高层建筑框架一核心筒结构设计分析

高层建筑框架一核心筒结构设计分析
高层建筑框架一核心筒结构设计分析

高层建筑框架一核心筒结构设计分析

摘要:文章根椐筒体结构的特点,结合工程案例对简体结构特别是框架一核心筒结构从概念设计、计算程序选取、结构计算参数的选取、平面布置、构造要求等方面进行了探析,以完善框架一核心筒结构设计。

关键词:框架一核心筒结构,高层建筑,设计,构造

引言

简体结构是由竖向筒体为主组成的承受竖向和水平作用的高层建筑结构。筒体结构主要包含以下两种:

(1)筒结构:由核心筒与外围框筒组成的高层建筑结构;

(2)框架一核心筒结构:由核心筒与外围的稀柱框架组成的高层建筑结构。

框架一核心筒结构周边柱子的柱距比较大,一般为8m~12m,它和沿周边的梁构成了外框架,中间为电梯井、楼梯间、管道井等构成的核心筒,受力特点类似框架一剪力墙。某工程建筑面积。地下2层为车库,地上3层为商业,地上4层—22层为写字楼或公寓。檐口高度,装饰构件高度为。该工程的抗震设防烈度为8度,抗震设防类别为丙类,结构抗震等级为剪力墙一级,框架一级。

1计算程序选取

框架核心筒的结构分析应符合《高层建筑混凝土结构技术规程》(以下简称为《高规》)和《建筑抗震设计规范》的有关规定,采用三维空问分析方法进行内力分析,对B类高度或体型复杂的筒体结构应采用两个或两个以上不同力学模型的空间分析程序进行内力分析和比较,考虑双向水平地震下的扭转地震作用效应,并应采用时程分析进行多遇地震下的补充计算。本工程为A类建筑高度,结构整体分析采用SATWE和TAT两种软件分析计算结构,并优化了结构方案。

2结构计算参数的选取

(1)设计基准期50年,使用年限50年,安全等级为二级,地基设计等级为乙级;

(2)本工程抗震设防烈度为8度,地震分组为第一组,设计基本地震加速度为,建筑抗震设防类别为丙类;

(3)基本风压为m2,对于特别重要或对风荷载比较敏感的高层建筑(一般高度大于60m的高层建筑),其基本风压应按100年重现期的风压值。因此基本风压取/m2,地面粗糙为C类,风压体形系数、风压高度变化系数及风振系数均按GB50009—2001建筑结构荷载规范的规定采用,楼面活荷载标准值按荷载规范取值。

3主要结构构件截面

核心筒框架柱和边框架梁截面尺寸与混凝土等级见表1

表1核心筒框架柱和边框架梁截面尺寸与混凝土等级

4框架一核心筒平面布置

图1标准层结构平面布置层

(1)核心筒宜贯通建筑物全高。核心筒的宽度不宜小于简体总高的1/12,当筒体结构设置角筒、剪力墙或增强结构整体刚度的构件时,核心筒的宽度可适当减小。本工程核心筒高度为,最小宽度为,高宽比为1/,满足要求;

(2)核心筒的周边宜闭合,楼梯、电梯间应布置混凝土内墙;核心筒应具有良好的整体性;

(3)核心筒外墙的截面厚度不应小于层高的1/0及200mm,对一、二级抗震设计的底部加强部位不宜小于层高的1/16及200mm.,不满足时,应按本规程附录D计算墙体稳定,必要时可增设扶壁柱或扶壁墙;在满足承载力要求以及轴压比限值(仅对抗震设计)时,核心筒内墙可适当减薄,但不应小于160mm。又因为有框架梁支承在核心筒上,核心筒的外墙厚度宜大于0.4LAE(梁纵向受力钢筋的锚固长度),工程中框架梁钢筋最大为25mm抗震等级为一级。工程核心筒外墙的截面厚度为400mm,满足以上要求;

(4)核心筒外墙较大的门洞宜上下竖向连续布置,以使其内力变化保持连续性;

(5)工程标准层的层高为3300mm,门及设备洞口高度为2100mm,连梁高度取值从400mm—1200mm逐步变化,而整体计算结构也随之变化。比较分析见表2。最终工程标准层采用400mm—1200mm高的连梁。标准层结构平面布置图见图l。

表2计算结果分析

5构造要求

(1)简体墙的加强部位、边缘构件的设置以及配筋设计,应符合《高规》第7章的有关规定。抗震设计时,框架一核心筒结构的核心筒和筒中筒结构的内筒,应按《高规》第条的规定设置约束边缘构件或构造边缘构件,其底部加强部位在重力荷载作用下的墙体轴压比不宜超过《高规》表的规定。

(2)简体结构的楼盖外角宜设置双层双向钢筋,单层单向配筋率不宜小于%,钢筋的直径不应小于8mm,间距不应大于150mm,配筋范围不宜小于外框架(或外筒)至内筒外墙中距的1/3和3m。

(3)跨高比不大于2的框筒梁和内筒连梁宜采用交叉暗撑;跨高比不大于1的框筒梁和内筒连梁应采用交叉暗撑,且应符合下列规定:梁的截面宽度不宜小于300mm;全部剪力应由暗撑承担。每根暗撑应由4根纵向钢筋组成,纵筋直径不应小于14mm,做法见图2,总面积A应按下列公式计。

无地震作用组合:;

有地震作用组合:。

图2连梁交叉暗撑(JC)示意图

6结束语

(1)核心筒为框架核心筒的主要抗侧力结构,因绝对保证核心筒的整体性和足够的刚度。

(2)框架一核心筒在强烈地震作用下,框架柱的损坏程度远大于核心筒,必须按《高规》调整各框架柱的地震剪力。

(3)影响剪力墙平面外对梁端嵌固作用的主要因素:墙平面外对梁端嵌固作用有效长度、墙线刚度与梁线刚度之比和墙在该层的轴压力等等。为加强墙平面外对梁端嵌固作用,可采取梁端水平加腋法、增加墙边框梁方法,梁端弯矩可采用“调幅再

调幅”方法。

(4)连梁属于深弯梁和深梁的范畴,正截面承载力计算时,不能按杆系模型计算,连粱截面选取对核心筒抗弯能力与整体刚度有很大的影响。

参考文献

[1]阮永辉,吕西林.带水平加强层的超高层结构的力学性能分析[J].结构分析,2000(4).

