液晶屏驱动1622芯片资料

液晶屏驱动1622芯片资料
液晶屏驱动1622芯片资料

文件型号YM1622

文件类型服务文件

版本02.3

段式液晶显示模块使用手册

YM1622

深圳市耀宇科技有限公司地址:深圳市南山区西丽北路八十号南粮综合楼三楼

邮编:518055电话:(0755)26700011 26622385 26701033 26622308传真:(0755)26701033 https://www.360docs.net/doc/3514253997.html,

E-mail:yaoyulcm@https://www.360docs.net/doc/3514253997.html, szyaoyu@https://www.360docs.net/doc/3514253997.html,

一.概述

YM1622是一种段式的液晶显示器。它主要采用动态驱动原理由行驱动—控制器和列驱动器两部分组成了。此显示器可采用了COB的软封装方式,通过导电橡胶和压框连接LCD或金属管脚连接LCD,使其寿命长,连接可靠,抗震;或者热压胶纸连接。

二.特性

1.操作电压

2.4V-5.2V

2.内置32KHz RC 振荡器

3.掉电Power down

4.内置32×8 位显示RAM;最大可显示256段,且可多级联用。

5.3线串行接口

6.一个8 阶时基和看门狗定时器WDT

7.读/写地址自动增加

三.硬件说明

1.引脚特性

引脚号引脚名称级别引脚功能描述

1 /CS H/L片选信号,低电平有效

读信号,数据在/RD的上升沿被读入MCU

2 RD* H/L

写信号,数据在/WR的上升沿被写入LCM

3 WR H/L

4 DATA H/L

串行输入/输出信号

电源(负)

5 VSS 0V

7 VLCD* LCD驱动正电压.LCD驱动电压=VLCD-VSS

电源(正)

8 VDD +5V

9 /IRQ*H/L 时基和看门狗定时器WDT溢出标志

10 BZ,/BZ* H/L 2KHz or 4KHz音频输出

注: 1)*的引脚可以不使用,以具体的接口图为准.

2)引脚顺序以具体的接口图为准.

2.主要各部分详解

1)显示数据RAM(DDRAM)

DDRAM(32X8 bits)是存储图形显示数据的。此RAM的每一位数据对应显示面板上一个笔段的显示(数据为H)与不显示(数据为L)。DDRAM的地址与显示位置关系对照图

2)系统振荡器

系统时钟用于产生时基/看门狗定时器(WDT)时钟频率,LCD 驱动时钟和声音频率。片内RC 振荡器(32.768 KHZ)或一个外接由软件设定的32KHz时钟可以产生时钟源。执行SYS DIS 命令可以停止系统时钟和LCD 偏压发生器工作,SYS DIS 命令只适用于片内RC 振荡器或晶振。当系统时钟停止工作,LCD 将显示空白,时基/看门狗定时器功能也将失效。

LCD OFF 命令用于关闭LCD 偏压发生器,当LCD 偏压发生器关闭后,可用SYS DIS 命令降低系统功耗,这时SYS DIS 为降低系统功耗命令。如果系统时钟为外部时钟,SYS DIS 命令不能用于关闭系统时钟和降低系统功耗;在外部32KHz时钟源模式下,系统不能进入省电模式。系统开始上电时,LCM 处于SYS DIS 状态。

为了使LCM 功耗为0 ,可以通过切断其电源得到。

3)时基和看门狗定时器(WDT)

时基发生器和看门狗定时器由时基发生器可以在主控制器或其它子系统处于异常状态时产生中断。WDT溢出时产生片内WDT溢出标志。可用一命这令选项可以使时基发生器和WDT溢出标志输出到/IRQ 管脚。时基发生器和WDT时钟频率,

f WDT=32KHZ/256

四.电气特性

1.限定参数

项 目 名称 值 单位 备 注 Operating Voltage VDD -0.3 to +5.5 V Input Voltage VIN VSS-0.3 to VDD+0.3

V

Driver Supply Voltage V LCD VLCD ≤VDD V

Operating Temperature T OPR -25 to +75 ℃ 仅指IC Storage Temperature T STG

-50 to +125

仅指IC

2.直流特性

测试条件 名 称

项 目

V DD 条件 Min Typ Max 单位

V DD Operating Voltage - - 2.7 - 5.2V 3V - 80 210uA I DD1 Operating Current 5V No load/LCD ON On-chip RC oscillator - 135 415uA 3V - 8 30uA I DD2 Operating Current 5V No load/LCD ON External clock source - 20 55uA 3V - 1 8 uA I STB Standby Current 5V No load Power down mode - 2 16uA 3V 0 - 0.6V

