各种泵的工作原理及性能特点

各种泵的工作原理及性能特点
各种泵的工作原理及性能特点

各种泵的工作原理及性能特点

泵主要用来输送水、油、酸碱液、乳化液、悬乳液和液态金属等液体,也可输送液、气混合物及含悬浮固体物的液体。本文跟大家一起来通过动画学习各种泵的工作原理及其性能特点,希望对大家有所帮助(当然这里的泵并全是真空所用的泵)。

一、齿轮泵

齿轮泵的两齿轮的齿相互分开,形成低压,液体吸入,并友壳壁送到另一侧。另一侧两齿轮互相合拢,形成高压将液体排出。

齿轮泵的性能特点

齿轮泵的优点

结构简单紧凑、体积小、质量轻、工艺性好、价格便宜、自吸力强、对油液污染不敏感、转速范围大、能耐冲击性负载,维护方便、工作可靠。

齿轮泵的缺点

径向力不平衡、流动脉动大、噪声大、效率低,零件的互换性差,磨损后不易修复,不能做变量泵用。

二、多级离心泵

多级离心泵相当于多个离心泵串联,一级一级增压,可获得较高压头。

多级离心泵性能特点

多级离心泵与单级泵相比,其区别在于多级泵有两个以上的叶轮,能分段地多级次地吸水和压水,从而将水扬到很高的位置,扬程可根据需要而增减水泵叶轮的级数。多级泵主要用于矿山排水、城市及工厂供水,农业灌溉用的很少,仅适用于高扬程、小流量的高山区提水来解决人畜饮水的困难。多级高心泵有立式和卧式两种型式多级离心泵的泵轴上装有串联的两个亦上的叶轮,它相对于一般的单级离心泵,可亦实现更高的扬程;相对于活塞泵、隔膜泵等往复式泵,可亦泵送较大的流量。多级离心泵效率较高,能够满足高扬程、高流量工况的需要,在石化、化工、电力、建筑、消防等行业得到了广泛的应用。

由于其本身的特殊性,与单级离心泵相比,多级离心泵在设计、使用和维护维修等方面,有着不同、更高的技术要求。往往是人们在一些细节上的疏忽或者考虑不周,使得多级离心泵投用后频繁发生异常磨损、振动、抱轴等故障,亦致停机。

三、离心泵

离心泵工作时,液体注满泵壳,叶轮高速旋转,液体在离心力作用下产生高速度,高速液体经过逐渐扩大的泵壳通道,动压头转变为静压头。

离心泵的性能特点

1、高效节能:采用CFD计算流体动力学,分析计算出泵内压力分布和速度分布关系、优化泵的流道设计,确保泵有高效的水力形线,提高了泵的效率。

2、安装、维修方便:立式管道式结构,泵的进出口能象阀门一样安装在管路的任何位置及任何方向,安装维修极为方便。

3、运行平稳,安全可靠:电机轴和水泵轴为同轴直联、同心度高,运行平稳,安全可靠。

4、不锈钢轴套:轴的机封位置是相对易被锈蚀之处,直联式泵轴一旦被锈蚀,易造成机械密封失效。STG泵此处采用镶配不锈钢轴套,避免锈蚀发生,提高了轴寿命,降低了运行维护成本。

5、轴承:泵所配电机中,Y〔Y2〕280以下轴伸端轴承〔包括Y180以下风叶端轴承〕采用封闭式轴承,正常使用时,免电机轴承的维护保养。

6、机封:机械密封基件一般选用橡胶波纹管结构,将传统机械密封中轴上密封由O形圈的线密封改为橡胶件的两道面密封,在清水介质时提高了密封效果。

四、螺杆泵

双螺杆泵与齿轮泵十分相似,一个螺杆转动,带动另一个螺杆,液体被拦截在啮合室内,沿杆轴方向推进,然后被挤向中央排出。

螺杆泵的性能特点

螺杆泵的优点:

1、压力和流量范围宽阔。压力约在3.4-340千克力/cm 2,流量可达100cm3/分;

2、运送液体的种类和粘度范围宽广;

3、因为泵内的回转部件惯性力较低,故可使用很高的转速;

4、吸入性能好,具有自吸能力;

5、流量均匀连续,振动小,噪音低;

6、与其它回转泵相比,对进入的气体和污物不太敏感;

7、结构坚实,安装保养容易。

螺杆泵的缺点

螺杆的加工和装配要求较高;泵的性能对液体的粘度变化比较敏感。

五、往复泵旁路调节

往复泵是正位移泵。当泵提供的流量大于管路需求流量时,要求一部分回流到往复泵进口,及旁路调节。

六、气动隔膜泵

气动隔膜泵工作时为了使活柱不与腐蚀性料液直接接触,将气缸腔体与液料用隔膜分开,实质也是往复泵的原理。

气动隔膜泵的性能特点

气动隔膜泵是一种新型输送机械,是目前国内最新颖的一种泵类。采用压缩空气为动力源,对于各种腐蚀性液体。气动隔膜泵其有四种材质:工程塑料、铝合金、铸铁、不锈钢。气动隔膜泵根据不同液体介质分别采用丁腈橡胶、氯丁橡胶、氟橡胶、聚四氟乙烯、聚四六乙烯。以满足不同用户的需要。安置在各种特殊场合,用来抽送种常规泵不能抽吸的介质,均取得了满意的效果。

1、泵不会过热:压缩空气作动力,在排气时是一个膨胀吸热的过程,气动泵工作时温度是降低的,无有害气体排出。

2、不会产生电火花:气动隔膜泵不用电力作动力,接地后又防止了静电火花

3、可以通过含颗粒液体:因为容积式工作且进口为球阀,所以不容易被堵。

4、对物料的剪切力极低:工作时是怎么吸进怎么吐出,所以对物料的搅动最小,适用于不稳定物质的输送

5、流量可调节,可以在物料出口处加装节流阀来调节流量。

6、具有自吸的功能。

7、可以空运行,而不会有危险。

8、可以潜水工作。

9、可以输送的流体极为广泛,从低粘度的到高粘度的,从腐蚀性得到粘稠的。

10、没有复杂的控制系统,没有电缆、保险丝等。

11、体积小、重量轻,便于移动。

12、无需润滑所以维修简便,不会由于滴漏污染工作环境。

13、泵始终能保持高效,不会因为磨损而降低。

14、百分之百的能量利用,当关闭出口,泵自动停机,设备移动、磨损、过载、发热

15、没有动密封,维修简便避免了泄漏。工作时无死点。

七、往复泵

往复泵工作时活塞右移,腔内压力降低,将上活门压下,下活门顶起,液体吸入;活塞左移,腔内压力增高,将上活门顶起,下活门压下,液体排出。

往复泵的性能特点

往复泵的优点

1、可获得很高的排压,且流量与压力无关,吸入性能好,效率较高,其中蒸汽往复泵可达80%~95%;

2、原则上可输送任何介质,几乎不受介质的物理或化学性质的限制;

