超声速翼型和亚声速翼型的气动特性

超声速翼型和亚声速翼型的气动特性
超声速翼型和亚声速翼型的气动特性

超声速翼型和亚声速翼型的气

动特性

总负责:祝恺辰(071450704)

组员:辛宏宇(071450703)

超声速和亚声速翼型不同的主要原因是超声速翼型需承受激波阻力。

激波

超声速气体中的强压缩波。微扰动(如弱压缩波)的叠加而形成的强间断,带有很强的非线性效应。

经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。压强的跃升产生可闻的爆响。如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。理想气体的激波没有厚度,是数学意义的不连续面。实际气体有粘性和传热性,这种物理性质使激波成为连续式的,不过其过程仍十分急骤。因此,实

际激波是有厚度的,但数值十分微小,只有气体分子自由程的某个倍数,波前的相对超音速马赫数越大,厚度值越小。

一、超音速薄翼型

翼型作亚声速运动和超声速运动时,对气流的扰动有很大不同

根据动量定律,向前流出的气体将给翼型一个像后的反作用力,它有一个阻力分量;而从控制面向后流出的气流对翼型有一个推力分量;同理,向前流入控制面的气流将给翼型一个阻力分量。而向后流入控制面的气流将给翼型一个阻力分量。从控制面垂直进出的流动不会是翼使翼型承受阻力或是推力。这样,在无粘性流体中作亚胜诉流亚声速扰动无界 原子弹爆炸形成的蘑菇云也是一种激波

超声速扰动限于前马赫锥后,前半部压缩,后

半部膨胀,扰动均沿着波德传播方向即垂直于马赫波

动的翼型不承受阻力(推力与阻力相消),而超声速翼型将承受阻力,这种与马赫波传播有关的阻力称为波阻。

超声速流动中,绕流物体产生的激波阻力大小与物体头波钝度有着密切的关系。由于钝物的绕流将产生离体激波,激波阻力大;而尖头体的绕流将产生附体激波,激波阻力小。

因此,对于超声速翼型,前缘最好作成尖的,如菱形、四边形、双弧形。但是对于超声速飞机,总是要经历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较小迎角下气流就要发生给力,是翼型的气动特性能变坏。为此,为了兼顾超声速飞机的低速特性,目前低超声速的翼型,其形状都采用小圆头的对称薄翼。

1.马赫锥的概念

超声速流场内从任一点P作两个与来

流平行的马赫锥,P点上流的称为前马赫

锥,下流的称为后马赫锥,如图:

马赫锥的半顶角为马赫角:

马赫锥所围区域称为P点的依赖去,在该马赫锥内所有的扰动源都能对P产生影响。

超声速机翼不同边界对机翼绕流性质有很大影响,从而形象机翼的气动特性,因此必须将机翼的边界划分为前缘、后缘和侧缘。

机翼与来流放心平行的直线首先相交的边界为前缘,低二次相交的边界为后缘,与来流平行的机翼为侧缘。是否前缘、后缘或侧缘自然还与来流与机翼的相对放心有关。

如果来流的相对于前(后)缘的法向分速小于音速,则称该前(后)缘为亚音速前(后)缘;反之如来流的相对于前(后)缘的法向分速大于音速,则称该前(后)缘为超音速前(后)缘。超声速前缘和亚声速前缘的几何关系见下图,当来流马赫线位于前缘之后即为超音速前缘,之前为亚音速前缘:

2.流区和三维流区

在超音速三维机翼中仅受单一前缘影响的区域称为二维流区(每点的依赖区只包含一个前缘),如下图中阴影部分所示。其余非阴影部分为三维流区,其影响区包含两个前缘(或一前缘一侧缘或还含后缘)。

有限翼展薄机翼的超音速绕流特性

有限翼展薄机翼的超音速绕流特性与其前后缘性质有很大关系,后掠机翼随来流马赫数不同可以是亚音速前(后)缘,亚音速前缘超音速后缘或超音速前(后)缘,如图:以平板后掠翼为例,亚音速前缘时,上下翼面的绕流要通过前缘产生相互影响,结果垂直于前缘的截面在前缘显示出亚音速的绕流特性(图a)。