V IL Input Low Voltage 5V DATA,/WR,/CS,/RD 0 - 1.0V 3V 2.4 - 3.0V

V IH Input High Voltage 5V DATA,/WR,/CS,/RD 4.0 - 5.0V 3V VOL=0.3V 0.9 1.8 - uA I OL1 BZ,/BZ,/IRQ 5V VOL=0.5V 1.7 3 - uA 3V VOH=2.7V -0.9 -1.8 - uA I OH1 BZ,/BZ 5V VOH=4.5V -1.7 -3 - uA 3V VOL=0.3V 200 450 - uA I OL1 DATA 5V VOL=0.5V 250 500 - uA 3V VOH=2.7V -200 -450 - uA I OH1 DATA 5V VOH=4.5V -250 -500 - uA 3V VOL=0.3V 15 40 - uA I OL2

LCD Common Sink

Current

5V VOL=0.5V 100 200 - uA

3V VOH=2.7V -15 -30 - uA

I OH2 LCD Common Source Current 5V VOH=4.5V -45 -90 - uA 3V VOL=0.3V 15 30 - uA I OL3 LCD Segment Sink Current

5V VOL=0.5V 70 150 - uA 3V VOH=2.7V -6 -13 - uA I OH3

LCD Segment Source Current

5V VOH=4.5V -20 -40 - uA 3V 100 200 300 K Ω

R PH Pull-high Resistor

5V DATA,/WR,/CS,/RD 50 100 150 K Ω

3. 交流特性

测试条件 名 称

项 目 V DD 条件

Min Typ Max 单位 3V 22 32 40 K H z

f SYS1 S y s t e m C l o c k 5V On -ch ip RC oscil lato r

24 32 40 K H z 3V - 32 - K H z

f SYS2 S y s t e m C l o c k 5V C r y s t a l o s c i l l a t o r

- 32 - K H z 3V 44 64 80 H z

f LCD1 L C D F r a m e F r e q u e n c y 5V On -ch ip RC oscil lato r

48 64 80 H z 3V - 64 - H z

f LCD2 L C D F r a m e F r e q u e n c y 5V Ex t er na l c loc k s ourc e

64 - H z

t COM L C D C o m m o n P e r i o d - n:Number of COM - n/f LCD - s 3V - - 150K H z

f CLK1 S e r i a l D a t a C l o c k (/W R P I N ) 5V D u t y c y c l e 50%

- - 300K H z 3V - - 75 K H z

f CLK2 S e r i a l D a t a C l o c k (/R D P I N ) 5V D u t y c y c l e 50%

- - 150K H z f TONE T o n e F r e q u e n c y - O n -ch ip RC o s ci l la to r - 2.0 o r 4.0 - K H z t CS

S e r i a l I n t e r f a c e R e s e t

P u l s e W i d t h (F i g u r e 3)

- /C S - 250 - n s

3V Write mode 3.34 - -

5V Read

mode 6.67 - - 3V Write mode 1.67 - - t CLK

/W R ,/R D I n p u t P u l s e W i d t h 5V Read mode 3.34 - -

u s

3V - - n s

t R ,t F R i s e /F a l l T i m e S e r i a l

D a t a C l o c k W i d t h (F i g u r e 1) 5V - - 120

- n s 3V - - n s

t SU S e t u p T i m e f o r

D A T A t o /W R ,

/R D C l o c k W i d t h (F i g u r e 2)

5V - - 120

- n s 3V - - n s

th H o l d T i m e f o r D A T A t o /W R ,

/R D C l o c k W i d t h (F i g u r e 2) 5V - - 120

- n s 3V - - n s t SU1 S e t u p T i m e f o r /C S t o /W R , /R D C l o c k W i d t h (F i g u r e 3)

5V

- - 100

- n s 3V - - n s t h1 H ol d Ti me fo r /C S t o /W R ,

/R D C l o c k W i d t h (F i g u r e 3)

5V - - 100 - n s

四.时序图

五.软件说明

1.指令表

名 称 ID 命令模式 D/C 功 能 Def READ 110 A5A4A3A2A1A0D0D1D2D3D 从R A M 中读出数据 WRITE 101 A5A4A3A2A1A0D0D1D2D3D 将数据写入R A M READ-MODI