3、泵的性能不随压力和输送介质粘度的变动而变动。

其他的泵都不具有往复泵的上述突出优点,但它们的结构比较简单,使用操作比较方便,而且还有体积小、重量轻、流量均匀,并能系列化批量生产的优点。

往复泵的缺点

流量不是很稳定。同流量下比离心泵庞大;机构复杂;资金用量大;不易维修等。

八、双动往复泵

双动往复泵工作时活塞右移,左下吸液,右上排液。活塞左移,右下吸液,左上排液。活塞往复一次,有两次吸、排液,流量更加均匀。

九、水环式真空泵

水环式真空泵的叶轮与泵壳成偏心,泵壳内充一定量的水,叶轮旋转使水形成水环。相邻叶片(如图中红色叶片)旋转时,与水环形成的空间(气室)变大即进气,空气(气室)逐渐变小,即空气被压缩。多组相邻叶片,即多组往复压缩。结构紧凑、工作平衡可靠和流量均匀,所以化工生产中多用来输送或抽吸易燃、易爆和有腐蚀性的气体。水环式真空泵由于叶轮搅拌液体,损失能量大,故其效率很低。

水环式真空泵的性能特点

水环式真空泵的优点

1、结构简单,制造精度要求不高,容易加工。

2、结构紧凑,泵的转数较高,一般可与电动机直联,无须减速装置。故用小的结构尺寸,可以获得大的排气量,占地面积也小。

3、压缩气体基本上是等温的,即压缩气体过程温度变化很小。

4、由于泵腔内没有金属磨擦表面,无须对泵内进行润滑,而且磨损很小。转动件和固定件之间的密封可直接由水封来完成。

5、吸气均匀,工作平稳可靠,操作简单,维修方便。

水环式真空泵的缺点

1、效率低,一般在30%左右,较好的可达50%。

2、真空度低,这不仅是因为受到结构上的限制,更重要的是受工作液饱和蒸气压的限制。用水作工作液,极限压强只能达到2000~4000Pa。用油作工作液,可达130Pa。

总之,由于水环泵中气体压缩是等温的,故可以抽除易燃、易爆的气体。由于没有排气阀及摩擦表面,故可以抽除带尘埃的气体、可凝性气体和气水混合物。有了这些突出的特点,尽管它效率低,仍然得到了广泛的应用。

例小区供水演示

十、旋涡泵

旋涡泵的叶片凹槽中的液体,被离心力甩向流道,一次增压;流道中液体又因槽中液体被甩出形成低压,再次进入凹槽,再次增压;多次的凹槽一流道一凹槽的漩涡运动,从而获得较高压头。

旋涡泵的性能特点

旋涡泵的优点

1、W型单级直连旋涡泵是供吸送清水或物理化学性质类似于水的液体之用,使用液温不超过60,常用于锅炉给水的配套,在造船、轻纺、化工、冶金、机械制造、水产养殖、固定消防稳压、热交换机组、农业远程喷灌等部门等都有广泛的应用。

2、旋涡泵体积小、重量轻的特点在船舶装置中具有极大的优越性。具有自吸能力或借助于简单装置来实现自吸。

3、具有陡降的扬程特性曲线,因此,对系统中的压力波动不敏感。某些旋涡泵可实现汽液混输。这对于抽送含有气体的易挥发的液体和汽化压力很高的高温液体具有重要的意义。

4、旋涡泵结构简单、铸造和加工工艺都容易实现,某些旋涡泵零件还可以使用非金属材料,如塑料、尼龙模压叶轮等。

旋涡泵的缺点

1、效率较低,最高不超过55%,大多数旋涡泵的效率在20-40%,因此妨碍了它向大功率方向发展。

2、旋涡泵的汽蚀性能较差。

3、旋涡泵不能用来抽送粘性较大的介质。因随着液体粘性的增加,泵的扬程和效率会急剧降低,介质的粘度限制在114 厘沲之内。

4、旋涡泵叶轮和泵体之间的径向间隙和轴向间隙的要求较严给加工和装配工艺带来一定困难。

5、抽送的介质只限于纯净的液体。当液体中含有固体颗粒时,就会因磨损引起轴向和径向的间隙增大而降低泵的性能或导致旋涡泵不能工作。

十一、叶片泵

因为历史的叶片泵根据中类型的不同有两种:一)专门指容积泵中的滑片泵。二)指动力式泵的三泵(离心泵、混流泵、轴流泵)或其他特殊的泵。这类泵产品一般不会叫叶片泵。但作为专著,叶片泵几乎全部是指离心泵、混流泵、轴流泵等(一级建造师2014《机电工程与管理实务》中称这三类为叶轮泵)。根据其每转的理论排量是固定值还是可变值,可以分为叶片式变量泵和叶片式定量泵。

叶片泵的性能特点

叶片泵的优点

1、输出流量比齿轮泵均匀,运转平稳,噪声小。

2、工作压力较高,容积效率也较高。

3、单作用式叶片泵(Tokimec东京计器叶片泵)易于实现流量调节,双作用式叶片泵则因转子所受径向液压力平衡,使用寿命长。

4、结构紧凑,轮廓尺寸小而流量较大。

叶片泵的缺点

1、自吸性能较齿轮泵差,对吸油条件要求较严,其转速范围必须在500~ 1500 r/min 范围内。

2、对油液污染较敏感,叶片容易被油液中杂质咬死,工作可靠性较差。

3、结构较复杂,零件制造精度要求较高,价格较高。叶片泵一般用在中压(6.3 MPa)液压系统中,主要用于机床控制,特别是双作用式叶片泵(东京计器SQP叶片泵)因流量脉动很小,因此在精密机床中得到广泛使用。

十二、蒸汽喷射泵

蒸汽喷射泵工作时蒸汽进入喷嘴后,高速喷出,产生低压,将气体吸入并在混合室混合,经扩大管后,动能转变为压强能。如果吸入的气体来自容器,容器减压,即可称作喷射真空泵。

蒸汽喷射泵的性能特点

1、该泵无机械运动部分,不受摩擦、润滑、振动等条件限制,因此可制成抽气能力很大的泵。只要泵的结构材料选择适当,对于排除具有腐蚀性气体、含有机械杂质的气体以及水蒸等场合极为有利。

2、结构简单、重量轻,占地面积小。

3、工作蒸汽压力为4~9×105Pa,在一般的冶金、化工、医药等企业中都具备这样的水蒸汽源。

因水蒸汽喷射泵具有上述特点,所以广泛用于冶金、化工、医药、石油以及食品等工业部门。

十三、轴流管道泵

轴流管道泵的叶轮设计成轴流式。转速很高,如果电机功率、叶轮直径、管道直径足够大的话,流量可以很大。

轴流管道泵的性能特点

1、管道泵结构紧凑,机泵一体化,体积小.其立式结构具有安装占地面积小,运行平稳,安装无需调整

2、泵进出口设计成规格相同法兰,且位于同一中心在线,可象阀门一样直接安装在管路上,且中心低,便于管道布置,安装方便.

3、泵与电机同轴,轴向尺寸短,使泵运行更加平稳,噪音低.

4、取消传统轴封方式,避免了输送介质的外泄,因此具有完全无泄漏的显著特点.