[2]高层建筑混凝土结构技术规范JGJ3—2002.北京:中国建筑工业出版社,2002.

[3]高层建筑结构设计建议上海科学技术出版社,2003.

[4]建筑地基基础设计规范GB50007—2002.北京:中国建筑工业出版社,2002.

[5]混凝土结构设计规范GB50010-2002.北京:中国建筑工业出版社,2002.

[6]建筑抗震设计规范GB50011—2001.北京:中国建筑工业出版社,2001.

高层建筑结构设计分析王方成

高层建筑结构设计分析王方成 发表时间:2016-07-28T15:02:06.787Z 来源:《基层建设》2016年10期作者:王方成 [导读] 本文结合工程实际,对高层建筑结构设计分析。 深圳市建筑设计研究总院有限公司 摘要:随着我国科学技术的不断进步和经济的快速发展,城市中高楼耸立,高层建筑物已成为人们共同的追求。本文结合工程实际,对高层建筑结构设计分析。 关键词:高层建筑;结构设计 1 工程概况 该建筑总长46.10m,总宽35.90m,总高 111.563m,大屋面层高96.90m。地上共23层,地下 2 层。地下室层高 4.7m 与 3.75m。1~22 层层高 4.2m,23 层层高4.5m。上部均为办公室,地下部分为车库和设备用房。总建筑面积53065.79 m2,其中地上37307.59 m2,地下 15758.20 m2,建筑占地面积 10636m2。 2 自然地质情况 本工程场地地震基本烈度 7 度,设计地震分组第三组,设计基本地震加速度 0.1g,属于抗震不利地段,建筑场地类别Ⅱ类,设计特征周期取 0.45s。50 年遇基本风压 0.80kN/m2,场地地基土自上而下可划分为 7 层,从上至下依次为①层填石,层厚 2.7~19m;②层中砂,层厚 0.90~22.9m;②-A 层淤泥,层厚 1.70~1.90m;③层(含砾砂)粉质粘土,层厚 1.3~3.2m;④层残积砂质粘性土,层厚 2.6~8.0m;⑤层全风化花岗岩,层厚1.1~7.3m;⑥层强风化花岗岩:灰白、灰黄、灰褐色,饱和。⑥-1层砂土状强风化花岗岩,层厚 1.1~11.1m;⑥-2 层碎块状强风化花岗岩,层厚 0.8~11.5m;⑦层中风化花岗岩:灰、灰黄、灰白色,岩芯多呈短柱状和长柱状,局部呈块状,中粗粒花岗结构,块状构造,岩芯裂隙较发育,多呈闭合,岩芯采取率 67%~87%,RQD=38~71,岩石饱和单轴抗压试验为 64.60~70.10MPa,标准值为 66.03MPa,岩石坚硬程度为坚硬岩,岩体完整程度为破碎~较完整,岩体基本质量等级为Ⅱ~Ⅳ级。本次勘察所有钻孔均有揭示至该层,均未揭穿,揭露厚度为2.20~10.76m。 3 基础形式 由于办公楼及其周边纯地下室在基坑开挖后存在一定厚度的①层填石(厚度为 3.46~11.54m),采用预应力管桩时难以穿越填石层,另可供预应力管桩选择的桩端持力层④层残积砂质粘性土、⑤层全风化花岗岩和⑥-1 层砂土状强风化花岗岩分布不均匀,考虑到⑥-2层碎块状强风化花岗岩和⑦层中风化花岗岩分布较均匀,根据拟建场地岩土层特性、拟建物结构特点及荷载情况,采用冲(钻)孔灌注桩基础。 4 主体结构设计 4.1 结构选型 本建筑抗震设防类别为标准设防类(丙类)。由于建筑功能布局多为开敞办公区、大会议室等大空间,中间部分以及建筑外形要求美观、大方等方面因素,故本建筑主体部分采用钢筋混凝土框架———核心筒结构形式。框架———核心筒结构的周边框架与核心筒之间形成的可用空间较大,能使房屋空间布局灵活,又能使高层建筑结构满足较大刚度的要求,因此广泛用于写字楼、多功能建筑。具体做法是在建筑中部的电梯井筒及楼梯间四周布置抗震墙框筒,加大外框筒的柱距,减小梁的高度,周边形成稀柱框架。参照规范抗震设防烈度为7 度,确定抗震等级框架为二级,核心筒为二级。 4.2 主要荷载取值 高压配电房、电梯机房、通风机房活荷载为 7.0 kN/ m2,储藏间活荷载为 5.0 kN/m2,备餐间、车库活荷载为 4.0 kN/m2,商场、消防疏散楼梯活荷载为3.5 kN/ m2,办公室、卫生间、走廊、门厅、屋面花园、多功能厅大会议室活荷载为 3.0 kN/ m2,食堂活荷载为 2.5 kN/m2,上人屋面活荷载为 2.0 kN/m2,不上人屋面活荷载为 0.5 kN/m2。大型设备按实际情况考虑。 4.3 主要受力构件尺寸取值 地下室~1 层墙厚度为 400mm,2~23 层墙厚度为300mm。框架柱截面尺寸:地下室为 1200mm×1200mm,1~3层为1100mm×1100mm,4~6 层为 1000mm×1100mm,7~9 层为 1000mm×1000mm,10~12 层为 900mm×1000mm,13~15层为 800mm×900mm,16~18 层为 800mm×800mm,19~21 为700mm×700mm,22~23 层为 600mm×600mm。地下室负一层顶板的厚度为 200mm,地下室顶板除核心筒内板厚 180mm之外,其余部位板厚为 300mm,屋面层的板厚为 120mm,其它各楼层的板厚为 100mm。 4.4 主要结构材料选取 梁板混凝土强度等级为 C30,柱墙混凝土强度等级:-2~4层为C50,5~9层为C45,10~14 层为 C40,15~19 层为C35,20构架层为 C30。此外,圈梁、构造柱、挑檐、雨篷及楼梯均采用 C30 混凝土。主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用 HRB400级钢筋。 4.5 计算软件及计算依据 本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 SATWE。计算依据为建筑条件图以及《建筑结构荷载规范》GB50009-2012、《建筑抗震设计规范》GB50011-2010、《建筑地基基础设计规范》GB50007-2011、《高层建筑混凝土结构技术规程》JGJ3-2010等国家相关规范。 4.6 计算结果分析 (1)位移比。基于刚性楼板假定,考虑偶然偏心的条件下,X 方向最大层间位移与平均层间位移的比值:1.19 (第26层第1塔),Y 方向最大层间位移与平均层间位移的比值:1.28(第 26 层第 1 塔),属于平面不规则中的扭转不规则。位移比超过 1.2,需要考虑双向地震作用。 (2)层间位移。计算时不扣除整体弯曲变形,不考虑偶然偏心的影响,X 方向地震力作用下的楼层最大位移:1/1055<1/800;Y 方

