码,具有238个氨基酸残基的多肽单体,GFP晶体结构:蛋白中央是一个圆柱形水桶样结构,长420nm,宽240nm,

三维结构是由11个反向平行的β折叠环绕成1个桶状结构,1个较长的α-螺旋从桶的中心穿过,这些β折叠和α螺旋之间通过Loop环链接起来。

荧光蛋白的发色团位于桶中心的α螺旋上,由荧光蛋白通过自体催化,将3个氨基酸残基Ser65Tyr66Gly67进行环化。

由于GFP结构致密,不易被蛋白酶水解,且在厌氧细胞以外的任何细胞中都能自我催化发射荧光,所以很快被应用于生命科学研究,将其融合于形形色色的蛋白上,用来研究蛋白质的功能。

可以把GFP构建成能发射其它颜色荧光的突变体,例如,红色荧光蛋白(RFP)、黄色荧光蛋白(YFP)是T203Y突变,蓝色荧光蛋白(,BFP)是Y66H突变,青色荧光蛋白(ECFP)是Y66W突变,以及它们的增强型,这些改造使荧光蛋白的应用更为广泛。

6.试述RNA沉默的机理及其应用。

RNAi的分子机制:

异常的单链RNA分子在RdRP(RNA依赖的RNA聚合酶)作用下合成双链RNA(dsRNA)分子。

所有的dsRNA,hpRNA(hairpin RNA)和pre-miRNA都可以由Dicer(dsRNA的特异性核酸内切酶)加工成21nt RNA的双螺旋。

21nt RNA的双螺旋的单链与目标mRNA掺入到RISC复合体中被复合体切割降解。

植物中,dsRNA和pre-miRNA可由不同的DICER-LIKE蛋白加工,动物中,miRNA 与mRNA部分互补,抑制翻译。植物中,miRNA类似于siRNA的作用,切割有可能不完全配对的mRNA。植物中有些miRNA也抑制翻译。

应用:

RNAi可作为植物中基因功能分析的工具

虽然RNAi不是一种基因敲除技术,但它的高效和易用性使其适用于基因组功能的全基因组分析

基因消减(knockdown):利用RNAi会降低或是停止目标基因的表达

植物中由于细胞壁的限制,普遍采取dsRNA的方式产生RNA沉默

7.试述CRISPR/Cas系统结构、CRISPR/Cas技术的原理及应用?

是最近几年出现的一种由RNA指导Cas核酸酶对靶向基因进行特定DNA修饰的技术。CRISPR-Cas系统的结构

CRISPR簇是一个广泛存在于细菌和古生菌基因组中的特殊DNA重复序列家族,其序列由一个前导区(Leader)、多个短而高度保守的重复序列区(Repeat)和多个间隔区(Spacer)组成,以及一系列CRISPR相关蛋白基因cas。

前导区一般位于CRISPR簇上游,是富含AT长度为300~500bp的区域,被认为可能是CRISPR簇的启动子序列。

重复序列(repeats)区长度为21~48bp,含有回文序列,可形成发卡结构。

重复序列之间被长度为26~72bp的间隔区(spacer)隔开。

CRISPR就是通过这些间隔序列(spacer)与靶基因进行识别。Spacer区域由俘获的外源DNA组成,类似免疫记忆,当含有同样序列的外源DNA入侵时,可被细菌机体识别,并进行剪切使之表达沉默,达到保护自身安全的目的。

CRISPR关联基因(CRISPR associated,Cas):

CRISPR簇的侧翼序列附近存在一个多态性家族基因即CRISPR关联基因(CRISPR associated),缩写为Cas。该家族编码的蛋白质均含有可与核酸发生作用的结构域(具有核酸酶、解旋酶、整合酶和聚合酶等活性),并且与CRISPR区域共同发挥作用,目前发现的Cas包括Cas1~Cas10等多种类型。Cas基因与CRISPR共同进化,共同构成一个高度保守的系统。

CRISPR/cas作用机理:

①“记录”入侵者档案

当病毒或外源质粒DNA首次入侵到细菌体内时,细菌会对外源DNA潜在的PAM序列(原间隔序列的两端向外延伸的几个碱基往往都很保守,我们称为PAM)进行扫描识别,将临近PAM的序列作为候选的“原间隔序列”,将其整合到细菌基因组上CRISPR序列中的两个“重复序列”之间。

②CRIPSR基因座的表达(包括转录和转录后的成熟加工):

CRISPR基因座首先被转录成前体CRISPR RNA(pre-crRNA),然后由tracrRNA(Trans-activating crRNA,tracrRNA)(与pre-crRNA重复序列互补的序列)指导,在Cas蛋白或是核酸内切酶的作用下被剪切成一些小的RNA单元,这些小RNA即为成熟crRNA,由一个间隔序列和部分重复序列组成.

③CRISPR/Cas系统发挥活性,对外源遗传物质的干扰:

成熟的crRNA与特异的Cas蛋白形成核糖核蛋白复合物,再与外源DNA结合并扫描到外源DNA,寻找其上的靶序列,crRNA的间隔序列与靶序列互补配对,外源DNA在配对的特定位置被核糖核蛋白复合物切割。

补充略看:Cas(CRISPR associated):

存在于CRISPR位点附近,是一种RNA导向双链DNA(dsDNA)核酸酶,能在向导guide RNA引导下对靶位点进行切割。

Cas核酸酶含有两个结构域:NHN负责切割与crRNA互补的链;RuvC负责非互补链的切割

Cas9首先与crRNA和tracrRNA结合成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对DNA双链进行切割,使双链断裂,由于PAM序列结构简单(5’-NGG-3’),几乎在所有基因中都能找到大量靶点。

应用:

基因编辑只需要两个工具:向导RNA(guide RNA,gRNA)和Cas9蛋白。

向导RNA要与PAM上游的序列碱基互补配对。根据待编辑的区域附近相对保守的PAM序列(即三碱基序列NGG,其中N可以是任意碱基)设计向导RNA,然后与Cas9蛋白共同实现基因编辑。

是一种基因敲除技术,可用于定点构建基因敲除大、小鼠动物的第四种方法,且有效率高、速度快、生殖系转移能力强及简单经济的特点,在动物模型构建的应用前景将非常广阔。

8.哪几种方法可以检测蛋白质和DNA之间的相互作用,简述原理。

(1)酵母单杂交技术

基本原理为:真核生物基因的转录起始需转录因子参与,转录因子通常由一个DNA特异性结合功能域和一个或多个其他调控蛋白相互作用的激活功能域组成,即DNA结合结构域(BD)和转录激活结构域(AD)。用于酵母单杂交系统的转录因子,可激活酵母半乳糖苷酶的上游激活位点(UAS),而转录激活结构域可与RNA聚合酶或转录因子TFIID相互作用,提高RNA聚合酶的活性。在这一过程中,DNA结合结构域和转录激活结构域可完全独立地发挥作用。据此,我们可将转录因子的DNA结合结构域置换为文库蛋白编码基因,只要其表达的蛋白能与目的基因相互作用,同样可通过转录激活结构域激活RNA聚合酶,启动下游报告基因的转录。

(2)电泳迁移率变动实验(electrophoretic mobility shift assay,EMSA):

又称凝胶阻滞实验(gel retardation),是一种研究DNA结合蛋白和其相关的DNA结合序列相互作用的技术,可用于定性和定量分析。

基本原理是蛋白质可以与末端标记的核酸探针结合,电泳时这种复合物比无蛋白结合的探针在凝胶中泳动的速度慢,即表现为相对滞后。该方法可用于检测DNA结合蛋白、RNA结合蛋白,并可通过加入特异性的抗体(supershift)来检测特定的蛋白质,并可进行未知蛋白的鉴定。

(3)染色质免疫沉淀技术(chromatin immunoprecipitation,ChIP)

目前唯一研究体内DNA与蛋白质相互作用的方法。

基本原理是在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的DNA片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。

PART2代谢和酶

一、名词解释

1.共价修饰:在其他酶的催化作用下,酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性。如磷酸化和去磷酸化,乙酰化和去乙酰化。

2.氧化磷酸化:物质在体内氧化时释放的能量供给ADP和无机磷酸合成ATP的偶联反应。

3.NADH:即是烟酰胺腺嘌呤二核苷酸的还原态,还原型辅酶Ⅰ,是体内多种反应的辅酶,起到传递氢的作用,是生物体内的重要还原力。

烟酰胺腺嘌呤二核苷酸,还原态,还原型辅酶Ⅰ。NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。葡萄糖代谢时直接经代谢所产生的ATP是十分少的,而代谢产生的NADH或FADH2经由一个电子传递与氧化磷酸反应可产生大量的ATP。NADH是一种辅酶,用来实现电子传递,基本上涉及到氧化还原的反应都用得到,比如呼吸作用,光合作用等。

4.双功能酶:具有一条肽链的酶蛋白,由于某些氨基酸的磷酸化和脱磷酸化使之具有两种酶活性。

5.别构效应:调节物与酶的别构中心结合后,引起酶蛋白构象的变化,影响酶的活性中心与底物结合,从而调节酶促反应的速度及代谢过程。

6.糖异生:指的是非碳水化合物(乳酸、丙酮酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程。

7.脂肪酸的β-氧化:脂肪酸β-氧化是体内脂肪酸分解的主要途径,脂肪酸氧化可以供应机体所需要的大量能量,脂肪酸β-氧化也是脂肪酸的改造过程,机体所需要的脂肪酸链的长短不同,通过β-氧化可将长链脂肪酸改造成长度适宜的脂肪酸,供机体代谢所需。

8.酶的活性中心:或称活性部位(activesite),指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物的部位。

9.寡聚酶:由多个相同或不同亚基以非共价键连接组成的酶。

10.抑制剂:能使酶的催化活性下降而不引起酶蛋白变性的物质。

11.竞争性抑制:通过增加底物浓度可以逆转的一种酶抑制类型,竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。K m增大,V max不变。

12.酶原:有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须经过适当的改变才能变成有活性的酶,此前体物质称为酶原。

13.同工酶:催化的化学反应相同,而酶蛋白本身的结构和化学组成(亚基组成、氨基酸

组成、理化性质和免疫性能)不同的酶。

14.比活力:指的是每毫克酶蛋白所具有的酶活性单位数。比活力=活性单位数/酶蛋白重量(mg);比活力反映了酶的纯度。

15.K cat,GSH:当酶被底物饱和时,每秒每摩尔酶分子将底物转换成产物的摩尔数,单位是s-1。表示酶催化某一特异反应的速度有多快。Kcat值越大,酶的催化效率越高。

二、简答题:

1、别构酶在结构、动力学等方面与米氏酶有怎样的区别?