十四、自吸泵

自吸泵的工作原理是:水泵启动前先在泵壳内灌满水(或泵壳内自身存有水)。启动后叶轮高速旋转使叶轮槽道中的水流向涡壳,这时入口形成真空,使进水逆止门打开,吸入管内的空气进入泵内,并经叶轮槽道到达外缘。

自吸泵的性能特点

自吸泵属自吸式离心泵,它具有结构紧凑、操作方便、运行平稳、维护容易、效率高、寿命长,并有较强的自吸能力等优点。管路不需安装底阀,工作前只需保证泵体内储有定量引液即可。不同液体可采用不同材质自吸泵。

1、排污能力强:特殊的叶轮防堵设计,确保了泵高效且无堵塞。

2、高效节能:采用优秀水力模型,效率比一般自吸泵高3~5%。

3、自吸性能好:自吸高度比一般自吸泵高1米,且自吸时间更短。

十五、活塞泵

活塞泵工作时借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体。

活塞泵的性能特点

活塞泵又叫电动往复泵,从结构分为单缸和多缸,其特点是扬程较高。适用于输送常温无固体颗粒的油乳化液等。用于油田、煤层注水、注油、采油;膛压机水压机的动力泵,水力清砂,化肥厂输送氨液等。若过流部件为不锈钢时,可输送腐蚀性液体。另外根据结构材质的不同还可以输送高温焦油、矿泥、高浓度灰浆、高粘度液体等。

活塞泵适用于高压、小流量的场合,特别是流量小于100米3/小时,排出压力大于9.8兆帕时,更显示出它较高的效率和良好的运行性能。它吸入性能好,能抽吸各种不同介质、不同粘度的液体。因此,在石油化学工业、机械制造工业、造纸、食品加工、医药生产等方面应用很广。低中速活塞泵速度低,可用人力操作和畜力拖动,适用于农村给水和小型灌溉。

十六、罗茨真空泵

罗茨泵的工作原理与罗茨鼓风机相似。由于转子的不断旋转,被抽气体从进气口吸入到转子与泵壳之间的空间v0内,再经排气口排出。由于吸气后v0空间是全封闭状态,所以,在泵腔内气体没有压缩和膨胀。但当转子顶部转过排气口边缘,v0空间与排气侧相通时,由于排气侧气体压强较高,则有一部分气体返冲到空间v0中去,使气体压强突然增高。当转子继续转动时,气体排出泵外。

罗茨真空泵的性能特点

1、在较宽的压强范围内有较大的抽速;

2、起动快,能立即工作;

3、对被抽气体中含有的灰尘和水蒸气不敏感;

4、转子不必润滑,泵腔内无油;

5、振动小,转子动平衡条件较好,没有排气阀;

6、驱动功率小,机械摩擦损失小;

7、结构紧凑,占地面积小;

8、运转维护费用低。

因此,罗茨泵在冶金、石油化工、造纸、食品、电子工业部门得到广泛的应用。

十七、旋片式真空泵

旋片泵的旋片把转子、泵腔和两个端盖所围成的月牙形空间分隔成A、B、C三部分,当转子按箭头方向旋转时,与吸气口相通的空间A的容积是逐渐增大的,正处于吸气过程。而与排气口相通的空间C的容积是逐渐缩小的,正处于排气过程。居中的空间B的容积也是逐渐减小的,正处于压缩过程。

由于空间A的容积是逐渐增大(即膨胀),气体压强降低,泵的入口处外部气体压强大于空间A内的压强,因此将气体吸入。当空间A与吸气口隔绝时,即转至空间B的位置,气体开始被压缩,容积逐渐缩小,最后与排气口相通。当被压缩气体超过排气压强时,排气阀被压缩气体推开,气体穿过油箱内的油层排至大气中。由泵的连续运转,达到连续抽气的目的。如果排出的气体通过气道而转入另一级(低真空级),由低真空级抽走,再经低真空级压缩后排至大气中,即组成了双级泵。这时总的压缩比由两级来负担,因而提高了极限真空度。

液压泵齿轮泵的工作原理

液压泵齿轮泵的工作原理: 1.齿轮泵是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。 外啮合双齿轮泵的结构。一对相互啮合的齿轮和泵缸把吸入腔和排出腔隔开。齿轮转动时,吸入腔侧轮齿相互脱开处的齿间容积逐渐增大,压力降低,液体在压差作用下进入齿间。随着齿轮的转动,一个个齿间的液体被带至排出腔。这时排出腔侧轮齿啮合处的齿间容积逐渐缩小,而将液体排出。齿轮泵适用于输送不含固体颗粒、无腐蚀性、粘度范围较大的润滑性液体。 泵的流量可至300米3/时,压力可达3×107帕。它通常用作液压泵和输送各类油品。齿轮泵结构简单紧凑,制造容易,维护方便,有自吸能力,但流量、压力脉动较大且噪声大。齿轮泵必须配带安全阀,以防止由于某种原因如排出管堵塞使泵的出口压力超过容许值而损坏泵或原动机。 高真空齿轮泵工作原理:高真空齿轮泵依靠主从动齿轮的相互啮合把泵体分成吸油腔和压油腔。吸油腔由于相互啮合的轮齿逐渐脱开,密封工作容积逐渐增大,形成部分真空,因此油箱中的油液在外界大气压力的作用下,经吸油管进入吸油腔,将齿间槽充满,并随着齿轮旋转,把油液带到左侧压油腔内。在压油区一侧,由于轮齿在这里逐渐进入啮合,密封工作腔容积不断减小,油液便被挤出去,从压油腔输送到压力管路中去。 电动机运转时,推进装置随着主轴一起高速运转本推进装置相似于一轴流泵,其排空(抽真空)的速率远远大于齿轮啮合排空的速率,随着推进装置的推进作用,齿轮啮合的反泄露被阻滞,其形成的极限真空自然得到了大大的提高,处于较低位置的油液则被迅速吸入泵腔内,然后经排油腔被压入出口排出。 当油路中的阻力(压力)超过所设定的安全压力时,安全阀就启动,使排油腔的油回到吸油腔,从而保持压力不再上升,安全阀起过载保护作用 外齿轮泵有两根相同尺寸的啮合齿轮轴。驱动轴连接电机或减速机(通过弹性联轴器)并带动另一根轴。在重载型工业齿轮泵内,齿轮通常与轴为整体(一个部件),轴颈的公差很小。外齿轮泵的运行原理很简单。液体进入泵吸入端,被未啮合的齿间空穴吸入,然后在齿间空穴内被带动,沿齿轮轴外缘到达出口端。重新啮合的齿将液体推出空穴进入背压处。有三种常用的齿轮形式:直齿、斜齿和人字齿。这三种形式各有利弊,CB—B齿轮泵的结构,有不同的应用。直齿是最简单的形式,在高压工况下为最优应用,因为没有轴向推力,且输送效率较高。斜齿在输送过程中的脉动最小,且在较高速度运行时更加安静,不锈钢保温泵,因为齿的啮合是渐进式的。但是,由于轴向推力的作用,轴承材质的选用可能会造成进出口压差有限、处理粘度较低。因为轴向力会将齿轮推向轴承端面而摩擦,所以只有选用硬度较高的轴承材质或在其端面作特殊设计,才能应对这种轴向推力。为使齿轮泵的承压能力最大化,这些配合部件之间的间隙必须愈小愈好以

常用真空泵的工作原理图(1)