【结构设计】超高层框架—核心筒结构的优化要点

超高层框架—核心筒结构的优化要点 框架—核心筒结构是由核心筒与外围框架组成的一种结构形式.框架-核心筒结构因其良好的受力性能和内部空间的灵活性成为目前国际超高层建筑中采用的主流结构形式,在超高层建筑中有着广泛的应用.超高层结构的经济性控制往往都是一个难题,博牛最近完成了几个超高层项目的优化咨询,结构整体的含钢量及含砼量均远低于当地一般水平,得到了甲方的高度认可.现总结其优化要点如下: 1、减少核心筒内部小墙肢的数量

核心筒内部小墙肢对结构整体刚度和受力贡献不大,在保证结构成立的前提下,可充分利用梁的承载能力,最大程度的减少内部小墙肢的数量. 2、控制墙厚 控制核心筒墙体厚度.在满足结构整体刚度以及墙体稳定性要求前提下尽量减薄墙体厚度.例如:7度区,150m~200m 的超高层建筑,筒体外墙厚度350~600mm为宜,应根据轴压比由下而上收进.内筒墙体基本可取200mm.

3、加强区以下可设置构造边缘构件 底部加强区以下的约束边缘构件可调整.根据高规 7.2.14条,底部加强区以下(即负一层和负二层)均可做构造边缘构件,为保证嵌固端边缘构件纵筋延续,负一层边缘构件的纵筋同第一层,但箍筋可以按构造边缘构件控制.负二层及以下层可全部设置构造边缘构件,而且抗震等级可按规范要求降低. 4、核心筒角部约束边缘构件的优化 根据高规9.2.2条,底部加强区以上的核心筒角部也应设置约束边缘构件,但应注意根据轴压比调整箍筋配置,以及非阴影区长度. 5、控制框架柱截面 在满足结构整体刚度要求的前提下,控制柱截面,混凝土强度等级可适当取高.框筒结构中的绝大部分框架柱都是构造配筋,减小柱截面也就减小了柱配筋. 6、框架柱的体积配箍率

核心筒结构

核心筒结构 核心筒结构,属于高层建筑结构。简单的来讲就是,外围是由梁柱构成的框架受力体系,而中间是筒体(比如电梯井),因为筒体在中间,所以称为核心筒,又名“框架—核心筒结构”。 框架-核心筒与框筒是有区别的,框筒是一种筒体结构,它指的是周围密柱深梁、内部为剪力墙围合成的筒体结构,在结构上剪力滞后是它与其它结构的主要区别; 可以从以下几个方面来回答: 1、从定义上来讲,他们两者都是框剪结构体系(姑且把你所说的框架核心筒作为框架-核心筒而言),因而结构受力上都是框架与剪力墙变形协调的结果; 2、从细分的角度,可以这样说,对于一个框剪结构,如果我们把剪力墙布置成了筒体,我们可以称之为框架-核心筒,通常来讲,如果结构高度小于60米,我们可以按框架剪力墙的抗震等级及构造措施来处理这个所谓的“框架-核心筒”,而当结构高度大于60米时,我们通常以高规中“框筒”的抗震等级及结构措施来处理; 3、在SATWE中,根据试算和比较,发现在选择结构类型的时候,选择框剪和框筒对计算结果毫无影响(仅针对某一个很典型的框架-核心筒项目),至于为什么,愿意的话可以咨询PKPM项目部 核心筒就是在建筑的中央部分,由电梯井道、楼梯、通风井、电缆井、公共卫生间、部分设备间围护形成中央核心筒,与外围框架形成一个外框内筒结构,以钢筋混凝土浇筑。此种结构十分有利于结构受力,并具有极优的抗震性。是国际上超高层建筑广泛采用的主流结构形式。同时,这种结构的优越性还在于可争取尽量宽敞的使用空间,使各种辅助服务性空间向平面的中央集中,使主功能空间占据最佳的采光位置,并达到视线良好、内部交通便捷的效果。 核心筒有钢筋混凝土密柱组成的束筒空腹式和钢筋混凝土剪力墙式的实腹式核心筒。 钢筋混凝土核心筒—钢框架结构中,混凝土芯筒主要用于抵抗水平侧力。由于材料特点造成两种构件截面差异较大,钢筋混凝土核心筒的抗侧向刚度远远大于钢框架,随着楼层增加,核心筒承担作用于建筑物上的水平荷载比重越大。钢框架部分主要是承担竖向荷载及少部分水平荷载,随着楼层增加,钢框架承担作用于建筑物上的水平荷载比重越小,由于钢材强度高,可以有效减少柱体截面,增加建筑使用面积。 过于增强核心筒刚度而形成弱钢框架结构体系,会造成在强震作用下,混凝土墙体开裂,结构整体抗侧向刚度迅速下降,而钢框架结构部分承担水平荷载的比重迅速增加,超越钢框架承载能力,脱离结构设计人员设计预想,其破坏是很严重的甚至倒塌。 1、核心筒宜贯通建筑物全高。核心筒的宽度不宜小于筒体总高的1/12,当筒体结构