FY-WRITE 101 A5A4A3A2A1A0D0D1D2D3D 对R A M 进行读写

SYS DIS 100 0000-0000-X C 关闭系统振荡器和L C D 偏置发生器 Y E S

SYS EN 100 0000-0001-X C 打开系统振荡器

LCD OFF 100 0000-0010-X C 关闭LCD 偏置发生器 YES LCD ON 100 0000-0011-X C 打开LCD 偏置发生器 TIMER DIS 100 0000-0100-X C 禁止时基输出 WDT DIS 100 0000-0101-X C 禁止WDT 溢出标志输出 TIMER EN 100 0000-0110-X C 使能时基输出 WDT EN 100 0000-0111-X C 使能WDT 溢出标志输出 TONE OFF 100 0000-1000-X C 关闭音频输出 YES CLR TIMER 100 0000-1101-X C 清零时基发生器内容 CLR WDT 100 0000-1111-X C 清零WDT RC 32K 100 0001-10XX-X C 系统时钟源:片内RC 振荡器 YES EXT 32K 100 0001-11XX-X C 系统时钟源:外部时钟源 TONE 4K 100 010X-XXXX-X C 音调频率4KHZ TONE 2K 100 0110-XXXX-X C 音凋频率2KHZ IRQ DIS 100 100X-0XXX-X C 禁止IRQ 输出 YES IRQ EN