特点:(1)别构酶都寡聚酶,分子中包括活性中心和别构中心。二者可位于同一亚基,也可位于不同亚基

(2)具有R、T两种构象;R型对底物亲和力高;T型对底物亲和力低。

(3)别构酶具有别构效应,通过酶分子本身的构象变化来改变酶的活性。

(4)别构酶动力学曲线呈“S”形。

(5)是与代谢调节有关的酶,大多处于代谢的关键位置。

(6)本身的活性也受到严格的调节。

作用机理:调节物与酶的别构中心结合后,引起酶蛋白构象的变化,影响酶的活性中心与底物结合,从而调节酶促反应的速度及代谢过程。

(1)序变模型:别构酶的构象是以序变方式进行的,当配体不存在时,别构酶只存在“T”构像,当配体与一个亚基结合,可引起该亚基构象发生变化。这个亚基—配体复合体又能使邻近亚基易于发生同样的构象变化,即够影响相邻亚基对下一个配体的亲和力。当第二个配体结合后,又可导致第三个亚基发生类似变化,如此顺序传递,直至最后所有的亚基都处于相同的构象。

(2)齐变模型:主张别构酶所有的亚基或者全部是坚固紧密的,不利于结合底物的“T”状态,或者全部是松散的,利于结合底物的“R”状态。这两种状态间的转变对每个亚基都是同步的,齐步发生的,“T”状态中的亚基的排列是对称的,变为R状态后,蛋白亚基的排列仍然是对称的。

别构酶一般都是寡聚酶,通过次级键由多亚基组成。分子结构上除了活性部位外,还有调节部位。有的在同一亚基上,有的在不同的亚基上。别构酶的v-[S]的关系不符合米氏方程,其曲线不是双曲线。

别构酶的协同效应:调节物与别构中心结合后,引起酶分子构像的变化,改变了酶的活

性。

2、请阐述酶催化高效性的机制。

(1)邻近效应:指底物和底物之间,酶的催化基团和底物的反应基团需要互相靠近,才能反应;定向效应:指酶的催化基团与底物的反应基团之间,或底物的反应基团之间的正确取向所产生的效应。

(2)诱导契合:酶与底物结合后,酶和底物的构象均发生变化,且变化的结果是更有利于两者的结合,从而促进结合。

(3)酸碱催化:酶活性中心的某些功能基团可作为酸或碱向底物提供H+或提供H+受体,相互作用形成过渡态,降低活化能。同一种酶常常兼有酸、碱双重催化功能。

(4)共价催化:包括亲核催化和亲电催化,(i)其中亲核基团是一些由孤对电子的基团如羟基和巯基,酶分子中具有非共用电子对的亲核基团攻击缺少电子的,具有部分正电性的原子,形成暂时的共价键,稳定了过渡态;(ii)亲电基团是一些有空轨道的基团如–H+、NH3+、Mg2+、Mn2+、Fe3+,酶蛋白分子中的亲电基团攻击底物分子中富含电子的原子或带部分负电荷的原子,形成共价键,稳定了过渡态中间产物。

(5)酶活性中心的疏水环境效应:疏水的氨基酸残基形成的反应口袋提供了非极性的环境,使极性的离子或离子化的氨基酸残基在疏水口袋中进行催化反应。

3、酶的辅助因子在催化作用中发挥着哪些作用?

由辅助因子参与作用的酶称为结合酶。其中酶的蛋白质部分称为酶蛋白。根据与酶蛋白结合的牢固程度又分为辅酶和辅基两类。辅酶为结构复杂的小分子有机物,辅基则常以共价键与酶蛋白牢固结合,不易与酶蛋白分离。酶辅助因子主要是各种金属离子,如Zn2+、Fe2+、Cu2+、Mn2+、Ca2+、Mg2+等。

(1)维生素与辅酶的关系

维生素可分为水溶性及脂溶性两大类。水溶性维生素中有多种B族维生素,在体内参与辅酶的组成。脂溶性的维生素K还原后作为凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ等蛋白质中谷氨酸-γ-羧化酶的重要辅助因子。

(2)辅酶作用:辅酶及辅助因子,在酶促反应中起着传递电子、原子或某些化学基团的作用。

(3)金属离子作用:金属离子是酶的重要组成成分,能与酶及底物形成各种形式的三元络合物,不仅保证了酶与底物的正确定向结合,而且金属离子还可作为催化基团,参与各种方式的催化作用。

4、什么是米氏常数?它的意义是什么?

米氏常数:(KM ),酶促反应速度达到最大反应速度一半时的底物浓度,是研究酶促反应动力学最重要的常数。

米氏方程,该方程表明了当已知K m 及V max 时,酶反应速率与

底物浓度之间的定量关系,其中比较重要的参数K m 值称为米氏常数,Km 值等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L ;

a)Km 是酶的特征性常数之一,与酶的性质有关,与酶的浓度无关;

b)Km 可近似表示酶对底物的亲和力;

c)同一酶对于不同底物有不同的Km 值。

意义:

(1)酶的特征常数:只与酶的性质有关。

(2)判断酶活性中心的性质:近似表现酶与底物的亲和力;酶的专一性、最适底物。

(3)可以利用米氏方程计算出KM (米氏常数);Vmax (最大反应速度);kcat (酶的转换数)kcat /KM (酶催化效率的度量),为实际的生产和生活提供理论和实践的依据。

5、为什么过渡态底物类似物可作为酶的竞争性抑制剂?

“过渡态”是底物分子被激活的不稳定态,不同于反应中间物,它具有最高能量,又处在一个短暂的分子瞬间。过渡态出现在反应物的化学键处于即将生成或断裂的过程中,能生成产物或再返回生成反应物。酶能短暂地与反应物结合形成过渡态,从而降低了活化能,但不改变反应的ΔG 。

过渡态学说是指反应中,酶E 与底物S 形成不稳定的过渡态ES*复合物,ES*再分解成产物P 和酶E ,即E+S ≒ES*→E+P 竞争性抑制作用中,抑制剂与底物的结构类似,二者都可以与酶的活性中心结合,但不能同时结合,即二者竞争酶的活性中心。抑制原理是抑制剂与酶可逆地结合形成EI 复合物,但不能分解为E 和P 。过渡态底物类似物与底物的结构类似,因此可以作为酶的竞争性抑制剂。

6、pH 是怎样影响酶活性的?

影响:某一pH 值时,反应具有最大速度,此pH 称为酶的最适pH

[S][S]M max +=K V v

原因:

1)pH影响酶蛋白氨基酸侧链的解离。

2)过酸、过碱影响酶蛋白的构象。

3)pH影响底物的解离。但是这种情况比较少见。

以pH对反应速度v作图,曲线呈“钟型

7、当一酶促反应进行的速率为V max的80%时,K m和[S]之间有何关系?

由米氏方程:V=(Vmax[S])\(Km+[S])可以知道,将V=0.8Vmax带入,有:[S]0.8Vmax=Vmax[S]\(Km+[S])得0.8=[S]\(Km+[S])解出此方程可得Km=0.25[S] 8、激酶是如何调节酶的活性的?试举一例说明。

激酶(kinase)是一类生物化学里的分子,从高能供体分子(如ATP)转移磷酸基团到特定靶分子(底物)的酶,这一过程谓之磷酸化。蛋白激酶是一类磷酸转移酶,其作用是将ATP的γ磷酸基转移到底物特定的氨基酸残基上,使蛋白质磷酸化,可分为5类。蛋白激酶在信号转导中主要作用有两个方面:其一是通过磷酸化调节蛋白质的活性,磷酸化和去磷酸化是绝大多数信号通路组分可逆激活的共同机制,有些蛋白质在磷酸化后具有活性,有些则在去磷酸化后具有活性;其二是通过蛋白质的逐级磷酸化,使信号逐级放大,引起细胞反应。

9、胰岛素使如何调节果糖-2,6-二磷酸酶活性的?