浅析高层建筑结构设计的难点

浅析高层建筑结构设计的难点 我国建筑行业发展至今,不管是其规模还是建筑技术在国际领域都是名列前茅。在建筑工程中,结构设计环节,是高层建筑未来施工的主要参考依据。它具有基础性、关联性、创新性等特征,在当代城市规划中,发挥着越来越重要的作用。基于此,结合国内高层结构设计的相关理论,着重对其设计难点进行分析,以达到降低高层建筑建设成本,保障结构设计质量的目的。 标签:高层建筑;结构设计;难点分析 一、高层建筑结构的特征 与普通建筑相比,高层建筑需承载垂直和水平两个方向的荷载,因此,其对结构的荷载承受能力要求更高,其中垂直荷载主要是由建筑物高度引起的,而水平荷载则是由外界风力产生的,外界风力和地震都是影响高层建筑结构稳定性的重要因素,另外,建筑层数的增高也会加快建筑物的位移速度,而过快得位移速度则会对建筑物的功能性和建筑物内住户的舒适度产生直接的影响,并且过大的侧移位还会对建筑的结构和非结构构件造成损害,因此,相关人员在进行高层建筑结构设计时,需合理控制建筑物的侧移范围,才能保证其结构功能性良好。 二、高层建筑结构的设计原则 (一)基础方案的合理性 高层建筑结构基础施工方案,是保证高层建筑施工整体性和良好性的基础保障,在实际的建筑结构方案设计当中,相关设计单位需要依照具体施工地质条件,依照具体的建筑施工要求来对结构实施设计。一方面,在建筑结构基础方案的配置上,需要和地质调查报告进行对接,保证其中各项调查数据充分符合工程施工标准。另一方面,在进行高层建筑施工过程中,还需要对建筑实施综合性进行分析,特别是对建筑整体结构的稳定程度、每一个环节的负载加以考虑,通过这种施工设计方式,充分保证工程施工的稳定性。 (二)结构措施完善 在高层建筑施工当中,除了需要对基础施工方案和施工图纸进行设计之外,其中还有一个比较重要的施工原则是相关施工单位经常忽略的问题,那就是需要保证建筑结构实施措施完善化。相关设计单位在对高层建筑结构进行设计的过程当中,需要充分地注意各部分组件相互之间的衔接程度。比如建筑体当中的钢筋锚固长度等,同时,设计单位还需要充分注意建筑体存在的一些薄弱环节,建筑体本身的温度对建筑体组件产生的影响等,对这几个方面的问题,在实际的设计工作当中,需要充分遵循“强柱弱梁、强剪弱弯、强压弱拉”的基本结构设计原则,保证高层建筑结构设计的稳定性。

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

高层钢结构第九章规范钢框架混凝土核心筒结构

钢框架—钢筋混凝土核心筒结构 9.1总则 9.1.1钢框架—钢筋混凝土核心筒结构的设计,应祖训现行国家 标准《建设抗震设计规范》GB50011的有关规定。 9.1.2钢框架-钢筋混凝土核心筒结构有双重体系和单重体系之 分,取决于框架部分的剪力分担率。二者有不同的设计要 求,适用范围,最大适用高度和抗震设计等级,设计时应 分别符合有关规定。 9.1.3钢框架-钢筋混凝土核心筒结构有不同的形式,其框架部分 采用钢框架外,必要时也可采用钢管混凝土柱(或钢骨混 凝土柱)和钢梁的组合框架;钢框架必要时可下部楼层用 钢骨混凝土柱和尚不六层用钢柱,混凝土核心筒必要时可 作为钢骨混凝土结构。此外,周边钢框架必要时可设置钢 支撑加强,使钢框架成为具有较高侧向承载力的支撑框架。 9.1.4钢框架-钢筋混凝土核心筒结构为双重体系时,其最大适用 高度不宜超过现行国家规范《建筑结构抗震设计规范 BG50011 对钢筋混凝土框架-核心筒(抗震墙)结构最大 适用高度和钢框架-支撑结构最大适用高度二者的平均值。 单重体系时,不宜超过GB50011对抗震墙结构规定的最大 适用高度。