100 100X-1XXX-X

C 使能IRQ 输出

F1 100 101X-0000-X C

时基WDT 时钟输出:IHZ WDT 溢出标志:每4S

F2 100 101X-0001-X C

时基WDT 时钟输出:2HZ WDT 溢出标志:每2S

F4 100 101X-0010-X C

时基WDT 时钟输出:4HZ WDT 溢出标志:每1S

F8 100 101X-0011-X C

时基WDT 时钟输出:8HZ WDT 溢出标志:每1/2S

F16 100 101X-0100-X C

时基WDT 时钟输出:16HZ WDT 溢出标志:每1/4S

F32 100 101X-0101-X C

时基WDT 时钟输出:32HZ WDT 溢出标志:每1/8S

F64 100 101X-0110-X C

时基WDT 时钟输出:64HZ WDT 溢出标志:每1/16S

F128 100 101X-0111-X C 时基WDT 时钟输出:128HZ

WDT 溢出标志:每1/32S

YES

TESR 100 1110-0000-X C 测试模式,用户不用 NORMAL 100 1110-0011-X C 正常模式 YES

注:X :无关位

A5-A0:DDRAM 地址 D3-D0:DDRAM 数据 D/C :数据/命令模式 Def:上电复位默认

使用连续命令模式,第一命令之后的命令模式ID都被忽略。

使用连续读,写数据模式,第一命令之后的ID,地址可都被忽略,地址会自动加一。具体请参照时序图。

2.LCM 与MPU 接口及驱动程序

TCS EQU P3.1

TWR EQU P3.0

TDATD EQU P1.7

ORG 0000H

LJMP MAIN

ORG 0003H

LJMP INNT

MAIN:MOV SP,#60H

MOV IE,#81H

MOV IP,#01H

MOV TCON,#00H

LCALL INITIAL

SETB TCS ;清屏

LCALL DELAY

CLR TCS

MOV R1,#0A0H

LCALL SEND_ID

MOV R5,#06H

MOV R2,#00H

LCALL SEND_COMMAND1 MOV R3,#00H

MOV R0,#40H

MAIN1:LCALL SEND_DATA

LCALL DELAY

DJNZ R0,MAIN1

MOV R7,#10H

TTTT1:LCALL DELAY

DJNZ R7,TTTT1

LCALL DELAYI

LCALL DELAYI

LCALL DELAYI

SETB TCS ; 全显

LCALL DELAY

CLR TCS

MOV R1,#0A0H

LCALL SEND_ID

MOV R5,#06H

MOV R2,#00H

LCALL SEND_COMMAND1 MOV R3,#0FFH

MOV R0,#40H

MAIN2:LCALL SEND_DATA

LCALL DELAY

DJNZ R0,MAIN2

MOV R7,#10H

TTTT2:LCALL DELAY

DJNZ R7,TTTT2

MOV DPTR,#TAB;分显 MOV 21H,#02H

MAIN3:SETB TCS

LCALL DELAY

CLR TCS

MOV R1,#0A0H

LCALL SEND_ID

MOV R5,#06H

MOV R0,#00H

LCALL SEND_COMMAND1

MOV R0,#0EH

MAIN4:MOV A,#00H

MOVC A,@A+DPTR

MOV R3,A

LCALL SEND_DATA

INC DPTR

LCALL DELAYI

DJNZ R0,MAIN4

LCALL DELAYI

LCALL DELAYI

LCALL DELAYI

DJNZ 21H,MAIN3

LCALL DELAYI

LCALL DELAYI

LCALL DELAYI

LJMP MAIN

SS:NOP

INITIAL: SETB P3.2

SETB TWR

SETB TCS

LCALL DELAY

CLR TCS

MOV R1,#80H

MOV R2,#01H

MOV R3,#00H

LCALL SEND_ID

LCALL SEND_COMMAND

LCALL SEND_COMMANDX

MOV R2,#03H

MOV R3,#00H

LCALL SEND_COMMAND

LCALL SEND_COMMANDX

MOV R2,#09H

MOV R3,#00H

LCALL SEND_COMMAND

LCALL SEND_COMMANDX

MOV R2,#0DH

MOV R3,#00H

LCALL SEND_COMMAND

LCALL SEND_COMMANDX MOV R2,#18H

MOV R3,#00H

LCALL SEND_COMMAND

LCALL SEND_COMMANDX

MOV R2,#29H

MOV R3,#00H

LCALL SEND_COMMAND

LCALL SEND_COMMANDX

RET

SEND_ID:MOV R5,#03H

MOV A,R1

SEND_ID1:LCALL SEND_BIT

RL A

DJNZ R5,SEND_ID1

RET

SEND_COMMAND:MOV R5,#08H

SEND_COMMAND1:MOV A,R2

SEND_COMMAND2:LCALL SEND_BIT

RL A

DJNZ R5,SEND_COMMAND2

RET SEND_COMMANDX:MOV A,R3

LCALL SEND_BIT

RET

SEND_DATA:MOV R4,#04H

MOV A,R3

SEND_DATA1:LCALL SEND_BIT

RL A

DJNZ R4,SEND_DATA1

RET

SEND_BIT:MOV P1,A

LCALL DELAY

CLR TWR

LCALL DELAY

SETB TWR

LCALL DELAY

RET

DELAY:MOV R6,#80H

DELAY1:DJNZ R6,DELAY1

MOV R6,#0FFH

DELAY2:DJNZ R6,DELAY2

RET

DELAYI:MOV R6,#80H

DELAYI1:MOV B,#0FFH

DELAYI2:DJNZ B,DELAYI2

DJNZ R6,DELAYI1

RET

INNT:SETB P3.2

SETB P3.2

LCALL DELAYI

MOV C,P3.2

MOV C,P3.2

JNC INNT

INNT1:MOV C,P3.2

MOV C,P3.2

LCALL DELAYI

JC INNT1

INNT2:SETB P3.2

SETB P3.2 LCALL DELAYI MOV C,P3.2 MOV C,P3.2 JNC INNT2 RETI

TAB:DB 0D0H,70H,0D0H,70H,0D0H,70H,0B0H,0E0H,0B0H,0E0H,0B0H,0E0H,0B0H,0E0H DB 0B0H,0C0H,0B0H,0C0H,0B0H,0C0H,0C0H,03H,0C0H,03H,0C0H,03H,0C0H,03H

.液晶显示模块使用注意事项

1.请勿随意自行加工、整修、拆卸。

2.避免对液晶屏表面施加压力。

3.不要用手随意去摸外引线、电路板上的电路及金属框。

4.如必须直接接触时,应使人体与模块保持同一电位,或将人体良好接地。

5.焊接使用的烙铁、操作用的电动改锥等工具必须良好接地,没漏电。

6.严防各种静电。

7.模块使用接入电源及断开电源时,必须按图时序进行。即必须在正电源(5±0.25V )稳定接入后,才能输入信号电平。如在电源稳定接入前,或断开后就输入信号电平,将会损坏模块中的集成电路,使模块损坏。