如果是亚音速后缘,则垂直于后缘的截面在后缘也要显示出亚音速的绕流特性:流动沿平板光滑离开以满足后缘条件(图b)。

如果是超音速前、后缘,则上下表面互不影响,垂直于前、后缘的截面显示出二维超音速平板的绕流特性:流动以马赫波为扰动分界(图c、d)。

如图是垂直于前缘的截面上压强分布。对于亚音速前、后缘,压强分布在前缘处趋于无限大,后缘处趋于零(图a);亚音速前缘和超音速后缘时,前缘处趋于无限大,后缘处趋于有限值(图b); 超音速前缘和超音速后缘时,前后、缘处压强系数均为有限值(图c);

3.流场概念

所谓锥形流场就是所有流动参数沿从某点发出的射线上保持不

变的流场。在线化超音速流场中扰动沿马赫线传播,可证在顶点马赫线不相交的区域,由于只受到一个顶点的扰动将构成锥形流场(图a、b),受两个顶点影响的马赫线相交区域不具有锥形流性质(图c):

如图是几个超音速典型平面形状机翼的压强分布:

二、跨音速流动的简单介绍

前面研究的流场不是纯亚音速流就是纯超音速流动,如果在亚音速流场中包含有局部超音速区或超音速流场中包含有局部亚音速区,此种流动称为跨音速流。由于从超音速过渡到亚音速往往要通过激波实现,因此跨音速流场中往往包含局部激波。

薄翼的跨音速流场主要在来流马赫数M∞接近于1 时出现,钝头物体作超音速运动时,在头部脱体激波之后也会出现跨音速流。

绿色为局部压缩区域,

红色为局部膨胀区域。

M∞=1.4时,脱体波将向翼型靠近,当M∞=1.6时,头部脱体波将变成附体斜激波。

临界马赫数

当来流马赫数M∞以亚音速绕过物体时,物体表面各点的流速是不同的,有些点上流速大于来流速度。随来流马赫数增大,表面某些点的流速也相应增大,当来流马赫数最大到某一值时(M∞<1),物体表面某些局部速度恰好达到当地音速(M=1),此时对应的来流马赫数称为临界马赫数(或下临界马赫数)M∞临,对应M=1处的压强称为临界压强P临。

其压强分布与翼型相对厚度、相对弯度和迎角等参数有关,因此翼型的临界马赫数也与这些参数有关,对机翼来说,其临界马赫数还与其平面形状有关。

翼型的跨音速绕流图画

下面进一步就前述薄翼型的跨音速流场对应的局部激波系和翼面的压强分布进行讨论。风洞中的观察如下:

当M∞=1.4时,脱体波向翼型靠近,当M∞=1.6时,头部脱体波变成附体斜激波。

上述流动过程在各个典型马赫数下对应的流动

图画和压强分布如图。

(a)当来流M∞小于临界马赫数时翼面全为亚音速流。(a)当来流M∞逐步增大且略超过临界马赫数时,上翼面某点首先达到音速,并有一小范围超音速区;点划线为亚、超界限:音速线,由于超音速区较小,气流从亚音速到超音速还可光滑过渡无激波,压强分布也无突跃(图a)。

(b) 当来流M

∞继续增大,

上翼面超音速区随之扩大,

由于压强条件所致,超音速

区以局部激波结尾,激波

后压强突跃增大,速度不

再光滑过渡(图b)

(c) 随来流M∞继续增

大,上翼面超音速区范

围继续扩大,激波位置

后移,而下表面也出现

了激波,并且比下翼面

更快移到后缘(图c、d)

这时上下翼面大部分区域都是超音速气流了。由于尾波已在移向下游,上下翼面压强分布不出现突跃。

(d) 当来流M∞>1后,翼型前方出现弓形脱体激波,并且随着M∞增大弓形激波逐步向翼型前缘靠近,如图(e)所示。由于脱体激波的一段是正激波,因此前缘附近某一范围内气流是亚音速流,随后沿翼面气流不断加速而达到超音速;在翼型后缘,气流通过后缘激波而减速到接近于来流的速度;M∞再继续增大前缘激波就要附体,整个流场表为单一的超音速流场如图(f)所示。前缘激波附体时M∞称为上临界马赫数。