9.1.5钢框架-钢筋混凝土核心筒结构的抗震设计等级,钢框架部 分和混凝土核心筒部分应分别符合现行国家标准《建筑抗震设计规范》GB50011的表6.1.2和表8.1.3的规定。 9.1.6框架下部采用钢骨混凝土柱上部采用钢柱时,应设置过渡 层防止刚度突变。过渡层的柱刚度宜为上下楼层柱刚度之和的一半。 9.2双重体系和单重体系 9.2.1 钢框架—钢筋混凝土核心筒结构宜作为双重体系。钢框架部分按刚度分配的最大楼层地震剪力,不应小于结构总剪力的10%;框架部分按刚度分配计算得到的地震层剪力应乘以的的增大系数,达到不小于结构底部地震剪力的20%和最大楼层剪力1.5倍二者较小值,且不小于结构底部地震剪力的15%。 【说明】在地震作用下,由于钢筋混凝土核心筒侧向刚度较钢框架大很多,因而承担了绝大部分地震力。但钢筋混凝土剪力墙的弹性极限变形很小,约为1/3000,在达到极限变形时,钢筋混凝土剪力墙已开裂,而此时钢框架尚处于弹性阶段,地震作用在剪力墙和钢框架之间会实行再分配,钢框架承受的地震力会增加,而且钢钢架是重要构件,它的破坏和竖向承载力的降低,将危及房屋的安全,因而有必要对钢框架承受的地震力作更严格的要求,使其能适应强震时的大变形且保有一定的安全度。

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

核心筒设计要求

高层核心筒设计注意事项 1.核心筒的结构以剪力墙为主,也可以用密柱 2.高层剪力墙的厚度一般都大于等于250.((8度及以上地区上地区)),所以画图最好至少画到300,一般底层厚顶层薄,逐渐过渡逐渐过渡。画图时,内边线不动,向外扩边。 3.若使用若使用V A V小型中央空调系统,需要加空调机房机房,风机盘管系统,不需要加空调机房,室内净高最少2.4米。 4.强电弱电有自己的管井,最好上下楼层对齐,至少要有一个900*300相重叠。 5.水有冷冻水和冷却水,可以合并,能节省点面积 6.消防管井消防管井高层要单独做,靠近消火栓,用防火门,供给消防栓喷淋 7.残疾人的卫生间门要双向开,新建的1400*1800,老的是1000*2000的规格 8.如果往室外排风的话,排风和新风最好不靠在一起 9.卫生间管道井里的水管数有8根 10.消防电梯的数量设置:15001500平方米以下,设置1个; 1500-2000平方米,设置两个(面积各地算法不同,上海是楼层的建筑面积减去管道井的面积来计算) 11.防烟楼梯间若和防烟电梯合用前室,面积要大于等于10平方米,前室和楼梯间里都要有正压送风,楼梯间的压强要大于前室的,用乙级防火门;不合用,即仅是防烟楼梯间的前室,面积大于等于6

平米平米,楼梯间加送风,前室不加送风。 12.卫生间里的(大便器+小便器))/洗手盆=2:1 13.管弄井可以放马桶水箱,宽400 14.消防电梯下要有消防水池 15.一般塔式高层办公楼标准层建筑面积大约1000m2~1500m2,有两个独立疏散楼梯就足够了,以1500m2一个标准层来计算,办公楼一般差不多20m2一个人(按北京公布的办公楼使用面积:办公人均6m2;会议2.3m2;;辅助用房1.8m2;服务用房1.4m2;人均使用面积人均使用面积是是11.5m2,合建筑面积大约是是16.5m2),即使以10m/人计算的话,每层最多150人,只需要1.5m宽的楼梯,根据《高层民用建筑设计防火规范宽的楼梯》规定楼梯净宽应不小于1.2m,所以设计两个净宽1.2m的楼梯即可。防烟楼梯间也要约0.8m2的正压送风风道及6m2的前室,其中一个楼梯可与消防电梯合用一个10m2的前室。 16.《办公建筑设计规范》也规定建筑高度超过75mm的办公建筑电梯应分区或分层使用。根据多年的设计经验,为了有效使用电梯,一组电梯的提升高度不宜超过50m。按《高层民用建筑设计防火规范》规定100m以上的建筑应设置避难层的要求,50m左右开始设一个避难层是一个合理的分段。50m高度大约是15层,这一高度还相当于两个24m低层防火规范的高度。人们遇到火灾时,向上或向下走24m也是合理的。 17.没有必要所有的电梯都通到地下室,除货梯和消防梯有功能

高层建筑框架一核心筒结构设计分析

高层建筑框架一核心筒结构设计分析 摘要:文章根椐筒体结构的特点,结合工程案例对简体结构特别是框架一核心筒结构从概念设计、计算程序选取、结构计算参数的选取、平面布置、构造要求等方面进行了探析,以完善框架一核心筒结构设计。 关键词:框架一核心筒结构,高层建筑,设计,构造 引言 简体结构是由竖向筒体为主组成的承受竖向和水平作用的高层建筑结构。筒体结构主要包含以下两种: (1)筒结构:由核心筒与外围框筒组成的高层建筑结构; (2)框架一核心筒结构:由核心筒与外围的稀柱框架组成的高层建筑结构。 框架一核心筒结构周边柱子的柱距比较大,一般为8m~12m,它和沿周边的梁构成了外框架,中间为电梯井、楼梯间、管道井等构成的核心筒,受力特点类似框架一剪力墙。某工程建筑面积。地下2层为车库,地上3层为商业,地上4层—22层为写字楼或公寓。檐口高度,装饰构件高度为。该工程的抗震设防烈度为8度,抗震设防类别为丙类,结构抗震等级为剪力墙一级,框架一级。 1计算程序选取 框架核心筒的结构分析应符合《高层建筑混凝土结构技术规程》(以下简称为《高规》)和《建筑抗震设计规范》的有关规定,采用三维空问分析方法进行内力分析,对B类高度或体型复杂的筒体结构应采用两个或两个以上不同力学模型的空间分析程序进行内力分析和比较,考虑双向水平地震下的扭转地震作用效应,并应采用时程分析进行多遇地震下的补充计算。本工程为A类建筑高度,结构整体分析采用SATWE和TAT两种软件分析计算结构,并优化了结构方案。 2结构计算参数的选取 (1)设计基准期50年,使用年限50年,安全等级为二级,地基设计等级为乙级; (2)本工程抗震设防烈度为8度,地震分组为第一组,设计基本地震加速度为,建筑抗震设防类别为丙类; (3)基本风压为m2,对于特别重要或对风荷载比较敏感的高层建筑(一般高度大于60m的高层建筑),其基本风压应按100年重现期的风压值。因此基本风压取/m2,地面粗糙为C类,风压体形系数、风压高度变化系数及风振系数均按GB50009—2001建筑结构荷载规范的规定采用,楼面活荷载标准值按荷载规范取值。 3主要结构构件截面 核心筒框架柱和边框架梁截面尺寸与混凝土等级见表1