常用真空泵的工作原理图(1) 真空泵要求从密封容器中高速高效地排除气体,以达到产生,改善和维持真空的目的。其工作原理可以分为机械,物理和化学方式。根据要达到的真空度不同,常常需要2种以上的真空泵相组合。 代表的真空泵 1:旋转式机械泵 2:分子泵(TMP) 3:离子泵 4:Ti升华泵 5:低温泵 曾经被广泛使用的油扩散泵因为存在油气蒸发的问题、现在已经很少被采用。 旋转式机械泵 以油封式真空泵为例加以介绍。 构造:偏心轴转子,固定翼,油。旋转动力是电机。 原理:转子紧贴泵壁内侧旋转。固定翼随之下移,转子到达油面后,空气被压缩,压缩后的空气压力高于外界大气压之后从排气口排出。 特征: 排气能力由压缩比决定,可达0.1Pa程度。操作简单。可以从大气压状态下启动。油要蒸发。 为了避免油或其它液体进入真空腔内,不用油或其它液体的干式真

空泵正在成为主要的旋转式机械泵。 分子泵(TMP) 构造:电机驱动的高速旋转叶片,泵壁上固定的固定叶片。 原理:每分钟旋转数万次的高速旋转叶片撞击气体分子,被撞击的气体分子碰撞到固定叶片后又被弹到下一个旋转叶片上,最终被送到排气口。旋转叶片和固定叶片的方向相反,使分子难于逆行。这种排气方式,排气速度不因气体种类而变。 特征: 不用油,工作环境清洁,可到达10-10Pa的真空度。排气速度不受气体种类影响。构造复杂,价格昂贵,高速旋转,要注意安装要求。有振动。需要和其它初段排气泵组合。 离子泵

构造:强磁铁,蜂窝状阳极,钛(Ti)阴极。 原理:通过溅射现象,使Ti离子化,Ti离子化学反应活性高。和气体分子反应之后生成化合物。 一部分气体分子也离子化之后向阴极加速,使阴极的Ti被溅射后,一部分离子进入阴极内部。 特征: 能达到超高真空(10-10Pa) 需要和其它初段排气泵组合。 有一定寿命。 Ti升华泵 构造:加热电阻丝、Ti材料(线或球)。 原理:通过加热电阻丝,使Ti升华。因为Ti化学反应活性高、立刻和周围的气体分子反应而生成稳定的化合物。反应生成的化合物吸附在真空腔内壁上、从而达到降低气压的效果。如果升华后的Ti吸附在较大面积的内壁上、则产生巨大的排气速度。比如1平方米的面积上吸附Ti原子的话、对氮气而言、可达到24000升/s的排气速度。在压力较高时(>10-3Pa)、排气速度大大降低。因此需要和其他排气泵组合使用。 特征: 排气速度大。 没有运动部分,没有振动。 需要和其它初段排气泵组合。

齿轮泵工作原理及结构

齿轮泵工作原理及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿轮 泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,

这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积 中〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图 3-5(b) 〕,封闭容积为最小,齿轮再继续转动时,封闭容积又 逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。当封闭容积增大时,由 于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气 泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。

各种泵的工作原理及性能特点

各种泵的工作原理及性能特点 泵主要用来输送水、油、酸碱液、乳化液、悬乳液和液态金属等液体,也可输送液、气混合物及含悬浮固体物的液体。本文跟大家一起来通过动画学习各种泵的工作原理及其性能特点,希望对大家有所帮助(当然这里的泵并全是真空所用的泵)。 一、齿轮泵 齿轮泵的两齿轮的齿相互分开,形成低压,液体吸入,并友壳壁送到另一侧。另一侧两齿轮互相合拢,形成高压将液体排出。 齿轮泵的性能特点 齿轮泵的优点 结构简单紧凑、体积小、质量轻、工艺性好、价格便宜、自吸力强、对油液污染不敏感、转速范围大、能耐冲击性负载,维护方便、工作可靠。 齿轮泵的缺点 径向力不平衡、流动脉动大、噪声大、效率低,零件的互换性差,磨损后不易修复,不能做变量泵用。 二、多级离心泵 多级离心泵相当于多个离心泵串联,一级一级增压,可获得较高压头。

多级离心泵性能特点 多级离心泵与单级泵相比,其区别在于多级泵有两个以上的叶轮,能分段地多级次地吸水和压水,从而将水扬到很高的位置,扬程可根据需要而增减水泵叶轮的级数。多级泵主要用于矿山排水、城市及工厂供水,农业灌溉用的很少,仅适用于高扬程、小流量的高山区提水来解决人畜饮水的困难。多级高心泵有立式和卧式两种型式多级离心泵的泵轴上装有串联的两个亦上的叶轮,它相对于一般的单级离心泵,可亦实现更高的扬程;相对于活塞泵、隔膜泵等往复式泵,可亦泵送较大的流量。多级离心泵效率较高,能够满足高扬程、高流量工况的需要,在石化、化工、电力、建筑、消防等行业得到了广泛的应用。 由于其本身的特殊性,与单级离心泵相比,多级离心泵在设计、使用和维护维修等方面,有着不同、更高的技术要求。往往是人们在一些细节上的疏忽或者考虑不周,使得多级离心泵投用后频繁发生异常磨损、振动、抱轴等故障,亦致停机。 三、离心泵 离心泵工作时,液体注满泵壳,叶轮高速旋转,液体在离心力作用下产生高速度,高速液体经过逐渐扩大的泵壳通道,动压头转变为静压头。

真空机的作用与工作原理

按真空泵的工作原理,真空泵基本上可以分为两种类型,即气体传输泵和气体捕集泵。气体传输泵是一种能使气体不断的吸入和排出,借以达到抽气目的的真空泵。气体捕集泵是一种使气体分子被吸附或凝结在泵的内表面上,从而减小了容器内的气体分子数目而达到抽气目的的真空泵。 真空泵是用各种方法在某一封闭空间中产生、改善和维持真空的装置。真空泵可以定义为:利用机械、物理、化学或物理化学的方法对被抽容器进行抽气而获得真空的器件或设备。随着真空应用的发展,真空泵的种类已发展了很多种,其抽速从每秒零点几升到每秒几十万、数百万升。按真空泵的工作原理,真空泵基本上可以分为两种类型,即气体传输泵和气体捕集泵。随着真空应用技术在生产和科学研究领域中对其应用压强范围的要求越来越宽,大多需要由几种真空泵组成真空抽气系统共同抽气后才能满足生产和科学研究过程的要求,由于真空应用部门所涉及的工作压力的范围很宽,因此任何一种类型的真空泵都不可能完全适用于所有的工作压力范围,只能根据不同的工作压力范围和不同的工作要求,使用不同类型的真空泵。为了使用方便和各种真空工艺过程的需要,有时将各种真空泵按其性能要求组合起来,以机组型式应用。 不同真空包装机中真空泵的工作原理 水环式真空泵/液环真空泵工作原理 水环真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限真空为2000~4000Pa,串联大气喷射器可达270~670Pa。水环泵也可用作压缩机,称为水环式压缩机,是属于低压的压缩机,其压力范围为1~2×105Pa表压力。 水环泵最初用作自吸水泵,而后逐渐用于石油、化工、机械、矿山、轻工、医药及食品等许多工业部门。在工业生产的许多工艺过程中,如真空过滤、真空