介于上临界马赫数与下临界马赫数之间的流动即为跨音速流动。跨音速流动时翼面激波与翼面边界层发生干扰是流场的重要特征之一,将使流动变得更加复杂。如图是对称翼型在跨音速时激波与层流边界层或湍流边界层(由翼面上游干扰射流产生)干扰的情况。

由于激波造成的逆压梯度将通过边界层的亚音速区向上游传播,从而改变翼面压强分布,边界层厚度增大,增厚的边界层反过来又对外流形成一系列压缩波,从而形成λ形激波系。对层流边界层而言向上游传播的距离远,边界层增厚明显,λ波系范围大,增厚的边界层容易发生分离(称为激波诱导分离),使翼型升力下降(即所谓激波失速),阻力增加。

对湍流边界层而言由于层内亚音速区的厚度较薄,逆压扰动向上游传播的范围要小,因而λ波系范围小,且在同样强度激波下不易产生诱导分离。

跨音速流动及压力分布(攻角3.2度),从下到上对应马赫数0.79,0.87,0.94,1.00,从左到右对应翼型

NACA64A006,

NACA64A009,

NACA64A012。

(高速风洞试验结果)

1.升力特性随来流马赫数的变化

图示翼型升力系数随来流马赫数的变化曲线。可见在A点以前和E点之后升力系数Cy分别按亚音速规律和超音速规律变化,即亚音速时Cy 随M∞上升而上升,超音速时

Cy随M∞上升而下降。

来流马赫数从A点增

至B点,由于上翼面

超音速区域不断扩大,

压强降低,导致升力

系数增大。在B点之

后上翼面激波继续后移,且强度增大,边界层内逆压梯度剧增,导致上表面边界层分离,使升力系数骤然下降,这个由于激波边界层干扰

引起的现象叫做激波失速。

随着马赫数增大,下翼面也

出现超音速区和激波且下翼面

激波要比上翼面激波更快地移

至后缘,使下翼面压强降低,引

起升力系数下降至C点。

小结

1.马赫数进一步增大,上翼面激波移到后缘,边界层分离点也后移,上翼面压强继续降低,使升力系数又重新回升到D点。D点之后,翼型前方出现弓形脱体激波,在脱体激波未附体之前,上下翼面压强分布基本不随马赫数而变,但马赫数增大使来流动压增大,所以升力系数仍随马赫数增加而下降。由上可见,在跨音速范围内,翼型升力系数随马赫数的变化是几上几下的。

2.阻力特性随来流马赫数的变化,阻力发散马赫数在M∞小于M

M∞的变∞临时,翼型阻力主要是由气流粘性引起,所以阻力系数随

化不大。

当来流M∞超过M∞临进入跨音速流后,随M∞增大翼面上超音速区逐渐扩大出现激波产生波阻力,阻力系数增大。当激波越过翼型顶点后,强度迅速加大的激波导致波阻系数急剧增加出现阻力发散现象,因此激波越过顶点时对应的来流马赫数称为阻力发散马赫数