8.点阵模块在调节时,应调整VEE 至最佳对比度、视角时为止。如果VEE 调整过高,不仅会影响显示,还会缩短液晶的寿命。

9.模块表面结雾时,不要通电工作,因为这将引起电极化学反应,产生断线。

10.模块要存储在暗处(避阳光),温度在-10℃~+35℃,湿度在RH60%以上的地方。如能装入聚乙烯口袋(最好有防静电涂层)并将口封住最好。

常见液晶驱动芯片详解

因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD模块引脚定义是固定支持并行,还是可选择并行或串行的方式。 一、字符型LCD驱动控制IC 市场上通用的8×1、8×2、16×1、16×2、16×4、20×2、20×4、40×4等字符型LCD,基本上都采用的KS0066作为LCD的驱动控制器 二、图形点阵型LCD驱动控制IC 1、点阵数122×32--SED1520 2、点阵数128×64 (1)ST7920/ST7921,支持串行或并行数据操作方式,内置中文汉字库 (2)KS0108,只支持并行数据操作方式,这个也是最通用的12864点阵液晶的驱动控制IC (3)ST7565P,支持串行或并行数据操作方式 (4)S6B0724,支持串行或并行数据操作方式 (5)T6963C,只支持并行数据操作方式 3、其他点阵数如192×6 4、240×64、320×64、240×128的一般都是采用T6963c驱动控制芯片 4、点阵数320×240,通用的采用RA8835驱动控制IC 这里列举的只是一些常用的,当然还有其他LCD驱动控制IC,在写LCD驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC数据手册吧。后面我将慢慢补上其它一些常见的. 三 12864液晶的奥秘 CD1601/1602和LCD12864都是通常使用的液晶,有人以为12864是一个统一的编号,主要是12864的液晶驱动都是一样的,其实12864只是表示液晶的点阵是128*64点阵,而实际的12864有带字库的,也有不带字库的;有5V电压的,也有~5V(内置升压电路);归根到底的区别在于驱动控制芯片,常用的控制芯片有ST7920、KS0108、T6963C等等。 下面介绍比较常用的四种 (1)ST7920类这种控制器带中文字库,为用户免除了编制字库的麻烦,该控制器的液晶还支持画图方式。该类液晶支持68时序8位和4位并口以及串口。 (2)KS0108类这种控制器指令简单,不带字库。支持68时序8位并口。 (3)T6963C类这种控制器功能强大,带西文字库。有文本和图形两种显示方式。有文本和图形两个图层,并且支持两个图层的叠加显示。支持80时序8位并口。 (4)COG类常见的控制器有S6B0724和ST7565,这两个控制器指令兼容。支持68时序8位并口,80时序8位并口和串口。COG类液晶的特点是结构轻便,成本低。 各种控制器的接口定义: 引脚定义

LED显示屏常用驱动芯片资料(精)

LED 常用芯片技术资料 1、列电子开关74HC595 (串并移位寄存器) 第14脚DATA ,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 第13脚EN ,使能口,当该引脚上为“1”时QA~QH口全部为“1”,为“0”时QA~QH的输出由输入的数据控制。第12脚STB ,锁存口,当输入的数据在传入寄存器后,只有供给一个锁存信号才能 将移入的数据送QA~QH口输出。 第11脚CLK ,时钟口,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR ,复位口,只要有复位信号,寄存器内移入的数据将清空,一般接VCC 。第9脚DOUT ,串行数据输出端,将数据传到下一个。第15、1~7脚,并行输出口也就是驱动输出口,驱动LED 。 2、译码器 74HC138 第1~3脚A 、B 、C ,二进制输入脚。第4~6脚片选信号控制,只有在4、5脚为“0”6脚为“1”时,才会被选通,输出受A 、B 、C 信号控制。其它任何组合方式将不被选通,且Y0~Y7输出全为“1”。

3、缓冲器件74HC245 第1脚DIR ,输入输出端口转换用,DIR=“1” A输入B 输出,DIR=“0” B输入A 输出。第2~9脚“A ”信号输入输出端;第11~18脚“B ”信号输入输出端。 第19脚G ,使能端,为“1”A/B端的信号将不导通,为“0”时A/B端才被启用。

4、4953的作用:行驱动管,功率管。 1、3脚VCC , 2、4脚控制脚,2脚控制7、8脚的输出,4脚控制5、6脚的输出,只有当2、4脚为“0”时,7、8、5、6才会输出,否则输出为高阻状态。 5、74HC04的作用:6位反相器。 信号由A 端输入Y 端反相输出,A1与Y1为一组,其它类推。例:A1=“1”则Y1=“0”、A1=“0”则Y1=“1”,其它组功能一样。 6、 74HC126(四总线缓冲器)正逻辑 Y=A 2、SDI 串行数据输入端 3、CLK 时钟信号输入端, 4、LE 数据锁存控制端 5~20、恒流源输出端 21、OE 输出使能控制端 22、SDO 串行数据输出端,级联下一个芯片 23、R-EXT 外接电阻,控制恒流源输出端电流大小