钻井泥浆泵结构工作原理

钻井泥浆泵结构工作原理 泥浆泵原理 泥浆泵是在钻探过程中,向钻孔输送泥浆或水等冲洗液的机械。泥浆泵是钻探机械设备的重要组成部分。它的主要作用是在钻进过程中将泥浆随钻头钻进注入井下,起着冷却钻头,清洗钻具、固着井壁、驱动钻进,并将打钻后岩屑带回地面的作用。在常用的正循环钻探中﹐泥浆泵是将地表冲洗介质─清水﹑泥浆或聚合物冲洗液在一定的压力下﹐经过高压软管﹑水龙头及钻杆柱中心孔直送钻头的底端﹐以达到冷却钻头﹑将切削下来的岩屑清除并输送到地表的目的。常用的泥浆泵是活塞式或柱塞式的﹐由动力机带动泵的曲轴回转﹐曲轴通过十字头再带动活塞或柱塞在泵缸中做往復运动。在吸入和排出阀的交替作用下﹐实现压送与循环冲洗液的目的。 泥浆泵性能 泥浆泵性能的两个主要参数为排量和压力。排量以每分钟排出若干升计算﹐它与钻孔直径及所要求的冲洗液自孔底上返速度有关﹐即孔径越大﹐所需排量越大。要求冲洗液的上返速度能够把钻头切削下来的岩屑﹑岩粉及时冲离孔底﹐并可靠地携带到地表。地质岩心钻探时﹐一般上返速度在0.4~1米/分左右。泵的压力大小取决于钻孔的深浅﹐冲洗液所经过的通道的阻力以及所输送冲洗液的性质等。钻孔越深﹐管路阻力越大﹐需要的压力越高。随着钻孔直径﹑深度的变化﹐要求泵的排

量也能随时加以调节。在泵的机构中设有变速箱或以液压马达调节其速度﹐以达到改变排量的目的。为了準确掌握泵的压力和排量的变化﹐泥浆泵上要安装流量计和压力表﹐随时使钻探人员瞭解泵的运转情况﹐同时通过压力变化判别孔内状况是否正常以预防发生孔内事故。 泥浆泵分类 泥浆泵分单作用及双作用两种型式﹐单作用式泥浆泵在活塞往复运动的一个循环中仅完成一次吸排水动作。而双作用式泥浆泵每往復一次完成两次吸排水动作。若按泥浆泵的缸数分类﹐有单缸﹑双缸及三缸3种型式。 污水泥浆泵是单级单吸立式离心泵,主要部件有蜗壳、叶轮、泵座、泵壳、支撑筒、电机座、电动机等组成。蜗壳、泵座、电机座、叶轮螺母是生铁铸造、耐腐蚀性较好,加工工艺方便。叶轮为三片单园弦弯叶,选用半封闭叶轮,并采用可锻铸铁、所以强度高,耐腐蚀;加工方便,通过性好,效率高。为了减轻重量和减少车削量、泵轴是优质碳素钢冷拉园钢制造。泥浆泵座中装有四只骨架油封和轴套,防止轴磨损,延长轴的使用寿命。本泥浆泵可垂直或倾斜使用,占地面积小,蜗壳需埋在工作介质中工作,容易启动,不需引水,旋转方向应从电机尾部看是顺时针方向工作。总机长度备有各种规格,以便使用单位根据用途因地制宜地选用。

齿轮油泵工作原理和注意事项

齿轮油泵工作原理和注意事项 2009-12-25 0:49:00 发布者:泊头八方油泵制造厂 齿轮油泵是通过一对参数和结构相同的渐开线齿轮的相互滚动啮合,将油箱内的低压油升至能做功的高压油的重要部件。是把发动机的机械能转换成液压能的动力装置。发动机在其使用过程中容易出现以下故障。 1、油泵内部零件磨损 油泵内部零件磨损会造成内漏。其中浮动轴套与齿轮端面之间泄漏面积大,是造成内漏的主要部位。这部分漏损量占全部内漏的50%~70%左右。磨损内漏的齿轮泵其容积效率下降,油泵输出功率大大低于输入功率。其损耗全部转变为热能,因此会引起油泵过热。若将结合平面压紧,因工作时浮动轴套会有少量运动而造成磨损,结果使农具提升缓慢或不能提升,这样的浮动轴套必须更换或修理。 2、油泵壳体的磨损 主要是浮动轴套孔的磨损(齿轮轴与轴套的正常间隙是0.09~0.175mm,最大不得超过0.20mm)。齿轮工作受压力油的作用,齿轮尖部靠近油泵壳体,磨损泵体的低压腔部分。另一种磨损是壳体内工作面成圆周似的磨损,这种磨损主要是添加的油液不净所致,所以必须添加没有杂质的油液。 3、油封磨损,胶封老化 卸荷片的橡胶油封老化变质,失去弹性,对高压油腔和低压油腔失去了密封隔离作用,会产生高压油腔的油压往低压油腔,称为“内漏”,它降低了油泵的工作压力和流量。CB46齿轮泵它的正常工作压力为100~110kg/平方厘米,正常输油量是46

L/min,标准的卸荷片橡胶油封是57×43。自紧油封是PG25×42×10的骨架式油封,它的损坏或年久失效,空气便从油封与主轴轴颈之间的缝隙或从进油口接盘与油泵壳体结合处被吸入油泵,经回油管进入油箱,在油箱中产生大量气泡。会造成油箱中的油液减少,发动机油底槽中油液增多现象,使农具提升缓慢或不能提升。必须更换油封才可排除此故障。 4、机油泵供油量不足或无油压 现象:工作装置提升缓慢,提升时发抖或不能提升;油箱或油管内有气泡;提升时液压系统发出“唧、唧”声音;拖拉机刚启动时工作装置能提升,工作一段时间油温升高后,则提升缓慢或不能提升;轻负荷时能提升,重负荷时不能提升。 故障原因: (1)液压油箱油面过低; (2)没按季节使用液压油; (3)进油管被脏物严重堵塞; (4)油泵主动齿轮油封损坏,空气进入液压系统; (5)油泵进、出油口接头或弯接头“O”形密封圈损坏,弯接头的紧固螺栓或进、出油管螺母未上紧,空气进入液压系统; (6)油泵内漏,密封圈老化; (7)油泵端面或主、从动齿轮轴套端面磨损或刮伤,两轴套端面不平度超差; (8)油泵内部零件装配错误造成内漏; (9)“左旋”装“右旋”油泵,造成冲坏骨架油封;