反应过程:

磷酸果糖激酶-2(PFK-2)催化6-磷酸果糖生成果糖-2,6-二磷酸

果糖-2,6-二磷酸酶(FBPase-2)催化果糖-2,6-二磷酸生成6-磷酸果糖

所以果糖-2,6-二磷酸的含量由PFK-2和FBPase-2的相对活性控制

(1)PFK-2和FBPase-2位于同一条肽链上,是同一个蛋白质的两种不同形式,是一种双功能酶

(2)胰高血糖素刺激PFK-2/FBPase-2磷酸化,酶具有FBPase-2活性,F-2,6-BP含量降低,进行糖异生

(3)胰岛素刺激PFK-2/FBPase-2去磷酸化,酶具有PFK-2活性,F-2,6-BP含量升高,促进PFK-1活性,进行糖酵解

10、请阐述乙醛酸循环的生理意义。

乙醛酸循环和三羧酸循环中存在着某些相同的酶类和中间产物。但是,它们是两条不同的代谢途径。乙醛酸循环是在乙醛酸体中进行的,是与脂肪转化为糖密切相关的反应过程。而三羧酸循环是在线粒体中完成的,是与糖的彻底氧化脱羧密切相关的反应过程。

油料植物种子发芽时把脂肪转化为碳水化合物是通过乙醛酸循环来实现的。这个过程依赖于线粒体、乙醛酸体及细胞质的协同作用。

生理意义:

(1)乙醛酸循环实现了脂肪到糖的转变,对植物的生长发育起着重要的作用。

【示例】在油料作物种子发芽期,乙醛酸循环进行的非常活跃,在此期间种子中储藏的脂类经乙酰-CoA生成糖,及时供给生长点所需的能量和碳架,促进发芽、生长。

(2)乙醛酸循环提高了生物体利用乙酰-CoA的能力。只要极少量的乙酰草酸做引物,乙醛酸循环就可以持续运行,不断产生琥珀酸,为TCA回补四碳单位。

11、为什么说6-磷酸葡萄糖是各个糖代谢途径的交叉点?

葡萄糖经过激酶的催化转变成葡萄糖-6-磷酸,可进入糖酵解途径氧化,也可进入磷酸戊糖途径代谢,产生核糖-5-磷酸、赤鲜糖-4-磷酸等重要中间体和生物合成所需的还原性辅酶Ⅱ;在糖的合成方面,非糖物质经过一系列的转变生成葡萄糖-6-磷酸,葡萄糖-6-磷酸在葡萄糖-6-磷酸酶作用下可生成葡萄糖,葡萄糖-6-磷还可在磷酸葡萄糖变位酶作用下生成葡萄糖-1-磷酸,进而生成糖原。由于葡萄糖-6-磷酸是各糖代谢途径的共同中间体,由它沟通了糖代谢分解与合成代谢的众多途径,因此葡萄糖-6-磷酸是各糖代谢途径的交叉点。

12、ATP是磷酸果糖激酶的底物,为什么ATP浓度高,反而会抑制磷酸果糖激酶?

(1)磷酸果糖激酶是别构酶,其ATP是别构酶抑制剂。其活性收到ATP/AMP比例的控制,所以当ATP浓度高时,其酶活性收到控制

(2)反馈抑制。磷酸果糖激酶是糖酵解途径中的限速酶之一,糖酵解途径是分解代谢,总的效应是放出能量,ATP浓度高表明细胞内能荷较高,因此会反馈抑制果糖磷酸激酶,来抑制糖酵解途径。

13、请阐述核苷酸代谢与氨基酸代谢的关系。

生糖氨基酸亦可转变为核苷酸.产生的核苷酸在各个代谢途径中扮演传递能量,如ATP;传递电子,如NAD+;充当第二信使cAMP等重要作用。

14、体内代谢在不同层面受到严格调控,包括酶水平、细胞水平、整体水平调节等,请分别阐述这些层次的调节是如何进行的。

机体存在三级水平的代谢调节,包括细胞水平调节、激素水平调节和以中枢神经系统为主导的整体水平调节。

(一)细胞水平调节主要通过调节关键酶的活性实现,其中通过改变现有酶分子的结构调节酶活性的方式,发生较快。也可通过改变酶的含量影响酶活性,此调节缓慢而持久。对酶结构调节包括酶的变构调节及酶蛋白的化学修饰调。对物质代谢和某些关键酶,两种调节各有作用,相辅相成。

(二)激素水平调节中,激素与靶细胞受体特异结合,将代谢信号转化为细胞内一系列信号转导级联过程,最终表现出激素的生物学效应。激素可分为膜受体激素及胞内受体激素。前者为蛋白质、多肽及儿茶酚胺类激素,具亲水性,需结合膜身体才能将信号跨膜传递入细胞内。后者为疏水性激素,可透过细胞膜与胞内受体(大多在核内)结合,形成二聚体,作为转录因子与DNA上的特定激素反应元件(HRE)结合,以调控该元件调控的特定基因的表达。

(三)整体水平调节是指神经系统通过内分泌腺间接调节代谢和直接影响组织、器官以调节代谢的方式,使机体代谢相对稳定,适应环境改变。饥饿及应急时通过改变多种激素分泌,整体调节引起体内物质代谢的改变。

15、糖原分解采用磷酸解而不是水解的生理意义是什么?

(1)糖原磷酸解时产物为葡萄糖-1-磷酸,水解时产物为葡萄糖.葡萄糖-1-磷酸可以异构为葡萄糖-6-磷酸,再进入糖酵解途径降解,葡萄糖通过糖酵解途径降解时,首先需要被激酶磷酸化生成葡萄糖-6-磷酸,这一不需要消耗ATP,因此糖原选择磷酸解可以避免第一步的耗能反应.

(2)肌肉细胞中:生理条件下,磷酸解产生的葡萄糖-1-磷酸以解离形式存在,而不致扩散到细胞外。

16、体内产生NADPH的途径主要是什么?NADPH具有哪些生理功能。

(1)磷酸戊糖途径(HMP)

HMP是糖类的一种分解代谢途径,主要有两个阶段:一是氧化阶段,一是非氧化阶段.NADPH产生于氧化阶段,由6-磷酸葡萄糖在6-磷酸葡萄糖脱氢酶的作用下形成5-磷酸核酮糖,脱下的氢变转移到NADP+上形成NADPH.

(2)柠檬酸-丙酮酸循环

此循环存在于软脂酸合成过程.软脂酸是在胞液中合成的,原料是乙酰辅酶A.存在于线粒体内的乙酰辅酶A不能随意通过线粒体内膜,需要柠檬酸-丙酮酸循环进行转移,由线粒体内转移至胞液中.线粒体内乙酰辅酶A和草酰乙酸形成柠檬酸,柠檬酸转移到胞液中,在柠檬酸裂解酶作用下分解为乙酰辅酶A和草酰乙酸,乙酰辅酶A用于合成软脂酸.草酰乙酸在苹果酸脱氢酶的作用下变为苹果酸,苹果酸在苹果酸酶的作用下进一步脱羧形成丙酮酸,在此过程中由NADP+上形成NADPH.

生理功能:

1)作为供氢体,参与体内多种生物合成反应,例如脂肪酸、胆固醇和类固醇激素的生物合成,都需要大量的NADPH+H+,因此磷酸戊糖通路在合成脂肪及固醇类化合物的肝、肾上腺、性腺等组织中特别旺盛。

2)NADPH+H+是谷胱甘肽还原酶的辅酶,对维持还原型谷胱甘肽(GSH)的正常含量,有很重要的作用,GSH能保护某些蛋白质中的巯基,如红细胞膜和血红蛋白上的SH 基,因此缺乏6-磷酸葡萄糖脱氢酶的人,因NADPH+H+缺乏,GSH含量过低,红细胞易于破坏而发生溶血性贫血。

3)NADPH+H+参与肝脏生物转化反应,肝细胞内质网含有以NADPH+H+为供氢体的加单氧酶体系,参与激素、药物、毒物的生物转化过程。

4)NADPH+H+参与体内嗜中性粒细胞和巨噬细胞产生离子态氧的反应,而有杀菌作用。

PART3生物膜与细胞信号转导

一名词解释:

1.脂筏:Lipid rafts,胆固醇分子不可能在脂双层里均匀分布,而是与鞘脂一起集中在膜的特定区域,胆固醇-鞘脂漂浮在液态磷酸甘油脂“海洋”上的“筏”一样。它会参与到细胞信号的转导过程中。

2.转运蛋白:transport proteins,是膜蛋白的一大类,介导生物膜内外的化学物质以及信号交换。尽管有一些小分子可以直接渗透通过膜,但是大部分的亲水性化合物,如糖,氨基酸,离子等,都需特异的转运蛋白的帮助来通过疏水屏障。转运蛋白在营养物质摄取,代谢产物释放及信号转导等细胞活动中起重要作用。

3.P-型ATPase:是阳离子转运蛋白,在转运过程中需要ATP可逆磷酸化的过程,磷酸化使得转运蛋白的构象发生变化,同时,转运阳离子做跨膜运输。人类基因组中至少有70个P-type ATPases具有相似的氨基酸组成和结构,尤其是Asp残基可以被磷酸化。常见的P-型ATPase有:Ca2+ATPase、Na+K+ATPase、H+ATPase、胃部H+K+ATPase等。

4.次级主动运输:Secondary active transport,第一种溶质(S1)通过初级主动运输产生浓度梯度后,接着,第一种溶质顺着浓度梯度提供能量,驱动第二种溶质(S2)逆浓度梯度运输。

5.G蛋白分子开关:G蛋白是指与鸟苷酸GDP或GTP结合的蛋白质,它通过共价键与质膜上的脂链连接。G蛋白异源三聚体GTP酶(GTPase)可以作为分子开关,开关是通过

结合和水解GTP进行控制的,G protein激活了效应子,也称做stimulatory G protein,或Gs。

①Gs与GDP结合是关闭,它不能激活腺苷酸环化酶

②Gs与受体相互作用引起GTP替代了GDP

③Gs与GTP的结合,使α-亚基与βγ二聚体分离,Gsα-亚基激活腺苷酸环化酶

④与Gsα-亚基结合的GTP,可由G蛋白本身具有的GTPase活性水解,Gsα亚基处于关闭,失活的Gsα亚基与βγ亚基重新结合。

6.激酶锚定蛋白:A kinase anchoring proteins(AKAPs),AKAPs是支架蛋白,位于脂筏的胞质侧,将信号通路中执行功能的蛋白聚集在一起,便于反应进行。

7.信号蛋白:信号蛋白是指在受体酪氨酸激酶(receptors tyrosine kinases,RTKs)信号通路中,含有磷酸化的酪氨酸残基结合的结构域从而与激活的RTKs结合的蛋白质,它们的结构域包括SH2结构域(Src-homology2(SH2)domain)和PTB结构域(phosphotyrosine-binding(PTB)domain)。它包括接头蛋白、停靠蛋白、转录因子和信号酶等不同类型。

8.MAP激酶级联反应(MAP kinase cascade):MAPK为有丝分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK),属丝氨酸/苏氨酸残激酶。级联反应途径的核心是三个激酶级联起作用,即MAPKKK、MAPKK和MAPK。主要是配体→RTK→信号蛋白adaptor→Ras→Raf(MAPKKK)→MAPKK→MAPK→进入细胞核→转录因子→基因表达的级联激活过程,最终达到调节基因的表达的目的。

二简答题:

1.溶质分子跨膜运动,有哪几种机制?