浅析高层建筑结构设计存在的问题及对策

浅析高层建筑结构设计存在的问题及对策 发表时间:2016-05-25T10:16:41.620Z 来源:《工程建设标准化》2016年2月供稿作者:吴志星[导读] (山西平阳重工机械有限责任公司,山西,侯马,043003)众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力。(山西平阳重工机械有限责任公司,山西,侯马,043003) 【摘要】在实行改革开放以后,随着时代的发展和科技的进步,我国的建筑业不仅与时俱进,楼层不断向高处扩展,而且在一定程度上取得了不小的成就,然而在高层建筑结构设计上各种问题频发,这也成为了一个亟待解决的问题。本文通过着重介绍高层建筑结构设计的原则、当前高层建筑结构设计中存在的问题和改进建筑结构设计中常见问题的对策,来强化和确保高层建筑结构设计的不断完善。 【关键词】高层建筑;结构设计;问题;对策 众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力,但是,高层建筑的质量会受到多重因素的影响,一旦产生安全事故,必将对人们的生命和财产带来极大的影响,因此,对建筑的结构设计提出了更高的要求,只有高层建筑的结构设计科学合理,其质量才能有保障,才会有利于社会和谐稳定发展。 一、高层建筑结构的设计原则 1、选择合理的结构方案 只有结构方案经济合理,才能让一个建筑设计合理,可行性强的结构形式和传力简捷、受力明确的结构体系也会促进一个良好设计的形成。因此在进行结构设计时应当具体分析建筑所处的地理环境、材料和设计的需求及施工条件等,充分考虑高层建筑自身的特点,根据实际情况来选择一个合理的结构方案。 2、选择合适的基础方案 在设计过程中要注意最大程度地发挥地基的潜力,在基础设计时要形成详尽的地质勘察报告,如果缺少报告,必须进行现场勘查来制定设计方案,要先通过综合分析工程的地质地貌、施工条件、上部结构类型、相邻建筑物的影响及荷载分布等因素的考虑再进行基础设计,只有这样,才能设计出经济合理的基础方案。 3、进行正确的分析计算 随着科技的发展,计算机技术在结构设计方面已得到广泛应用,种类繁多的计算软件都存在不同程度的缺陷,因此在结构设计的计算过程中会出现不精确的情况,这就要求设计师在使用软件过程中细致认真,对产生的结果认真分析和校对,作出合理判断。 二、当前高层建筑结构设计中存在的问题 1、结构体系选用不科学 由于我国所处地球的板块较为活跃,因此地震频发,对与这些地震多的地区建设高层建筑就应当选用抗震性强的结构体系和建筑材料,一些发达国家通常是使用的钢结构,而我国大多使用的钢筋混凝土结构或者混合结构,但钢框架的刚度较小,钢结构会产生一定程度的负担,也不会起到较好的效果,钢筋混凝土很容易产生弯曲变形而导致侧移,因此在进行结构设计时必须注意使用加强层把侧移量降低或者加大混凝土制土桶刚度。 2、高层建筑普遍超高 高层建筑对抗震能力的要求较高,因此国家严格规定了建筑物的高度,但是实际需求的不断改变使得建筑的高度不断发生改变,因此国家又对A级高度和B级高度进行新的规定和细致划分。即使如此,一些设计师在进行结构设计时往往会忽视高度的问题,对于一些不适合建设高层建筑的地段或条件也会出现为了追求利益的最大化而违反相关规定进行施工,这种情况对整个建筑的成本预计和建设进度都会造成诸多不良影响。 3、结构设计的刚度问题 楼层竖向结构的规则性与平面刚度问题是高层建筑结构设计过程中一个经常遇到的问题,由于在高层建筑的设计过程中每位设计师都有自己的想法和设计理念,因此在设计时就会产生差异,导致结构设计产生矛盾和分歧,在建筑施工过程中很容易出现一味追求独特新颖的外观而忽视抗侧移的刚度对高层建筑能否抗震的影响。 4、材料配备和资源配置不科学 高层建筑的结构特点非常明显,其结构设计的复杂性是由其功能的复杂性决定的,传统的建筑选材多为可燃性材料,这种材料很可能增加高层建筑火灾发生的可能性,对于建筑施工过程中劳动力等资源的配置如果未能提前进行预计和计算,还会对后期的施工造成一定的难度,对于其引发的一系列突发状况也很难及时处理和解决,造成施工进度无法按期完成。 三、改进建筑结构设计中常见问题的对策 1、选用科学的结构体系 受自然灾害的影响,人们对建筑的稳定性能要求逐渐提高,对高层建筑的要求越来越严格,由于高层建筑限制性较大,因此必须对高层建筑结构设计中选用的结构体系进行严格限制,以免在后期的项目施工的设计阶段发生不必要的变动,对计算简图也要慎重选择和使用,根据建筑物的影响因素和自身特点来选用一套科学合理的的结构体系。 2、注重建筑的设计高度 设计师在进行高层建筑的结构设计过程中,要明确意识到有关的高度规范,严格审查设计图纸,确保结构设计与相关的要求和规范相符合,对于建筑施工过程中出现的问题要及时调集有关专家加以具体分析,对高层建筑重新进行设计和评估,以免对建筑的施工进度和质量产生不良影响。国家相关部门也应当加大对高层建筑的审查力度,对不合乎规范的行为进行严加处理,确保高层建筑结构的稳定性和安全性。 3、选择合理的刚度设计