MD。

随M∞继续增大激波继续后移,波前超音速继续膨胀加速,波强继续增大,阻力系数继续增大。当来流M∞接近于1时上下翼面的激波均移至后缘,阻力系数达到最大。

随后,虽然来流M∞继续增大,但由于翼面压强分布基本不变,而来流动压却随M∞增大而继续增大,因此阻力系数逐渐下降。

3. 俯仰力矩特性随来流马赫数的变化

翼型的俯仰力矩特性随M∞变化与压力中心相对位置随M∞的变化密切相关。在亚音速流中,翼型的压力中心在不同M∞下略有变化

但变化不大,在弦长1/4上下浮动。

当来流M∞超过M∞临后,由于上翼面

出现局部超音速区并随来流M∞数

增大,低压区随之向后扩展,引起压

力中心向后移动,使低头力矩增大。

当M∞继续增大,下翼面也出现局部超音速和局部激波,并且下翼面的局部激波比上翼面后移得快,低压的局部

超音速区向后也扩展得快,所以下翼面后段的吸力迅速增大,使得压力中心前移引起抬头力矩。

由此可见,在跨音速范围内,由于翼面激波的移动使得压力中心位置随之前后剧烈移动,导致翼型纵向力矩发生很大变化。如下图所

示。

4. 超临界翼型的绕流特点和空气动力特性

为了提高翼型阻力的发散马赫数MD,以缓和和延迟翼型气动力特性的剧烈变化而提出了所谓超临界翼型的概念和设计。如图是在设

翼型气动特性实验指导书2017版

《空气动力学》课程实验指导书 翼型压强分布测量与气动特性分析实验 一、实验目的 1 熟悉测定物体表面压强分布的方法,用多管压力计测出水柱高度,利用伯努利方程计算出翼型表面压强分布。 2 测定给定迎角下,翼型上的压强分布,并用坐标法绘出翼型的压强系数分布图。 3 采用积分法计算翼型升力系数,并绘制不同实验段速度下的升力曲线。 4 掌握实验段风速与电流频率的校核方法。 二、实验仪器和设备 (1) 风洞:低速吸气式二元风洞。实验段为矩形截面,高0.3米,宽0.3米。实验风速 20,30,40V ∞=/m s 。实验段右侧壁面的静压孔可测量实验段气流静压p ∞,实验段气流的总压0p 为实验室的大气压a p 。 表2.1 来流速度与电流频率的对应(参考) 表2.2 翼型测压点分布表 上表面 下表面 (2) 实验模型:NACA0012翼型,弦长0.12米,展长0.09米,安装于风洞两侧壁间。模

型表面开测压孔,前缘孔编号为0,上下翼面的其它孔的编号从前到后,依次为1、2、3 ……。(如表-2所示) (3) 多管压力计:压力计斜度90θ=,压力计标定系数 1.0K =。压力计左端第一测压管 通大气,为总压管,其液柱长度为I L ;左端第二测压管接风洞收缩段前的风洞入口侧壁静压孔,其液柱长度为IN L ;左端第三、四、五测压管接实验段右侧壁面的三个测压孔,取其液柱长度平均值为II L 。其余测压管分成两组,分别与上下翼面测压孔一一对应连接,并有编号,其液柱长度为i L 。这两组测压管间留一空管通大气,起分隔提示作用。 三、实验原理 测定物体表面压强分布的意义如下:首先,根据表面压强分布,可以知道物体表面上各部分的载荷分布,这是强度设计的基本数据;其次,根据表面压强分布,可以了解气流绕过物体时的物理特性,如何判断激波,分离点位置等。在某些风洞中(例如在二维风洞中,模型紧夹在两壁间,不便于装置天平),全靠压强分布来间接推算出作用在机翼上的升力或力矩。 测定压强分布的模型构造如下:在物体表面上各测点垂直钻一小孔,小孔底与埋置在模型内部的细金属管相通,小管的一端伸出物体外(见图1),然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。多管压力计的原理与普通压力计相同,都是基于连通器原理,只是把多个管子装在同一架子上而已,这样就可同时观察多点的压强分布情况,为了提高量度的准确性,排管架的倾斜度可任意改变。 图3.1 接多管压力计上各相应支管 图3.2 实验安装示意图

超声速翼型和亚声速翼型的气动特性

超声速翼型和亚声速翼型的气 动特性 总负责:祝恺辰(071450704) 组员:辛宏宇(071450703)

超声速和亚声速翼型不同的主要原因是超声速翼型需承受激波阻力。 激波 超声速气体中的强压缩波。微扰动(如弱压缩波)的叠加而形成的强间断,带有很强的非线性效应。 经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。压强的跃升产生可闻的爆响。如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。理想气体的激波没有厚度,是数学意义的不连续面。实际气体有粘性和传热性,这种物理性质使激波成为连续式的,不过其过程仍十分急骤。因此,实