答:(1)简单扩散(Simple diffusion):

在简单扩散中,溶质的跨膜不需要载体和能量,只需要跨膜的浓度梯度或整合蛋白组成的亲水通道,方向总是从高浓度到低浓度。决定物质穿膜速率的因素是溶质的极性和化合物的大小:溶质的分配系数越大,脂溶性越强,穿膜越快;溶质分子越小及带电荷少的穿膜快。较典型的简单扩散有:

(a)O2、CO2、NO的高速渗透;

(b)借助于水孔蛋白的H2O的快速跨膜扩散;

(c)允许某一种特定类型离子通过的离子通道所介导的Na+、K+、Ca2+和Cl-等的跨膜运输。

(2)易化扩散(Facilitated diffusion):

溶质分子特异结合到膜一侧的易化转运蛋白(facilitative transporter)上,引发蛋白构象变化,将溶质暴露到膜的另一侧的表面,然后溶质顺着浓度梯度扩散出去,运动方向从

高浓度到低浓度。如红细胞中葡萄糖的异化扩散及红细胞葡萄糖转运蛋白。

(3)主动运输(Active transport):

通过转运蛋白(protein transporter)由放能过程(如ATP水解)释放的能量,使转运蛋白上特异结合位点亲和性改变。运动方向总是逆浓度梯度,从低浓度到高浓度。参与主动运输的蛋白称为“泵”。可以分为两种类型:

(a)初级主动运输(Primary active transport):由ATP水解释放的能量驱动溶质逆浓度梯度运输;

(b)次级主动运输(Secondary active transport):第一种溶质(S1)通过初级主动运输产生浓度梯度后,接着,第一种溶质顺着浓度梯度提供能量,驱动第二种溶质(S2)逆浓度梯度运输。

2.以细菌KcsA钾离子通道为例,说明电压门控的钾离子通道结构与运输的关系。

大多数离子通道以开放构象或以关闭构象而存在,被称为门控(gated)的,门的开放或关闭受到复杂的生理调节,且能被特定通道的不同因子所诱导。电压门控通道(Voltage-gated channels):构象状态取决于膜两侧离子的电荷不同。电压门控钾离子通道:第一个基于“X射线晶体学”的细菌K+离子通道(KcsA)的三维构象。

细菌K+通道由四个亚基组成,每个亚基由两个跨膜的螺旋(M1和M2)和通道胞外的孔区域(P)组成。

P(a pore region)是由一个长约1/3通道宽度的短的螺旋和一个能形成“衬里的”狭窄的选择性过滤器(selectivity filter)的无螺旋的环(loop)组成,允许K+通过。

选择性过滤器的衬里含有高度保守的五肽骨架(Gly-Tyr-Gly-Val-Thr)的羧基(C=O)形成四个连续的羰基氧原子环和一个Thr侧链产生的氧原子环。产生的5个连续排列的氧原子环有四个K+结合位点和通道(3nm>2.7nm)。

当K+进入通道时,电负性的氧原子替代了与K+结合的水分子。

尽管选择性过滤器具有4个K+结合位点,但实际上只能同时结合2个K+。

脱水的Na+的直径是1.9nm,此通道不能稳定地与氧原子相互作用。

真核生物的Kv channel也由四个同源的亚基组成,在离子通道的中心对称排列,每个亚基的N端和C端结构域都位于胞质一侧,而多肽链的中间部分含有6个跨膜helices,为S1–S6,这6个helices分成两个不同类型的结构域:

①pore domain:S5,S6和P segment与细菌中KcsA channel中的M1,M2和P segment的功能相似,S6决定通道门的开关

②voltage-sensing domain:S1-S4感受跨膜电压的变化

3.乙酰胆碱受体门控通道结构及离子运输机制。

乙酰胆碱(Acetylcholine)是由运动神经元释放到肌细胞质膜,与乙酰胆碱受体结合,它可以改变受体的构象,引起离子通道打开。乙酰胆碱受体允许Na+、Ca2+和K+通过。

Nicotinic acetylcholine receptor(烟碱乙酰胆碱受体)由5个亚基组成:各1个γ,β和δ,2个α亚基,每个α亚基带有1个乙酰胆碱结合位点。5个亚基围成1个中心孔,突出在胞质和细胞表面,2个乙酰胆碱结合到2个α亚基上,引起构象发生变化,使疏水侧链远离通道的中心,打开离子通道,让离子通过。

组成5个亚基的M2螺旋所含有的5个Leu侧链突出在通道,限制了通道的直径。当两个乙酰胆碱受体位点被占据,构象发生变化,随着M2螺旋的轻微扭曲,5个Leu 残基(黄色)旋转,远离通道中心,由较小的极性氨基酸(蓝色)代替,通道门打开,允许Ca2+、Na+和K+通过。

4.试述Na+/K+-ATPase结构及转运过程。

ATP水解酶与转运Na+和K+的蛋白是同一种蛋白质,科学家将该酶称为Na+/K+-ATPase或钠钾泵。它只存在于动物细胞中,维持细胞产生高Na+和K+梯度,在神经和肌肉细胞的冲动形成中起关键作用。钠钾泵由α、β两个亚基组成,α亚基为跨膜蛋白,既有Na+K+的结合位点,又有ATP酶的活性,β亚基为小亚基,是糖蛋白。

2015高级生物化学及实验技术试题答案

高级动物生化试题 问答题: 1. 简述非编码RNA(non-coding RNA)的种类、结构特点及其主要功能。 非编码RNA的种类结构和功能 1tRNA转运RNA(transfer RNA,tRNA) 结构特征之一是含有较多的修饰成分,核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。5’末端具有G(大部分)或C。3’末端都以ACC的顺序终结。有一个富有鸟嘌呤的环。有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对。有一个胸腺嘧啶环。tRNA具有三叶草型二级结构以及“L”型三级结构,tRNA 的不同种类及数量可对蛋白质合成效率进行调节。tRNA负责特异性读取mRNA中包含的遗传信息,并将信息转化成相应氨基酸后连接到多肽链中。 tRNA为每个密码子翻译成氨基酸提供了结合体,同时还准确地将所需氨基酸运送到核糖体上。鉴于tRNA在蛋白质合成中的关键作用,又把tRNA称作第二遗传密码。tRNA还具有其他一些特异功能,例如,在没有核糖体或其他核酸分子参与下,携带氨基酸转移至专一的受体分子,以合成细胞膜或细胞壁组分;作为反转录酶引物参与DNA合成;作为某些酶的抑制剂等。有的氨酰-tRNA还能调节氨基酸的生物合成。 2rRNA核糖体RNA(ribosomal RNA, rRNA) 核糖体RNA是细胞中最为丰富的RNA,在活跃分裂的细菌细胞中占80%以上。

他们是核糖体的组分,并直接参与核糖体中蛋白质的合成。核糖体是rRNA 提供了一个核糖体内部的“脚手架”,蛋白质可附着在上面。这种解释很直接很形象,但是低估了rRNA在蛋白质合成中的主动作用。较后续的研究表明,rRNA并非仅仅起到物理支架作用,多种多样的rRNA可起到识别、选择tRNA以及催化肽键形成等多种主动作用。例如:核糖体的功能就是,按照mRNA的指令将氨基酸合成多肽链。而这主要依靠核糖体识别tRNA 并催化肽键形成而实现。可以说核糖体是一个大的核酶( ribozyme)。而核糖体的催化功能主要是由rRNA来完成的,蛋白质并没有直接参与。 3 tmRNA tmRNA主要包括12个螺旋结构和4个“假结”结构,同时还包括一 个可译框架序列的单链RNA结构。tmRNA中H1由5’端和3’端两个末端形成,与tRNA的氨基酸受体臂相似。H1和H2的5’部分之间有一个由10-13nt 形成的环,类似tRNA中的二氢尿嘧啶环,称为“D”环。H3和H4,H6和H7,H8和H9,H10和H11之间分别形成Pk1,pK2,pK3,pK4。H4和H5之间则由一段包含编码标记肽ORF的单链RNA连接。H12由5个碱基对和7nt 形成的环组成,类似tRNA中的TΨC臂和TΨC环,称为“T”环。tmRNA 结构按照功能进行划分可分为tRNA类似域(TLD)和mRNA类似域(MLD),TLD主要包括H1,H2,H12,“D”环和“T”环,MDL则包括ORF和H5,这两部分分别具有类似tRNA和mRNA的功能。tmRNA是一类普遍存在于各种细菌及细胞器(如叶绿体,线粒体)中的稳定小分子RNA。它具有mRNA分子和tRNA分子的双重功能,它在一种特殊的翻译模式——反式翻译模式中发挥重要作用。同时,它与基因的表达调控以及细胞周期的调控等生命过程密切相关,是细菌体内蛋白质合成中起“质量控制”的重要分子之一。识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问