各种真空泵的工作原理

各种真空泵的工作原理 水环式真空泵/液环真空泵工作原理 水环真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限真空为2000~4000Pa,串联大气喷射器可达270~670Pa。水环泵也可用作压缩机,称为水环式压缩机,是属于低压的压缩机,其压力范围为1~2×105Pa表压力。 水环泵初用作自吸水泵,而后逐渐用于石油、化工、机械、矿山、轻工、医药及食品等许多工业部门。在工业生产的许多工艺过程中,如真空过滤、真空引水、真空送料、真空蒸发、真空浓缩、真空回潮和真空脱气等,水环泵得到广泛的应用。由于真空应用技术的飞跃发展,水环泵在粗真空获得方面一直被人们所重视。由于水环泵中气体压缩是等温的,故可抽除易燃、易爆的气体,此外还可抽除含尘、含水的气体,因此,水环泵应用日益增多。 在泵体中装有适量的水作为工作液。当叶轮按图中顺时针方向旋转时,水被叶轮抛向四周,由于离心力的作用,水形成了一个决定于泵腔形状的近似于等厚度的封闭圆环。水环的下部分内表面恰好与叶轮轮毂相切,水环的上部内表面刚好与叶片顶端接触(实际上叶片在水环内有一定的插入深度)。此时叶轮轮毂与水环之间形成一个月牙形空间,而这一空间又被叶轮分成和叶片数目相等的若干个小腔。如果以叶轮的下部0°为起点,那么叶轮在旋转前180°时小腔的容积由小变大,且与端面上的吸气口相通,此时气体被吸入,当吸气终了时小腔则与吸气口隔绝;当叶轮继续旋转时,小腔由大变小,使气体被压缩;当小腔与排气口相通时,气体便被排出泵外。 综上所述,水环泵是靠泵腔容积的变化来实现吸气、压缩和排气的,因此它属于变容式真空泵。 泵的工作原理

泥浆泵(个人总结)

泥浆泵(个人总结) 一、泥浆泵的结构: 液力端包括缸体、缸套、活塞、吸入阀、排出阀等部件,结构如图: 二、泥浆泵的工作原理: 泥浆泵的工作原理:活塞下行,钻井液在大气压的作用下,推开吸入阀,进入缸内,直到活塞到最低端完成钻井液的吸入过程。

当活塞前行,钻井液在缸内受挤压,吸入阀在弹簧作用下关闭,当压力升高时排出阀被打开,钻井液被活塞推出,经由排出阀和排出管排出,完成排出过程。 三、钻井泵液力端常见的几种故障: 1、缸套、活塞的损坏与磨损。缸套与活塞的损坏包括两种情况: 一是正常的磨损,使配合间隙增大; 二是活塞胶碗损坏。 2、凡尔体与凡尔座的损坏。凡尔体与凡尔座的损坏主要有以下几种情况: 一是本体密封面刺坏; 二是质量问题造成的扶正块断裂; 三是弹簧断裂; 四是扶正压板脱落等。 3、凡尔体卡死或异物阻卡。凡尔体卡死原因较多,但异物卡死现场也时有发生,比如泥浆净化不严格,上水管胶皮脱落等。 4、上水管密封不严。 5、空气包压力不足。 四、钻井泵液力端故障对压力的影响: 一般泥浆泵的上诉故障,大多都能对泵压产生不同的影响,但是影响的反映应分为两种,一种是造成压力的降低,另一种是造成压力的波动,应将二者区分开来。 (一)造成泵压降低的几种常见故障与判断(3~7为其他地面故障及原因): 1、缸套与活塞刺坏。 2、凡尔体与凡尔座刺坏。 缸套、活塞、凡尔体及凡尔座刺坏使正常显示的泵压缓慢下降,但无波动现象发生,一般情况下泵压下降1MPa我们就会发现,判断这类故障也及其简单。 3、柴油机转数是否调整。

柴油机转数的调整,对泵压的影响因为调节的辐度大小影响也不一样,但绝不会引起泵压的波动,泵压平稳降低或增大。 4、泵传动皮带因雨季造成的摩阻减少(在无密封护罩的情况下)。 雨季因皮带摩阻减小而影响泵压的变化一般在1MPa左右,但泵压无波动,也不会再有变化。 5、地面整个高压管汇闸阀是否刺坏。 高压闸阀刺坏对泵压的影响比较显著,一般在发现泵压下降1MPa时我们就可以及时的发现,如发现较晚,则泵压持续下降,但泵压无波动,这种现象可以根据回水管的回液或温度或声音来判断。 6、泵保险凡尔是否损坏造成的钻井液短路。 泵保险凡尔刺坏或短路,凡尔的活塞刺坏易被操作者忽略,在发现泵压下降后,有好多忽略了检查这里,以致于误判断为井下钻具的故障,给生产带来不必要的损失。保险凡尔刺坏忽略判断主要发生在回液管与上水管相联或与钻井液罐相联的情况下。对压力的影响与其它的现象区别在于压力变化的大小,开始时与闸阀刺坏凡尔体、凡尔座刺坏相同,但后期压力下降辐度较大。 7、钻井液性能是否变化,如比重降低、粘度降低、加入润滑剂等。 泥浆性能的变化对压力的影响,主要发生在刚下钻到底,或者是刚加入处理剂的情况下,根据性能变化的大小辐度也相应变化,但影响不是很大,我们一般能及时发现与判断。 (二)造成泵压波动的几个常见故障与判断: 1、上水管密封不严或者上水管损坏。(不考虑罐液量不足) 这种现象表现在上水管有抽气现象,或者有钻井液渗漏,判断与解决比较容易,因为有空气进入可引起压力的波动,可表现在压力表指针上下浮动,水龙带晃动,压力波动范围根据上水管损坏程度略有不同,但一般在1~1.5MPa之间晃动。水龙带晃动不剧烈。 2、空气包无压力或压力数值较小。 空气包无压力或预充压力较小,在其他密封件无过大磨损的情况下,可表现为压力表浮动范围小,水龙带晃动不剧烈并有规则的晃动,一般情况下,我们必须将空气包充到设计泵压的30%,一是减少压力的波动,二是可以使故障判断不致于复杂化。 3、凡尔体卡死或者被异物卡死,无法关闭。 这种现象在钻井现场中时有发生,而且判断起来比较困难,发生的原因有以下几点: 1)弹簧断裂后,凡尔体卡死,无法关闭进水口。 2)扶正压板翻转后凡尔体无法回到原位关闭进入口(主要发生在设备老化,缸体上部被扶正压板撞击出坑槽) 3)凡尔体扶正块损坏或者脱落,造成凡尔体无法开启或者无法关闭。 凡尔体卡死一般多发生在吸入阀,凡尔体卡死后造成吸入口无法关闭,使排出过程无法正常进行,泵压下降幅度较大,一般在3~4MPa之间,而且伴着水龙带剧烈的晃动,缸体内无太大的声响,上水管膨胀幅度也开始剧烈起来。我们可以根据这几种现象来初步判断是阀体卡死,对于三缸来说,我们还要进一步判断是哪一个阀体卡死,我们主要根据《拉杆法》来判断如下图所示:

液压齿轮泵的工作原理

液压齿轮泵的工作原理 一、什么是液压齿轮泵呢? 一般计算公式 泵是指运输液体或让液体增多压力的机械元件。它把原动机的机械元件能或别的外部能量输送给液体,让液体能量增多。 泵主要用来运输水、油、酸碱液、乳化液、悬乳液与液态金属等液体,也可以运输液、气混合物及含悬浮固体物的液体。 泵一般可以按工作原理分为容积式泵、动力式泵与别的类型泵三类。除了按工作原理分类外,还可以以按别的方法分类与命名。如,按驱动方法可以分为电动泵与水轮泵等;按结构可以分为单级泵与多级泵;按用途可以分为锅炉给水泵与计量(度量衡)泵等;按运输液体的性质可以分为水泵、油泵与泥浆泵等。 泵的各个性能参数之间存在着一定的相互依赖变化关系,可以以画成曲线来表示,叫做泵的特性曲线,每一台泵都有自己特定的特性曲线。 二、泵的定义与历史来源 运输液体或让液体增多压力的机械元件。广义上的泵是指运输流体或让其增多压力的机械元件,包括某些运输气体的机械元件。泵把原动机的机械元件能或别的能源的能量传给液体,让液体的能量增多。 水的提升对于人类生活与生产都十分重要。古代已有各种提水器具,如埃及的链泵(前17世纪)、中国的桔槔(前17世纪)、辘轳(前11世纪)、水车(公元1世纪),以及公元前3世纪古希腊阿基米德发明的螺旋杆等。公元前200年左右,古希腊工匠克特西比乌斯发明了最原始的活塞泵-灭火泵。早在1588年就有了关于4叶片滑片泵的记载,以后陆续出现了别的各种回转泵。1689年,法国的D.帕潘发明了4叶片叶轮的蜗壳离心泵。1818年,美国出现了具有径向直叶片、半开式双吸叶轮与蜗壳的离心泵。1840~1850年,美国的H.R.沃辛顿发明了泵缸与蒸汽缸对置的蒸汽直接作用的活塞泵,标志着现代活塞泵的形成。1851~1875年,带有导叶的多级离心泵相继发明,让发展高扬程离心泵成为可以能。随后,各种泵相继问世。随着各种先进技术的应用,泵的效率逐步提高,性能范围与应用也日渐扩大。 三、泵的分类依据 泵的种类繁多,按工作原理可以分为:①动力式泵,又叫叶轮式泵或叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液体,让液体的动能(为主)与压力能增多,随后通过压出室把动能转换为压力能,又可以分为离心泵、轴流泵、部分流泵与旋涡泵等。 ②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周期性地传递给液体,让液体的压力增多至把液体强行排出,根据工作元件的运动形式又可以分为往复泵与回转泵。③别的类型的泵,以别的形式传递能量。如射流泵依靠高速喷射的工作流体把需运输的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动时流动中的部分水被升到一定高度传递能量;电磁泵是指让通电的液态金属在电磁力作用下产生流动而实现运输。另外,泵也可以按运输液体的性质、驱动方法、结构、用途等进行分类。 四、泵在各个领域中的应用 从泵的性能范围看,巨型泵的流量每小时可以达几十万立方米以上,而微型泵的流量每小时则在几十毫升以下;泵的压力可以从常压到高达19.61Mpa(200kgf/cm2)以上;被运输液体的温度最低达-200摄氏度以下,最高可以达800摄氏度以上。泵运输液体的种类繁多,诸如运输水(清水、污水等)、油液、酸碱液、悬浮液、与液态金属等。 在化工与石油部门的生产中,原料、半成品与成品大多是指液体,而把原料制成半成品与成品,需要经过复杂的工艺过程,泵在这些过程中起到了运输液体与提供化学反应的压力流量

水环真空泵工作原理flash动画图

水环真空泵工作原理flash动画图 水环式真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限压力,对于单级泵为2.66~9.31kPa;对于双级泵为0.133~0.665kPa。水环式真空泵也可用作压缩机,它属于低压的压缩机,其压力范围为(1~2)X105Pa表压力(在特定的条件下)。水环式真空泵在石油、化工、机械、矿山、轻工、造纸、动力、冶金、医药和食品等工业及市政与农业等部门的许多工艺过程中,如真空过滤、真空送料、真空脱气、真空蒸发、真空浓缩和真空回潮等,得到了广泛的应用,由于水环泵压缩气体的过程是等温的,故可抽除易燃、易爆的气体,此外还可抽除含尘,含水的气体,因此,水环式真空泵的应用日益增大。

如图为水环式真空泵的工作原理示意图,水环泵是由叶轮、泵体、吸排气盘、水在泵体内壁形成的水环、吸气口、排气口、辅助排气阀等组成的。 叶轮被偏心的安装在泵体中,当叶轮按图示方向旋转时,进入水环式真空泵泵体的水被叶轮抛向四周,由于离心力的作用,水形成了一个与泵腔形状相似的等厚度的封闭的水环。水环的上部内表面恰好与叶轮轮毂相切(如Ⅰ-Ⅰ断面),水环的下部内表面刚好与叶片顶端接触(实际上,叶片在水环内有一定的插入深度)。此时,叶轮轮毂与水环之间形成了一个月牙形空间,而这一空间又被叶轮分成与叶片数目相等的若干个小腔。如果以叶轮的上部0°为起点,那么叶轮在旋转前180°时,小腔的容积逐渐由小变大(即从断面Ⅰ-Ⅰ到Ⅱ-Ⅱ),压强不断的降低,且与吸排气盘上的吸气口相通,当小腔空间内的压强低于被抽容器内的压强,根据气体压强平衡的原理,被抽的气体不断地被抽进小腔,此时正处于吸气过程。当吸气完成时与吸气口隔绝,从Ⅱ-Ⅱ到Ⅲ-Ⅲ断面,小腔的容积正逐渐减小,压力不断地增大,此时正处于压缩过程,当压缩的气体提前达到排气压力时,从辅助排气阀提前排气。从断面Ⅲ-Ⅲ到Ⅰ-Ⅰ,而与排气口相通的小腔的容积进一步地减小压强进一步的升高,当气体的压强大于排气压强时,被压缩的气体从排气口被排出,在泵的连续运转过程中,不断地进行着吸气、压缩、排气过程,从而达到连续抽气的目的。 在水环泵中,辅助排气阀是一种特殊结构,一般采用橡皮球阀,它的作用是消除泵在运转过程中产生的过压缩与压缩不足的现象。这两种现象都会引起过多的功率消耗。因为水环式真空泵没有直接的排气阀,而且排气压力始终是固定的,水环泵的压缩比决定于进气口的终止位置和排气口的起始位置,然而这两个位置是固定不变的,因而不适应吸入压力变化的需要。为了解决这个问题,一般在排气口下方设置橡皮球阀,以便当泵腔内过早达到排气压力时,球阀自动开启,气体排出,消除了过压缩现象。一般在设计水环泵时都以最低吸入压力来确定压缩比,以此来确定排气口的起始位置,这样就解决了压缩不足的现象。