结构设计基本知识及要点

结构设计基本知识

主要内容 1.结构设计基本知识简介 ?建筑结构体系及结构型式 ?框架结构 ?框架剪力墙结构 ?转换层结构 2.案例分析 ?案例一地铁螳螂山 ?案例二天津某住宅 ?案例三华润酒店 ?案例四平安中心投标 ?案例五住宅设计中经常与建筑需要协调的问题?案例六世纪中心

结构设计基本知识简介 结构型式: 按结构材料划分有: ?砌体结构(包括加构造柱圈梁) ?钢筋砼结构 ?钢结构 ?混合结构(钢管混凝土柱、型钢混凝土柱+钢梁) 结构体系: 框架结构、框架剪力墙体系,剪力墙体系,巨型框架、框架筒体结构、筒中筒结构体系等

结构体系的定义 框架结构体系 由梁(包括桁架)、柱等杆系组成的能承受垂直和 水平力作用的空间结构(可含少量墙肢)。剪力墙结构体系 主要由双向墙肢和连梁组成的空间结构(包括短肢 剪力墙和壁式框架结构)框架剪力墙体系由框架、剪力墙共同组成的结构体系,但以剪力墙 为主承受水平力。 一般由筒和板梁组成的结构,可分为内筒外框(或 筒体结构体系 称核心筒)、筒中筒、框架-核心筒和多筒体结构。 由密排柱及楼层上的裙梁构成的筒体称为框筒。 其他结构体系 以上体系以外的体系如板柱结构体系,悬挂结构 体系,侧向支撑体系,膜结构体系、空间网架等。

结构型式选择原 则 ) a) 结构体系与结构型式的合理选择是结构设计的重要环节。结构选型必须在建筑物的使用要求,工程特点,自然环境,材料供应,施工技术条件,抗震设防,地质地形等情况充分调查研究和综合分析的基础上进行,必要时还应做多方案比较,择优选用。基础上进行必要时还应做多方案比较择优选用。 b) 同结构单元中,钢筋砼结构不宜与砖砌体结构b)同一结构单元中钢筋砼结构不宜与砖砌体结构混合使用(混用是指平面方向的承力构件不同材料而言,而底层为钢筋砼框架,其上为砖砌体结构的而言而底层为钢筋砼框架其上为砖砌体结构的竖向布置不在列中)。在抗震要求时,不宜选用砌体结构 体结构。

浅析高层建筑结构设计与发展趋势

龙源期刊网 https://www.360docs.net/doc/347336219.html, 浅析高层建筑结构设计与发展趋势 作者:周可幸 来源:《城市建设理论研究》2013年第07期 摘要:随着建筑高度的增加,高层建筑的技术问题、建筑艺术问题、投资经济问题以及社会效益问题、环境问题等逐渐变得复杂、严峻,高层建筑的发展及对结构设计产生了很大的影响。在探讨了高层建筑结构体系类型及其优缺点的基础上,预测了高层建筑结构分析的新理论新方法及其结构设计发展的新趋势。 关键词:高层建筑;结构设计;发展趋势 中图分类号:[TU208.3]文献标识码:A文章编号: 引言: 住宅是人们适应自然、改造自然的产物,也是人们为了满足家庭生活的需要所构筑的空间环境,并且随着人类社会的发展而不断演变。随着改革开放的推动,我国的综合国力也在不断提高,其中房地产业的迅猛发展,让建筑业成为社会支柱产业之一。在现代社会中,因为经济的蓬勃发展,另外还有土地资源宝贵,所以高层建筑便像雨后春笋般迅速剧增,并不断壮大。这也就要求设计领域中的队伍要不断提升,以来应对现在的发展所需。 1.建筑结构的布置原则与要求 1.1 结构平面布置 结构平面形状宜简单、规则、对称,尽量使质心和刚心重合。偏心大的结构扭转效应大, 会加大端部构件的位移,导致应力集中。平面突出部分不宜过长。扭转是否过大,可用概念设计方法近似计算刚心、质心及偏心距后进行判断,还可以比较结构最远边缘处的最大层间变形和 质心处的层间变形,其比值超过1.1者,可以认为扭转太大而结构不规则。 高层建筑不应采用严重不规则的结构布置,当由于使用功能与建筑的要求,结构平面布置严重不规则时,应将其分割成若干比较简单、规则的独立结构单元。对于地震区的抗震建筑,简单、规则、对称的原则尤为重要。 1.2 结构立体布置 结构竖向布置最基本的原则是规则、均匀。 规则,主要是指体型规则,若有变化,亦应是有规则的渐变。体型沿竖向的剧变,将使地震时某些变形特别集中,常常在该楼层因过大的变形而引起倒塌。