生物化学试题及答案

第五章脂类代谢 【测试题】 一、名词解释 1.脂肪动员 2.脂酸的β-氧化 3.酮体 4.必需脂肪酸 5.血脂 6.血浆脂蛋白 7.高脂蛋白血症 8.载脂蛋白 受体代谢途径 10.酰基载体蛋白(ACP) 11.脂肪肝 12.脂解激素 13.抗脂解激素 14.磷脂 15.基本脂 16.可变脂 17.脂蛋白脂肪酶 18.卵磷脂胆固醇脂酰转移酶(LCAT) 19.丙酮酸柠檬酸循环 20.胆汁酸 二、填空题 21.血脂的运输形式是,电泳法可将其为、、、四种。 22.空腹血浆中含量最多的脂蛋白是,其主要作用是。 23.合成胆固醇的原料是,递氢体是,限速酶是,胆固醇在体内可转化为、、。 24.乙酰CoA的去路有、、、。 25.脂肪动员的限速酶是。此酶受多种激素控制,促进脂肪动员的激素称,抑制脂肪动员的激素称。 26.脂肪酰CoA的β-氧化经过、、和四个连续反应步骤,每次β-氧化生成一分子和比原来少两个碳原子的脂酰CoA,脱下的氢由和携带,进入呼吸链被氧化生成水。 27.酮体包括、、。酮体主要在以为原料合成,并在被氧化利用。 28.肝脏不能利用酮体,是因为缺乏和酶。 29.脂肪酸合成的主要原料是,递氢体是,它们都主要来源于。 30.脂肪酸合成酶系主要存在于,内的乙酰CoA需经循环转运至而用 于合成脂肪酸。 31.脂肪酸合成的限速酶是,其辅助因子是。 32.在磷脂合成过程中,胆碱可由食物提供,亦可由及在体内合成,胆碱及乙醇胺由活化的及提供。 33.脂蛋白CM 、VLDL、 LDL和HDL的主要功能分别是、,和。 34.载脂蛋白的主要功能是、、。 35.人体含量最多的鞘磷脂是,由、及所构成。

生物化学测试题与答案

生物化学第一章蛋白质化学测试题 一、单项选择题 1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少?B(每克样品*6.25) A.2.00g B.2.50g C.6.40g D.3.00g E .6.25g 2.下列含有两个羧基的氨基酸是: E A.精氨酸B.赖氨酸C.甘氨酸D.色氨酸 E .谷氨酸 3.维持蛋白质二级结构的主要化学键是: D A.盐键 B .疏水键 C .肽键D.氢键E.二硫键( 三级结构) 4.关于蛋白质分子三级结构的描述,其中错误的是: B A.天然蛋白质分子均有的这种结构 B.具有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基 5.具有四级结构的蛋白质特征是: E A.分子中必定含有辅基 B.在两条或两条以上具有三级结构多肽链的基础上,肽链进一步折叠,盘曲形成 C.每条多肽链都具有独立的生物学活性 D.依赖肽键维系四级结构的稳定性 E.由两条或两条以上具在三级结构的多肽链组成 6.蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定: C A.溶液pH值大于pI B.溶液pH值小于pI C.溶液pH值等于pI D.溶液pH值等于7.4 E.在水溶液中 7.蛋白质变性是由于: D A.氨基酸排列顺序的改变B.氨基酸组成的改变C.肽键的断裂D.蛋白质空间构象的破坏E.蛋白质的水解 8.变性蛋白质的主要特点是: D A.粘度下降B.溶解度增加C.不易被蛋白酶水解 D.生物学活性丧失E.容易被盐析出现沉淀

9.若用重金属沉淀pI 为8 的蛋白质时,该溶液的pH值应为: B A.8 B.>8 C.<8 D.≤8 E.≥8 10.蛋白质分子组成中不含有下列哪种氨基酸?E A.半胱氨酸 B .蛋氨酸C.胱氨酸D.丝氨酸 E .瓜氨酸题 选择 二、多项 1.含硫氨基酸包括:AD A.蛋氨酸B.苏氨酸C.组氨酸D.半胖氨酸2.下列哪些是碱性氨基酸:ACD A.组氨酸B.蛋氨酸C.精氨酸D.赖氨酸 3.芳香族氨基酸是:ABD A.苯丙氨酸 B .酪氨酸C.色氨酸D.脯氨酸 4.关于α- 螺旋正确的是:ABD A.螺旋中每3.6 个氨基酸残基为一周 B.为右手螺旋结构 C.两螺旋之间借二硫键维持其稳定(氢键) D.氨基酸侧链R基团分布在螺旋外侧 5.蛋白质的二级结构包括:ABCD A.α- 螺旋 B .β- 片层C.β-转角D.无规卷曲 6.下列关于β- 片层结构的论述哪些是正确的:ABC A.是一种伸展的肽链结构 B.肽键平面折叠成锯齿状 C.也可由两条以上多肽链顺向或逆向平行排列而成 D.两链间形成离子键以使结构稳定(氢键) 7.维持蛋白质三级结构的主要键是:BCD A.肽键B.疏水键C.离子键D.范德华引力 8.下列哪种蛋白质在pH5 的溶液中带正电荷?BCD(>5) A.pI 为4.5 的蛋白质B.pI 为7.4 的蛋白质 C.pI 为7 的蛋白质D.pI 为6.5 的蛋白质 9.使蛋白质沉淀但不变性的方法有:AC A.中性盐沉淀蛋白 B .鞣酸沉淀蛋白 C.低温乙醇沉淀蛋白D.重金属盐沉淀蛋白 10.变性蛋白质的特性有:ABC

生物化学试题带答案

一、选择题 1、蛋白质一级结构的主要化学键就是( E ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( D ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物就是( B ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的就是( A ) A、IMP B、AMP C、GMP D、XMP E、ATP 6、体内氨基酸脱氨基最主要的方式就是( B ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用 D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( D ) A、产生NADH与FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶就是( C ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶就是酵解过程中的限速酶( D ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

10、DNA二级结构模型就是( B ) A、α一螺旋 B、走向相反的右手双螺旋 C、三股螺旋 D、走向相反的左手双螺旋 E、走向相同的右手双螺旋 11、下列维生素中参与转氨基作用的就是( D ) A、硫胺素 B、尼克酸 C、核黄素 D、磷酸吡哆醛 E、泛酸 12、人体嘌呤分解代谢的终产物就是( B ) A、尿素 B、尿酸 C、氨 D、β—丙氨酸 E、β—氨基异丁酸 13、蛋白质生物合成的起始信号就是( D ) A、UAG B、UAA C、UGA D、AUG E、AGU 14、非蛋白氮中含量最多的物质就是( D ) A、氨基酸 B、尿酸 C、肌酸 D、尿素 E、胆红素 15、脱氧核糖核苷酸生成的方式就是( B ) A、在一磷酸核苷水平上还原 B、在二磷酸核苷水平上还原 C、在三磷酸核苷水平上还原 D、在核苷水平上还原 16、妨碍胆道钙吸收的物质就是( E ) A、乳酸 B、氨基酸 C、抗坏血酸 D、柠檬酸 E、草酸盐 17、下列哪种途径在线粒体中进行( E ) A、糖的无氧酵介 B、糖元的分解 C、糖元的合成 D、糖的磷酸戊糖途径 E、三羧酸循环 18、关于DNA复制,下列哪项就是错误的( D ) A、真核细胞DNA有多个复制起始点 B、为半保留复制 C、亲代DNA双链都可作为模板 D、子代DNA的合成都就是连续进行的

生物化学题库及答案

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有 20 种,一般可根据氨基酸侧链(R)的 大小分为非极性侧链氨基酸和极性侧 链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有 疏水性;而后一类氨基酸侧链(或基团)共有的特征是具有亲水 性。碱性氨基酸(pH6~7时荷正电)有两3种,它们分别是赖氨 基酸和精。组氨基酸;酸性氨基酸也有两种,分别是天冬 氨基酸和谷氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋 白质分子中含有苯丙氨基酸、酪氨基酸或 色氨基酸。 3.丝氨酸侧链特征基团是-OH ;半胱氨酸的侧链基团是-SH ;组氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是氨基,除脯氨酸以外反应产物 的颜色是蓝紫色;因为脯氨酸是 —亚氨基酸,它与水合印三酮的反 应则显示黄色。 5.蛋白质结构中主键称为肽键,次级键有、 、

氢键疏水键、范德华力、二硫键;次级键中属于共价键的是二硫键键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 谷氨酸被缬氨酸所替代,前一种氨基酸为极性侧链氨基酸,后者为非极性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是异硫氰酸苯酯;在寡肽或多肽序列测定中,Edman反应的主要特点是从N-端依次对氨基酸进行分析鉴定。 8.蛋白质二级结构的基本类型有α-螺旋、、β-折叠β转角无规卷曲 和。其中维持前三种二级结构稳定键的次级键为氢 键。此外多肽链中决定这些结构的形成与存在的根本性因与氨基酸种类数目排列次序、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的αa-螺旋往往会中断。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是分子表面有水化膜同性电荷斥力 和。

生物化学试题及答案(6)

生物化学试题及答案(6) 默认分类2010-05-15 20:53:28 阅读1965 评论1 字号:大中小 生物化学试题及答案(6) 医学试题精选2010-01-01 21:46:04 阅读1957 评论0 字号:大中小 第六章生物氧化 【测试题】 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 5.解偶联剂 6.高能化合物 7.细胞色素 8.混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼 吸链,可分别产生____分子ATP或____分子ATP。 12.ATP生成的主要方式有____和____。 13.体内可消除过氧化氢的酶有____、____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 17.FMN或FAD作为递氢体,其发挥功能的结构是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素是____。 20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。 21.ATP合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色 素c氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的 ____。 24.微粒体中的氧化酶类主要有____和____。 三、选择题