常用三种真空泵的原理

常用三种真空泵的原理 水环式真空泵: 液环真空泵工作原理水环真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限真空为 2000~4000Pa,串联大气喷射器可270~670Pa。水环泵也可用作压缩机,称为水环式压缩机,是属于低压的压缩机,其压力范围为1~2×105Pa表压力。水环泵最初用作自吸水泵,而后逐渐用于石油、化工、机械、矿山、轻工、医药及食品等许多工业部门。在工业生产的许多工艺过程中,如真空过滤、真空引水、真空送料、真空蒸发、真空浓缩、真空回潮和真 空脱气等,水环泵得到广泛的应用。由于真空应用技术的飞跃发展,水环泵在粗真空获得方面一直被人们所重视。由于水环泵中气体压缩是等温的,故可抽除易燃、易爆的气体,此外还可抽除含尘、含水的气体,因此,水环泵应用日益增多。 在泵体中装有适量的水作为工作液。当叶轮按图中顺时针方向旋转时,水被叶轮抛向四周,由于离心力的作用,水形成了一个决定于泵腔形状的近似于等厚度的封闭圆环。水环的下部分内表面恰好与叶轮轮毂切,水环的上部内表面刚好与叶片顶端接触(实际上叶片在水环内有一定的插入深度)。此时叶轮轮毂与水环之间形成一个月牙形空间,而这一空间又被叶轮分成和叶片数目相等的若干个小腔。如果以叶轮的下部 为起点那么叶轮在旋转前180°时小腔的容积由小变大,且与端面上的吸气口相通,此时气体被吸入,当吸气终了时小腔则与吸气口隔绝;当叶轮继续旋转时,小腔由大变小,使气体被压缩;当小腔与排气口相通时,气体便被排出泵外。 综上所述,水环泵是靠泵腔容积的变化来实现吸气、压缩和排气的,因此它属于变容式真空泵。 罗茨泵的工作原理: 罗茨泵在泵腔内,有二个“8”字形的转子相互垂直地安装在一对平行轴上,由传动比为1的一对齿轮带动作彼此反向的同步旋转运动。在转子之间,转子与泵壳内壁之间,保持有一定的间隙,可以实现高转速运行。 由于罗茨泵是一种无内压缩的真空泵,通常压缩比很低,故高、中真空泵需要前级泵。罗茨泵的极限真空除取决于泵本身结构和制造精度外,还取决于前级泵的极限真空。为了提高泵的极限真空度,可将罗茨泵串联使用。罗茨泵的工作原理与罗茨鼓风机相似。由于转子的不断旋转,被抽气体从进气口吸入到转子与泵壳之间的空间v内,再经排气口排出。由于吸气后v0空间是全封闭状态,所以,在泵腔内气体没有压缩和膨胀。 但当转子顶部转过排气口边缘,v0空间与排气侧相通时,由于排气侧气体压强较高,则有一部分气体返

齿轮泵设计说明书

% 武汉科技大学 本科毕业设计(论文) · 题目:中高压外啮合齿轮泵设计 姓名: 专业: 学号: 指导教师: 【 武汉科技大学机械工程学院 二0一三年五月

目录 摘要.................................................................. I Abstract.......................................................................... II 1绪论. (1) 研发背景及意义 (1) 齿轮泵的工作原理 (2) 齿轮泵的结构特点 (3) 外啮合齿轮泵基本设计思路及关键技术 (3) 2 外啮合齿轮泵设计 (5) 齿轮的设计计算 (5) 轴的设计与校核 (7) 齿轮泵的径向力 (7) 减小径向力和提高齿轮轴轴颈及轴承负载能力的措施 (8) 轴的设计与校核 (8) 卸荷槽尺寸设计计算 (11) 困油现象的产生及危害 (11) 消除困油危害的方法 (13) 卸荷槽尺寸计算 (15) 进、出油口尺寸设计 (17) 选轴承 (17) 键的选择与校核 (17) 连接螺栓的选择与校核 (18) 泵体壁厚的选择与校核 (18) 总结 (19) 致谢 (20) 参考文献 (22)

摘要 外啮合齿轮泵是一种常用的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,并且对轴和轴承的要求较高。为解决泄漏问题,低压外啮合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。 关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽 (此毕业设计获得2013届优秀毕业设计荣誉,共有5张零件图,1张装配图,并且有开题报告、外文翻译、答辩稿,答辩ppt,保证让你的毕业设计顺利过关!先找份好的工作,不再为毕业设计而发愁!!!有需要零件图和装配图的同学请联系)

齿轮泵工作原理及结构

*作品编号:DG13485201600078972981* 创作者:玫霸* 齿轮泵工作原理及结构齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型 齿轮泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油

管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9- 螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销齿轮泵存在的问题 ? 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿 轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合 的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就 被困在这一封闭容积中〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐 减小,到两啮合点处于节点两侧的对称位置时〔见图3-5(b)〕,封闭容积为最

各类真空泵原理概述大全

各类真空泵原理概述大全 真空泵是用各种方法在某一封闭空间中产生、改善和维持真空的装置。真空泵可以定义为:利用机械、物理、化学或物理化学的方法对被抽容器进行抽气而获得真空的器件或设备。随着真空应用的发展,真空泵的种类已发展了很多种,其抽速从每秒零点几升到每秒几十万、数百万升。极限压力(极限真空)从粗真空到10-12Pa以上的极高真空范围。 真空区域的划分 粗真空105~103Pa 低真空103~10-1Pa 高真空10-1~10-6Pa 超高真空10-6~10-10Pa 极高真空<10-10Pa 真空泵的分类 按真空泵的工作原理,真空泵基本上可以分为两种类型,即变容真空泵和动量传输泵。 变容真空泵是利用泵腔容积的周期变化来完成吸气和排气以达到抽气目的的真空泵。气体在排出泵腔前被压缩。 动量传输泵(分子真空泵)依靠高速旋转的叶片或高速射流,把动量传输给气体或气体分子,使气体连续不断地从泵的入口传输到出口。(单独段介绍) 变容真空泵又分为:往复式,旋转式(旋片式、滑阀式、液环式、罗茨式、螺旋式、爪形转子式),其它型式。 各类真空泵工作压力范围 真空泵种类工作压强范围(Pa) 往复式真空1×105~1.3×102

泵 旋片式真空 泵 1×105~6.7×10-1 液环式真空 泵 1×105~2.7×103 罗茨式真空 泵 1.3×103~1.3 水蒸气喷射 泵 1×105~1.3×10-1 油扩散泵 1.3×10-2~1.3×10-7 钛升华泵 1.3×10-2~1.3×10-9 真空泵的规格及型号表示法: 国产的各种机械真空泵的型号通常是用汉语拼音字母来表示。汉语拼音字母表示泵的类型;字母前的数字表示泵的级数,单级时“1”省略;字母后边横线后的数字表示泵的抽速(L/S) 。 国产真空泵型号对照表 型号名称型 号 名称 W往复式 真空泵 H 滑阀式真空泵 WY移动阀 式往复 泵 YZ余摆线真空泵 WL立式往 复泵 ZJ罗茨真空泵SZ水环泵X旋片式真空泵 SZ B 悬臂式 结构水 环泵 F分子真空泵 SZ Z 直联式 水环泵 XZ直联式旋片泵 常用真空泵技术 蒸汽喷射泵 湿式泵(液环真空泵、旋转叶片泵) 干式泵(罗茨泵、螺杆泵、爪式泵) 1、蒸汽喷射泵 喷射真空泵工作原理:蒸汽喷射真空泵有一定压强的工作的真空泵设备,蒸汽通过拉瓦尔喷咀,减压增速,蒸汽的势能转变为动能并以超音速喷入混合室,与被抽介质混合,进行能量交换,混合后的气体进入扩压器,减速增压,动通转化为压强能,为了减少后级泵的抽气负荷,配置冷凝器,通过有一定温差的两种介质对流,进行热交换,达到冷凝高温介质目的,排到大气压。工作原理如下图所示: 常用真空泵技术 优点:缺点:

齿轮泵工作原理和结构

齿轮泵工作原理以及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿 轮泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿

进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对

相关文档
最新文档