际激波是有厚度的,但数值十分微小,只有气体分子自由程的某个倍数,波前的相对超音速马赫数越大,厚度值越小。 一、超音速薄翼型 翼型作亚声速运动和超声速运动时,对气流的扰动有很大不同 根据动量定律,向前流出的气体将给翼型一个像后的反作用力,它有一个阻力分量;而从控制面向后流出的气流对翼型有一个推力分量;同理,向前流入控制面的气流将给翼型一个阻力分量。而向后流入控制面的气流将给翼型一个阻力分量。从控制面垂直进出的流动不会是翼使翼型承受阻力或是推力。这样,在无粘性流体中作亚胜诉流亚声速扰动无界 原子弹爆炸形成的蘑菇云也是一种激波 超声速扰动限于前马赫锥后,前半部压缩,后 半部膨胀,扰动均沿着波德传播方向即垂直于马赫波

动的翼型不承受阻力(推力与阻力相消),而超声速翼型将承受阻力,这种与马赫波传播有关的阻力称为波阻。 超声速流动中,绕流物体产生的激波阻力大小与物体头波钝度有着密切的关系。由于钝物的绕流将产生离体激波,激波阻力大;而尖头体的绕流将产生附体激波,激波阻力小。 因此,对于超声速翼型,前缘最好作成尖的,如菱形、四边形、双弧形。但是对于超声速飞机,总是要经历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较小迎角下气流就要发生给力,是翼型的气动特性能变坏。为此,为了兼顾超声速飞机的低速特性,目前低超声速的翼型,其形状都采用小圆头的对称薄翼。

小展弦比机翼的低速气动特性

小展弦比机翼的低速气动特性 通常把的机翼称为小展弦比机翼。由于超声速飞行时小展弦比机翼具有低波阻的特性,所以这种机翼常用于战术导弹和超声速歼击机。其基本形状有:矩形、三角形、切角三角形、双三角形等。通常用锐缘无弯扭对称薄翼。 1、小展弦比机翼的绕流特点对圆角的薄翼,在小迎角下绕流为附着流,在前缘存在前 缘吸力。对于小展弦比机翼,只有在3-40下,才出现附着绕流而在更大迎角下,下翼 面高压气流绕过侧缘流向上表面,必定会在侧缘产生分离,在上翼面形成脱体涡。如下 图所示。这些脱体涡的出现将对上翼面产生更大的负压,从而造成更大的升力。这个升 力常称为涡升力。 造成小展弦比机翼的升力特性曲线为非线性的。如图所示。 2、前缘吸力比拟法(Polhamus,1966) 小展弦比锐缘三角翼,在较大迎角工作时,由于翼面上存在拖向后方的脱体涡,使升力特性曲线出现明显的非线性特征。大展弦比附着流的方法不适应,“前缘吸力比法”是专为这种小展弦比机翼提出的。 该方法的基本思路是:将存在拖体涡的翼面中总升力人为分解为:位流升力和涡流升力两部分之和。对于升力系数而言,有

其中,CLp为势流升力系数,CLv为涡流升力系数。 与小迎角下线化小扰动势流升力是不同的。 小展弦比锐缘三角翼在较大迎角下的势流升力L p 前者气流绕过机翼时未发生分离,存在前缘吸力,其势流升力包括法向力和前缘吸力的贡献;后者气流绕过机翼时出现分离,前缘吸力丧失,但分离流在上表面再附,其势流升力仅有是法向力在垂直于来流方向的投影。 根据适当的理论推导,得到 为系数,对于小迎角的情况 其中K p 说明,K 为势流升力线斜率。 p 对于脱体涡产生的涡升力,与涡的位置、形状、强度等有关,理论计算较为困难。吸力比拟法假定:旋涡在翼面上产生的法向力与绕过圆前缘所产生的吸力大小相等,方向转900向上。(相当于用前缘吸力比拟了涡升力) 从物理上讲,这种比拟实际上是设想当气流在前缘分离并再附于机翼上表面时,为了保持绕分离涡的流动平衡所需要的力与势流中前缘保持附体绕流所产生的吸力相等。 根据前缘吸力比拟,因前缘分离涡造成的法向力增量与前缘吸力相等。而涡升力等于该法向力增量在垂直于来流方向的投影。 由此导出

相关文档
最新文档