高级生物化学历年试题及答案

2010年高级生化考试题 蛋白质组学:指应用各种技术手段来研究蛋白质组的一门新兴科学,其目的是从整体的角度分析细胞内动态变化的蛋白质组成成份、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律。 蛋白质组:一个细胞或组织或机体所包含的所有蛋白质,现定义为基因组表达的全部蛋白质。具有三种含义:一个基因组、一种生物、一种细胞所表达的全部蛋白质。 疏水作用层析:就是根据蛋白质表面的疏水性差别发展起来的一种纯化技术。在疏水作用层析中,不是暴露的疏水基团促进蛋白质与蛋白质之间的相互作用,而是连接在支持介质(如琼脂糖)上的疏水基团与蛋白质表面上暴露的疏水基团结合。 DNA的三级结构:DNA分子通过扭曲和折叠形成的特定构象。核酸的三级结构反映了对整体三维形状有影响的相互作用,包括不同二级结构元件间的相互作用,单链与二级结构间的相互作用以及核酸的拓扑特征。 DNA的四级结构: 共价催化:在酶催化反应过程中,酶与底物以共价键结合成中间物过滤态以加速反应。即在催化时,亲核催化剂或亲电催化剂能分别放出点子或汲取电子,并作用于底物的缺电子反应中心或负电中心,迅速形成不稳定的共价键中间复合物,降低反应活化能,使反应加速。 Ks型不可逆抑制剂:这类抑制剂主要作用于酶活性部位的必须基团,但也作用于酶非活性部位,取决于抑制剂与酶活性部位必须基团在反应前形成非共价络合物的解离常数以及与非活性部位同类基团形成非共价络合物的解离常数之比,即Ks的比值,故称为Ks型不可逆抑制剂。 Kcat型不可逆抑制剂:这类抑制剂不但具有与天然底物相类似的结构,而且本身也是酶的底物,可被酶催化而发生类似底物的变化。但这类抑制剂还有一种潜伏性的反应基团,这种基团可因酶的催化而暴露或活化,作用于酶活性中心或辅基,使酶共价共价修饰而失活。 Ks分段盐析法:在一定的pH值和温度条件下,改变盐的离子强度I值,使不同的溶质在不同的离子强度下有最大的析出,此种方法称为Ks分段盐析法。 β分段盐析:保持溶液的离子强度不变,改变溶液的pH值和温度,使不同的溶质在不同的PH值和温度条件下台最大的析出,此种方法称为β分段盐析法。 cDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。 穿梭载体(shuttle vector):是指含有两个亲缘关系不同的复制子,能在两种不同的生物中复制的。这类载体不仅具有细菌质粒的复制原点及选择标记基因,还有真核生物的自主复制序列(ARS)以及选择标记性状,具有多克隆位点.通常穿梭载体在细菌中用于克隆,扩增克隆的基因,在酵母菌中用于基因表达分析. 后生遗传:指通过遗传而产生的基因表达修饰,且不能被逆转,此类遗传改变主要指染色体结构的改变和DNA甲基化状态的改变。 对角线电泳:用于分析混合物中某一组分对某些化学处理或光处理后变化的双向电泳技术。样品加样后先从一个方向进行电泳分离,经化学或光处理后,再以与第一次电泳垂直方向进行第二次电泳分离,则经过处理未被修饰的组分皆位于电泳图谱的对角线上。 化学酶工程:也称初级酶工程是指天然酶、化学修饰酶、固定化酶及人工模拟酶的研究和应用。 生物酶工程:是用生物学方法,特别是基因工程、蛋白质工程和组合库筛选法改造天然酶,创造性能优异的新酶;它是酶学和以DNA重组技术为主的现代分子生物学技术相结合的产物。 酶提取的回收率:每次提纯后酶制剂总活力与提取液的总活力的百分比。 1,miRNA和siRNA,及其功能(网上搜索所得) SiRNA的主要特征:长约21到23nt ;双链的3’端各有2个或3个突出的核苷酸;5’端磷酸化,3’端为自由的-OH基团。siRNA可作为一种特殊引物,在RNA指导的RNA聚合酶作用下,以靶mRNA为模板合成dsRNA,后者可被降解形成新的siRNA,新生成的siRNA又可进入上述循环。这种过程称为随机降解性多聚酶链反应。MicroRNA (miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(~21-23个核苷酸)。MiRNA,以及miRISCs(RNA-蛋白质复合物)在动物和植物中广泛表达。因之具有破坏目标特异性基因的转录产物或者诱导翻译抑制的功能,miRNA被认为在调控发育过程中有重要作用。 miRNA的特点:广泛存在于真核生物中, 是一组不编码蛋白质的短序列RNA , 它本身不具有开放阅读框架(ORF) ;通常的长度为20~24 nt , 但在3′端可以有1~2 个碱基的长度变化;成熟的miRNA 5′端有一磷酸基团, 3′端为羟基, 这一特点使它与大多数寡核苷酸和功能RNA 的降解片段区别开来;多数miRNA 还具有高度保守性、时序性和组织特异

17高级 生物化学试卷A卷2018-2019下

2018——2019 生物化学试卷(A卷) 班级: 姓名:______ __ 学号:得分:_______ 一、最佳选择题(25分):下列各题请选择一个最佳答案。 1、维持蛋白质亲水胶体的因素有( ) A.氢键 B.水化膜和表面电荷 C.盐键 D.二硫键 E.肽键 2、蛋白质变性后可出现下列哪种变化( ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物是( ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、关于催产素和加压素功能方面的叙述,正确的是 A 催产素具有减少排尿的功效; B 加压素可以促进子宫和乳腺平滑肌收缩; C 加压素参与记忆过程; D 催产素可使血压升高; E 催产素可促进血管平滑肌收缩。 5、下列关于α—螺旋的叙述,哪一项是错误的? A 氨基酸残基之间形成的 C=O 与 H-N 之间的氢键使α—螺旋稳定; B 减弱侧链基团 R 之间不利的相互作用,可使α—螺旋稳定; C 疏水作用使α—螺旋稳定; D 在某些蛋白质中,α—螺旋是二级结构中的一种结构类型; E 脯氨酸和甘氨酸的出现可使α—螺旋中断。 6、下列关于二硫键的叙述哪一项是错误的? A 二硫键是两条肽链或者同一条肽链的两分子半胱氨酸之间氧化后形成的; B 多肽链中的二硫键与硫基乙醇反应可形成两个硫基; C 二硫键对稳定蛋白质构象起重要作用; D 在某些蛋白质中,二硫键是一级结构所必需的; E 二硫键对于所有蛋白质的四级结构是必需的。 7、对儿童是必需而对成人则为非必需的氨基酸是 A.异亮氨酸、亮氨酸 B.赖氨酸、蛋氨酸 C.苯丙氨酸、苏氨酸 D.精氨酸、组氨酸 E.色氨酸、缬氨酸 8、下列何种酶是酵解过程中的限速酶( )

生物化学试题及答案期末用

生物化学试题及答案 维生素 一、名词解释 1、维生素 二、填空题 1、维生素的重要性在于它可作为酶的组成成分,参与体内代谢过程。 2、维生素按溶解性可分为和。 3、水溶性维生素主要包括和VC。 4、脂脂性维生素包括为、、和。 三、简答题 1、简述B族维生素与辅助因子的关系。 【参考答案】 一、名词解释 1、维生素:维持生物正常生命过程所必需,但机体不能合成,或合成量很少,必须食物供给一类小分子 有机物。 二、填空题 1、辅因子; 2、水溶性维生素、脂性维生素; 3、B族维生素; 4、VA、VD、VE、VK; 三、简答题 1、

生物氧化 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 二、填空题 1.生物氧化是____ 在细胞中____,同时产生____ 的过程。 3.高能磷酸化合物通常是指水解时____的化合物,其中重要的是____,被称为能量代谢的____。 4.真核细胞生物氧化的主要场所是____ ,呼吸链和氧化磷酸化偶联因子都定位于____。 5.以NADH为辅酶的脱氢酶类主要是参与____ 作用,即参与从____到____的电子传递作用;以NADPH 为辅酶的脱氢酶类主要是将分解代谢中间产物上的____转移到____反应中需电子的中间物上。 6.由NADH→O2的电子传递中,释放的能量足以偶联ATP合成的3个部位是____、____ 和____ 。 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。

10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 12.ATP生成的主要方式有____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 26.NADH经电子传递和氧化磷酸化可产生____个ATP,琥珀酸可产生____个ATP。 三、问答题 1.试比较生物氧化与体外物质氧化的异同。 2.描述NADH氧化呼吸链和琥珀酸氧化呼吸链的组成、排列顺序及氧化磷酸化的偶联部位。 7.简述化学渗透学说。 【参考答案】 一、名词解释 1.物质在生物体内进行的氧化反应称生物氧化。 2.代谢物脱下的氢通过多种酶与辅酶所催化的连锁反应逐步传递,最终与氧结合为水,此过程与细胞呼吸有关故称呼吸链。 3.代谢物脱下的氢经呼吸链传递给氧生成水,同时伴有ADP磷酸化为ATP,此过程称氧化磷酸化。 4.物质氧化时每消耗1摩尔氧原子所消耗的无机磷的摩尔数,即生成ATP的摩尔数,此称P/O比值。 二、填空题 1.有机分子氧化分解可利用的能量 3.释放的自由能大于20.92kJ/mol ATP 通货 4.线粒体线粒体内膜 5.生物氧化底物氧H++e- 生物合成 6.NADH-CoQ Cytb-Cytc Cyta-a3-O2 9.复合体Ⅱ泛醌复合体Ⅲ细胞色素c 复合体Ⅳ 10.NADH→泛醌泛醌→细胞色素c 细胞色素aa3→O2 30.5 12.氧化磷酸化底物水平磷酸化 14.NAD+ FAD