高层建筑框架核心筒结构设计

高层建筑框架核心筒结构设计 1工程概况湖南某大厦由一栋30层写字楼、2层商业附楼和3层地下室组成,占地面积13800 m2,总建筑面积45146m2,屋面结构高度达131.60m。2结构设计总体构思2.1 结构类型本工程采用钢筋混凝土框架-核心筒结构,虽然其结构承载能力和抗变形能力比筒中筒结构差,但避免了结构坚向抗侧力构件的转换,满足了建筑立面效果和使用要求。为解决建筑首层层高10.0m、结构高度超限及减小柱截面等问题,下部若干层采用钢管混凝土组合柱,楼盖采用现浇普通钢筋混凝土梁板体系。承载力和水平位移计算时,基本风压均按重现期为100年的0.65kN/m2取值。由于结构侧向位移不满足限值要求,在第30层利用建筑避难层,设置了钢筋混凝土桁架的结构加强层,结构加强层是一把利刃剑,虽然可提高结构抗侧移刚度,也使得结构竖向刚度突变,所以结构加强层及相邻层按《高规》要求进行了加强处理。2.2超限措施本工程结构平面形状规则、刚度和承载力分布均匀,竖向体型也规则和均匀、结构抗侧力构件上下连续贯通,除结构高度超过适用限值外,其它指标通过调整后均达到未超限。由于结构设计超限、而且首层层高10.0m,超限应对措施把首层及下部若干层的结构抗侧力构件作为加强的重点:1~15层框架柱采用钢管混凝土组合柱(钢管混凝土叠合柱结构技术规程CECS188:2005)、1~2层核心筒剪力墙四角附加型钢暗柱、首层抗震等级提高一级。钢管混凝土有着卓越的承载能力和变形能力,但其防腐和防火材料不仅造价较高还有时效性,需考虑今

后的维修保养,钢管混凝土叠加合柱及钢管混凝土组合柱可弥补这方面的缺陷。核心筒剪力墙四角附加型钢暗柱,以解决由于首层层高较大,使得剪力墙端部应力集中的问题,并提高剪力墙的承载能力和抗变形能力。3钢管混凝土组合柱的梁柱节点设计在建筑工程中往往仅在框架柱中采用钢管混凝土,而框架梁则采用普通钢筋混凝土,钢管混凝土柱和钢筋混凝土梁的连接节点成为工程中难点之一。目前常用的连接点有:钢牛腿法、双梁法、环梁法、钢管开大洞后补强法及纯钢筋混凝土节点法等,本工程采用在钢管上开穿钢筋小孔的连接节点,为连接节点的设计提供多一种选择。3.1钢管开小孔的连接节点构造钢管上开穿钢筋小孔的连接节点做法要点如下:3.1.1钢管开小孔:小孔直径D=钢筋直径10mm,小孔水平间距-D,小孔垂直间距=2-D。3.1.2钢管水平加强环:梁顶面和梁底面各设置一道,环板宽度:钢管混凝土柱时,取0.10倍钢管直径、钢管混凝土叠合柱时,取65~100mm;环板厚度=0.5t且≥16mm(t为钢管壁厚)。3.1.3钢管竖向短加劲肋:紧贴水平加强环,肋宽=环板宽-15mm,肋厚=环厚,长度为200mm,布置在梁开孔部位的两侧和中间。3.1.4梁钢筋尽量采用直径较大的HRB400级钢筋,以减少钢管开孔数量。在钢管混凝土叠合柱时,部分梁钢筋可以在钢筋混凝土柱区域穿过。3.2钢管开小孔连接节点的优点3.2.1钢管开小孔后对钢管截面削弱不大,梁钢筋穿过小孔后剩余的缝隙很小,钢管对管芯混凝土的约束力基本没减少,不影响钢管混凝土柱的承载能力和变形能力。3.2.2梁钢筋直接穿过钢管后,梁可以可靠

浅析高层建筑结构设计要点

浅析高层建筑结构设计要点 随着时代的发展以及科技的进步,国内最近几年的高层楼宇建筑业持续前进,并且对高层楼宇施工构造策划品质要求也日益提升。高层楼宇是国内建筑业的前进方向,高层楼宇构造策划品质对国内的施工建筑业的永续前进有着关键的影响。文章从高层楼宇构造策划的规则着手,对高层楼宇构造策划的特征开展具体的讲述,从而提出高层楼宇施工构造策划中要留意的问题,同时对高层楼宇构造策划中的这些情况展开总结。 标签:高层建筑;结构设计;要点 最近几年,国内大中规模的城市建筑用地日益减少,为了科学有效的处理建筑用地紧缺的状况,更大程度的使用土地资源,高层楼宇应运而生,同时高层楼宇有着全面的进步。但是也出现了问题,就是对高层楼宇构造策划品质的要求更加严厉,怎么样才能够完善高层楼宇构造策划的策划重点呢? 1 高层建筑结构设计方面的设计原则 1.1 选取适宜的设计简图 设计简图一定要确保有相关的高层楼宇结构技术,并且有对高层楼宇构造的设计方式,设计简图如果选取的不适合甚至对高层楼宇构造的安全产生不良影响,所以保证高层建筑构造稳定的关键是选取适宜的设计简图。还要留意的是设计简图存在错误是很正常的,不过差错一定要在高层施工构造策划准许的范畴内。 1.2 选取科学实用的构造方法 科学的高层楼宇策划一定凭借经济实用的构造方法,也就是说在高层楼宇构造策划中要选取实际可行的构造系统以及构造方式。针对构造系统,在同一个构造单位中最好不要使用不一样的构造系统结合在一起运用,构造系统一定要简单便利,受力确定。在对高层楼宇构造策划程序中,要全面的对各种会存在影响的要素进行解析,和有关部门商定,之后敲定详细的最科学的高层楼宇构造策划方案。 1.3 准确解析、核实设计结果 在高层楼宇构造策划程序中大多使用电脑,不过因为现在市场中存在的电脑软件类型繁多,不一样的电脑程序设计的结果也是不一样的,因此这就需要高层楼宇构造设计工作者要全面熟悉电脑的程序所适合使用的范畴,避免在借助电脑设计的过程中,因为程序自身的不足,软件中的设计方式不适合构造的实际设计状况因为电脑程序对项目施工构造策划产生不良影响。还有,要避免电脑协助设计构造策划中操作者的失误,在输入资料时一定要严谨仔细,并且操作者在后续

相关文档
最新文档