最新生物化学试题集合(有答案)

《生物化学》期末考试题 A 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 ( ) 2、糖类化合物都具有还原性 ( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。 ( ) 5、ATP含有3个高能磷酸键。 ( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。 ( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。 ( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。 ( ) 9、血糖基本来源靠食物提供。 ( ) 10、脂肪酸氧化称β-氧化。 ( ) 11、肝细胞中合成尿素的部位是线粒体。 ( ) 12、构成RNA的碱基有A、U、G、T。 ( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。 ( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。 ( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() 1、下列哪个化合物是糖单位间以α-1,4糖苷键相连: ( ) A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体内贮能的主要形式 ( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油

3、蛋白质的基本结构单位是下列哪个: ( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是 ( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是: ( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA 6、物质脱下的氢经NADH呼吸链氧化为水时,每消耗1/2分子氧可生产ATP分子数量( ) A、1B、2 C、3 D、4. E、5 7、糖原分子中由一个葡萄糖经糖酵解氧化分解可净生成多少分子ATP? ( ) A、1 B、2 C、3 D、4 E、5 8、下列哪个过程主要在线粒体进行 ( ) A、脂肪酸合成 B、胆固醇合成 C、磷脂合成 D、甘油分解 E、脂肪酸β-氧化 9、酮体生成的限速酶是 ( ) A、HMG-CoA还原酶 B、HMG-CoA裂解酶 C、HMG-CoA合成酶 D、磷解酶 E、β-羟丁酸脱氢酶 10、有关G-蛋白的概念错误的是 ( ) A、能结合GDP和GTP B、由α、β、γ三亚基组成 C、亚基聚合时具有活性 D、可被激素受体复合物激活 E、有潜在的GTP活性 11、鸟氨酸循环中,合成尿素的第二个氮原子来自 ( ) A、氨基甲酰磷酸 B、NH3 C、天冬氨酸 D、天冬酰胺 E、谷氨酰胺 12、下列哪步反应障碍可致苯丙酮酸尿症 ( )

生物化学习题【题库】

生物化学习题集 生物化学教研室 二〇〇八年三月

生物化学习题 第一章核酸的结构和功能 一、选择题 1、热变性的DNA分子在适当条件下可以复性,条件之一是() A、骤然冷却 B、缓慢冷却 C、浓缩 D、加入浓的无机盐 2、在适宜条件下,核酸分子两条链通过杂交作用可自行形成双螺旋,取决于() A、DNA的Tm值 B、序列的重复程度 C、核酸链的长短 D、碱基序列的互补 3、核酸中核苷酸之间的连接方式是:() A、2’,5’—磷酸二酯键 B、氢键 C、3’,5’—磷酸二酯键 D、糖苷键 4、tRNA的分子结构特征是:() A、有反密码环和 3’—端有—CCA序列 B、有密码环 C、有反密码环和5’—端有—CCA序列 D、5’—端有—CCA序列 5、下列关于DNA分子中的碱基组成的定量关系哪个是不正确的?() A、C+A=G+T B、C=G C、A=T D、C+G=A+T 6、下面关于Watson-Crick DNA双螺旋结构模型的叙述中哪一项是正确的?() A、两条单链的走向是反平行的 B、碱基A和G配对 C、碱基之间共价结合 D、磷酸戊糖主链位于双螺旋侧 7、具5’-CpGpGpTpAp-3’顺序的单链DNA能与下列哪种RNA杂交?() A、5’-GpCpCpAp-3’ B、5’-GpCpCpApUp-3’ C、5’-UpApCpCpGp-3’ D、5’-TpApCpCpGp-3’ 8、RNA和DNA彻底水解后的产物() A、核糖相同,部分碱基不同 B、碱基相同,核糖不同 C、碱基不同,核糖不同 D、碱基不同,核糖相同 9、下列关于mRNA描述哪项是错误的?() A、原核细胞的mRNA在翻译开始前需加“PolyA”尾巴。 B、真核细胞mRNA在 3’端有特殊的“尾巴”结构 C、真核细胞mRNA在5’端有特殊的“帽子”结构 10、tRNA的三级结构是() A、三叶草叶形结构 B、倒L形结构 C、双螺旋结构 D、发夹结构 11、维系DNA双螺旋稳定的最主要的力是() A、氢键 B、离子键 C、碱基堆积力 D德华力 12、下列关于DNA的双螺旋二级结构稳定的因素中哪一项是不正确的?() A、3',5'-磷酸二酯键 C、互补碱基对之间的氢键 B、碱基堆积力 D、磷酸基团上的负电荷与介质中的阳离子之间形成的离子键 13、Tm是指( )的温度 A、双螺旋DNA达到完全变性时 B、双螺旋DNA开始变性时 C、双螺旋DNA结构失去1/2时 D、双螺旋结构失去1/4时

生物化学考试试卷及答案

生物化学考试试卷及答 案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

河南科技学院 2014-2015学年第二学期期终考试 生物化学试题(A ) 适用班级:园林131-134 注意事项:1.该考试为闭卷考试; 2.考试时间为考试周; 3.满分为100分,具体见评分标准。 ) 1、蛋白质的变性作用: 氨基酸的等点: 3、氧化磷酸化: 4、乙醛酸循环: 5、逆转录: 二、选择题(每题1分,共15分) 1、蛋白质多肽链形成α-螺旋时,主要靠哪种次级键维持( ) A :疏水键; B :肽键: C :氢键; D :二硫键。 2、在蛋白质三级结构中基团分布为( )。 A :疏水基团趋于外部,亲水基团趋于内部; B :疏水基团趋于内部,亲水基团趋于外部; C :疏水基团与亲水基团随机分布; D :疏水基团与亲水基团相间分布。 3、双链DNA 的Tm 较高是由于下列哪组核苷酸含量较高所致( ) A :A+G ; B :C+T : C :A+T ; D :G+C 。 4、DNA 复性的重要标志是( )。 A :溶解度降低; B :溶液粘度降低; C :紫外吸收增大; D :紫外吸收降低。 5、酶加快反应速度的原因是( )。 A :升高反应活化能; B :降低反应活化能; C :降低反应物的能量水平; D :升高反应物的能量水平。 6、鉴别酪氨酸常用的反应为( )。 A 坂口反应 B 米伦氏反应 C 与甲醛的反应 D 双缩脲反应 7、所有α-氨基酸都有的显色反应是( )。 A 双缩脲反应 B 茚三酮反应 C 坂口反应 D 米伦氏反应 8、蛋白质变性是由于( )。 A 蛋白质一级结构的改变 B 蛋白质空间构象的破环 C 辅基脱落 D 蛋白质发 生水解 9、蛋白质分子中α-螺旋构象的特征之一是( )。

生物化学试题及标准答案(蛋白质化学部分).docx

人学牛物化学试题库三 蛋白质化学 一、填空题 1?构成蛋白质的氨基酸有种,一般可根据氨基酸侧链(R)的大小分为侧链氨基酸和侧链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具 有性;而后一类氨基酸侧链(或基团)共有的特征是具有性。碱性氨基酸(pH6?7时荷正电)有两种,它们分别是氨基酸和氨基酸;酸性氨基酸也有 两种,分别是氨基酸和氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子中 含有氨基酸、氨基酸或氨基酸。 3.丝氨酸侧链特征基团是;半胱氨酸的侧链基团是;组氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是,除脯氨酸以外反应产物的颜色是;因为脯氨酸是a—亚氨基酸,它与水合印三酮的反应则显示色。 5.蛋白质结构中主键称为键,次级键有、、 、、;次级键中属于共价键的是键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子b亚基的第六位 氨酸被氨酸所替代,前一种氨基酸为性侧链氨基酸,后者 为性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是;在寡肽或多肽序列测定中,Edman反应的主要 特点是。 8.蛋白质二级结构的基本类型有、、 和。其中维持前三种二级结构稳定键的次级键为 键。此外多肽链中决定这些结构的形成与存在的根本性因与、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的a-螺旋往往会。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是 和O 10.蛋白质处于等电点时,所具有的主要特征是、。 11.在适当浓度的b-毓基乙醇和8MJR溶液中,RNase (牛)丧失原有活性。这主要是因为RNA酶的被破坏造成的。其中b-毓基乙醇可使RNA酶分子中的键破坏。而8M腺可使键破坏。当用透析方法去除b-毓基乙醇和服的情况下,RNA酶又恢复原 有催化功能,这种现象称为。 12.细胞色素C,血红蛋白的等电点分别为10和7.1,在pH8.5的溶液中它们分别荷的电性是、。 13?在生理pH条件下,蛋白质分子中氨酸和氨酸残基的侧链几乎完全带负电,而氨酸、氨酸或氨酸残基侧链完全荷正电(假设该蛋白质含有这 些氨基酸组分)。 14.包含两个相邻肽键的主肽链原子可表示为,单个肽平面及包含的原子可 表示为。 15.当氨基酸溶液的pH=pI时,氨基酸(主要)以离子形式存在;当pH>pI时,

生物化学试题及答案 (3)

一、名词解释 二、选择题(每题1分,共20分) 1、蛋白质多肽链形成α-螺旋时,主要靠哪种次级键维持() A:疏水键;B:肽键: C:氢键;D:二硫键。 2、在蛋白质三级结构中基团分布为()。 A B C: D: 3、 A: C: 4、 A B C D 5 A B C D 6、非竟争性抑制剂对酶促反应动力学的影响是()。 A:Km增大,Vm变小; B:Km减小,Vm变小; C:Km不变,Vm变小; D:Km与Vm无变化。 7、电子经FADH2呼吸链交给氧生成水时释放的能量,偶联产生的ATP数为()A:1;B:2;C:3;D:4。 8、不属于呼吸链组分的是()A:Cytb;B:CoQ;C:Cytaa3;D:CO2。 9、催化直链淀粉转化为支链淀粉的是() A:R酶;B:D酶; C:Q酶;D:α—1,6糖苷酶10、三羧酸循环过程叙述不正确的 1 。C:脱氨基作用;D:水解作 用。 15、合成嘌呤环的氨基酸是()。A:甘氨酸、天冬氨酸、谷氨酸;B:甘氨酸、天冬氨酸、谷氨酰胺;C:甘氨酸、天冬酰胺、谷氨酰胺;D:蛋氨酸、天冬酰胺、谷氨酸。 16、植物体的嘌呤降解物是以() -来源网络,仅供个人学习参考

形式输送到细嫩组织的。 A:尿酸;B:尿囊酸; C:乙醛酸;D:尿素。 17、DNA复制方式为()。 A:全保留复制; B:半保留复制; C:混合型复制; D:随机复制。 18、DNA复制时不需要下列那种A: B C: D: 19 A: 20、 A B C D 三、 1 ( 2 ( 3、生物氧化是()在细胞中(),同时产生()的过程。 4、麦芽糖是()水解的中间产物。它是由两分子的()通过()键连接起来的双糖。 5、磷酸戊糖途径是在()中进行的,其底物是(),产物是()和()。 6、核糖核酸的合成有()和()。 7、蛋白质合成步骤为()、()、()。 四、是非判断题(每题1分,共10分) 1、蛋白质分子中的肽键是单键,因此能够自由旋转。() 2、复性后DNA分子中的两条链依然符合碱基配对原则。() ) 。 蛋白质的空间结构遭到破坏,性质发性改变,生物活性丧失的现象。 2、减色效应:指DNA分子复性时其紫外吸收减少的现象。 3、活性中心:酶分子上直接与底物结合并进行催化的部位。 4、电子传递体系:代谢物上的氢原子经脱氢酶激活脱落后,经过一系列的传递体传递给最终受体氧形成二氧化碳和水的全部过程。 5、必需脂肪酸:是指人体不能合成,必需由食物提供的脂肪酸。 6、遗传密码:mRNA中的核苷酸和肽链中氨基酸的对应方式。 7、生糖氨基酸:分解产物可以进入糖异生作用生成糖的氨基酸。 8、逆转录:是指以RNA为模板指导DNA生物合成的过 -来源网络,仅供个人学习参考

高级生物化学复习题及答案汇总

PART1核酸化学及研究方法 名词解释: 1.正向遗传学:通过生物个体或细胞的基因组的自发突变或人工诱变,寻找相关的表型或性状的改变。然后从这些特定性状变化的个体或细胞中找到相应的突变基因,并揭示其功能。 2.核小体组蛋白修饰:核小体组蛋白八聚体中每个组蛋白多肽链的N末端游离在核心之外,常被一些化学基团修饰。包括①乙酰化:赖氨酸的乙酰化②甲基化:赖氨酸和精氨酸的甲基化③磷酸化:丝氨酸的磷酸化④泛素化:赖氨酸的泛素化 3.位点特异性重组:是遗传重组的一类,这类重组依赖于小范围同原序列的联会。重组也发生在同源的短序列的范围之内,需要位点特异性的蛋白质分子参与催化。 4.转座机制:转座是一个DNA片段从基因组中的一个位置转移到另外一个位置的过程,该DNA片段称转座元件或转座子。①细菌转座子通过“剪切-黏贴”机制进行转录②转座酶两个不同亚基结合在转座子的特定序列上③两个亚基靠在一起形成有活性的二聚体,导致转座子的切除④转座酶-转座子复合物结合到靶DNA上,通过转座酶的催化将转座子整合到新位点上。 5.基因敲除:利用DNA同源重组原理,用设计的同源片段替代靶基因片段,外源DNA 与受体细胞基因组中序列相同或相近的基因发生同源重组,从而代替受体细胞基因组中的相同/相似的基因序列,整合入受体细胞的基因组中。此法可产生精确的基因突变,从而达到基因敲除的目的。 6.Sanger双脱氧终止法:主要用于DNA基因分析,是现在应用最多的核酸测序技术(也即第一代DNA测序技术)。核酸模板在核酸聚合酶、引物、四种单脱氧碱基存在条件下复制或转录时,如果在四管反应系统中分别按比例引入四种双脱氧碱基,只要双脱氧碱基掺入链端,该链就停止延长,链端掺入单脱氧碱基的片段可继续延长。如此每管反应体系中便合成以共同引物为5’端,以双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分四个泳道进行电泳。以分离长短不一的核酸片段(长度相邻者仅差一个碱基),根据片段3’端的双脱氧碱基,便可依次阅读合成片段的碱基排列顺序。 7.荧光实时PCR技术原理:是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。通过内参或者外参法对待测样品中的特定DNA 序列进行定量分析的方法。该技术在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。 8.双分子荧光互补(BiFC)技术原理:一种直观、快速地判断目标蛋白在活细胞中的定位和相互作用的新技术。该技术巧妙地将荧光蛋白分子的两个互补片段分别与目标蛋白融合表达,如果荧光蛋白活性恢复,则表明两目标蛋白发生了相互作用。同时检测到多种

食品生物化学十套试题与答案

食品生物化学试题一 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干前的括号内。本大题共20小题,每小题1分,共20分) ()1.用凯氏定氮法测定乳品蛋白质含量,每克测出氮相当于()克蛋白质含量。 A.0.638 B.6.38 C.63.8 D.638.0 ()2.GSH分子的作用是()。 A.生物还原 B.活性激素 C.营养贮藏 D.构成维生素 ()3.蛋白变性后()。 A.溶解度降低 B.不易降解 C.一级结构破坏 D.二级结构丧失 ()4.破坏蛋白质水化层的因素可导致蛋白质()。 A.变性 B.变构 C.沉淀 D.水解 ()5.()实验是最早证明DNA是遗传物质的直接证据。 A.大肠杆菌基因重组 B.肺炎链球菌转化 C.多物种碱基组成分析 D.豌豆杂交 ()6.紫外分析的A260/A280比值低,表明溶液中()含量高。 A.蛋白质 B.DNA C.RNA D.核苷酸 ()7.DNA生物合成的原料是()。 A.NTP B.dNTP C.NMP D.dNMP ()8.据米氏方程,v达50%Vmax时的底物浓度应为()Km。 A.0.5 B.1.0 C.2.0 D.5.0 ()9.竞争性抑制剂存在时()。 A.Vmax下降, Km下降 B.Vmax下降, Km增加 C.Vmax不变, Km增加 D.Vmax不变, Km下降 ()10.维生素()属于水溶性维生素。 A.A B.B C.D D.E ()11.糖代谢中,常见的底物分子氧化方式是()氧化。 A.加氧 B.脱羧 C.脱氢 D.裂解 ()12.每分子NADH+H+经呼吸链彻底氧化可产生()分子ATP。 A.1 B.2 C.3 D.4 ()13.呼吸链电子传递导致了()电化学势的产生。 A.H+ B.K+ C.HCO3- D.OH- ()14.()是磷酸果糖激酶的变构抑制剂。

生物化学试题及答案.

生物化学试题及答案(6) 第六章生物氧化 【测试题】 一、名词解释 1.生物氧化 2. 呼吸链 3.氧化磷酸化 4. P/O 比值 5.解偶联剂 6.高能化合物 7.细胞色素 8.混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有 ___ 、 __ 、___ 、 _ 、____ 。 10.在NADH氧化呼吸链中,氧化磷酸化偶联部位分别是、、___ ,此三处释放的能量均超过 __ KJ 11.胞液中的NADH+H通+过______ 和_________________________________ 两种穿梭机制进入线粒体,并可进入_________________ 氧化呼吸链或______________________________ 氧化呼 吸链,可分别产生 __ 分子ATP 或分子ATP。 12.ATP 生成的主要方式有___ 和。 13.体内可消除过氧化氢的酶有 __ 、 ___ 和。 14.胞液中α- 磷酸甘油脱氢酶的辅酶是___ ,线粒体中α- 磷酸甘油脱氢酶的辅基是___ 。 15.铁硫簇主要有__ 和____ 两种组成形式,通过其中的铁原子与铁硫蛋白中的____ 相连接。 16.呼吸链中未参与形成复合体的两种游离成分是____ 和__ 。 17.FMN 或FAD 作为递氢体,其发挥功能的结构是 __ 。 18.参与呼吸链构成的细胞色素有、 ____ 、____ 、___ 、____ 、___ 。 19.呼吸链中含有铜原子的细胞色素是 __ 。 20.构成呼吸链的四种复合体中,具有质子泵作用的是___ 、___ 、___ 。 21.ATP 合酶由_ 和____ 两部分组成,具有质子通道功能的是____ ,__ 具有催化生成ATP 的作用。 22.呼吸链抑制剂中, __ 、_____ 、 _ 可与复合体Ⅰ结合, ____ 、___ 可抑制复合体Ⅲ,可抑制细胞色素c 氧化酶的物质有 __ 、___ 、___ 。 23.因辅基不同,存在于胞液中SOD 为__ ,存在于线粒体中的SOD 为___ ,两者均可消除体内产生的 24.微粒体中的氧化酶类主要有 __ 和 三、选择题

相关文档
最新文档