液晶屏驱动板原理维修代换方法

液晶屏驱动板的原理与维修代换方法 1、液晶屏驱动板的原理介绍 液晶屏驱动板常被称为A/D<模拟/数字)板,这从某种意义上反应出驱动板实现的主要功能所在。液晶屏要显示图像需要数字化过的视频信号,液晶屏驱动板正是完成从模拟信号到数字信号<或者从一种数字信号到另外一种数字信号)转换的功能模块,并同时在图像控制单元的控制下去驱动液晶屏显示图像。液晶显示器的驱动板如图1、图2所示。 图1 品牌液晶显示器采用的驱动板 图2部分液晶显示器采用的是通用驱动板 如图3所示,液晶屏驱动板上通常包含主控芯片、MCU微控制器、ROM存储器、电源模块、电源接口、VGA视频信号输入接口、OSD按键板接口、高压板接口、LVDS/TTL驱屏信号接口等部分。 液晶屏驱动板的原理框图如图4所示,从计算机主机显示卡送来的视频信

号,通过驱动板上的VGA视频信号输入接口送入驱动板的主控芯片,主控芯片根据MCU微控制器中有关液晶屏的资料控制液晶屏呈现图像。同时,MCU微控制器实现对整机的电源控制、功能操作等。因此,液晶屏驱动板又被称为液晶显示器的主板。 图3 驱动板上的芯片和接口 液晶屏驱动板损坏,可能造成无法开机、开机黑屏、白屏、花屏、纹波干扰、按键失效等故障现象,在液晶显示器故障中占有较大的比例。 液晶屏驱动板广泛采用了大规模的集成电路和贴片器件,电路元器件布局

紧凑,给查找具体元器件或跑线都造成了很大的困难。在非工厂条件下,它的可修性较小,若驱动板因为供电部分、VGA视频输入接口电路部分损坏等造成的故障,只要有电路知识我们可以轻松解决,对于那些因为MCU微控制器内部的数据损坏造成无法正常工作的驱动板,在拥有数据文件<驱动程序)的前提下,我们可以用液晶显示器编程器对MCU微控制器进行数据烧写,以修复固件损坏引起的故障。早期的驱动板,需要把MCU微控制器拆卸下来进行操作,有一定的难度。目前的驱动板已经普遍开始采用支持ISP<在线编程)的MCU微控制器,这样我们就可以通过ISP工具在线对MCU微控制器内部的数据进行烧写。比如我们使用的EP1112最新液晶显示器编程器就可以完成这样的工作。 图4 驱动板原理框图 在液晶显示器的维修工作中,当驱动板出现故障时,若液晶显示器原本就使用的是通用驱动板,就可以直接找到相应主板代换处理,当然,仍需要在其MCU中写入与液晶屏对应的驱动程序;若驱动板是品牌机主板,我们一般采用市场上常见的“通用驱动板”进行代换方法进行维修; “通用驱动板”也称“万能驱动板”。目前,市场上常见的“通用驱动板”有乐华、鼎科、凯旋、悦康等品牌,如图5所示,尽管这种“通用驱动板”所用元器件与“原装驱动板”不一致,但只要用液晶显示器编程器向“通用驱动板”写入液晶屏对应的驱动程序<购买编程器时会随机送液晶屏驱动程序光盘),再通过简单地改接线路,即可驱动不同的液晶屏,通用性很强,而且维修成本也不高,用户容易接受。

数字芯片的驱动能力详解

数字芯片的驱动能力详解 1.芯片驱动能力基本概念 芯片驱动能力,是指在额定电平下的最大输出电流;或者是在额定输出电流下的最大输出电压。具体解释如下。 当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。然而,逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4。所以,灌电流有一个上限。 当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。拉电流越大,输出端的高电平就越低。这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。拉电流越大,输出端的高电平越低。然而,逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。所以,拉电流也有一个上限。 可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于UOHMIN;低电平输出时,灌电流会使输出电平高于UOLMAX。所以,拉电流与灌电流反映了输出驱动能力。(芯片的拉、灌电流参数值越大,意味着该芯片可以接更多的负载,因为,例如灌电流是负载给的,负载越多,被灌入的电流越大)。 2.怎么通过数字芯片的datasheet看其驱动能力 以时钟buffer FCT3807例,下图是从Pericom的FCT3807的datasheet截取的。 当其输出为高电平2.4V时,其输出电流为8mA,也就是拉电流为8mA。如果输出电流大于8mA,那么其输出电平就低于2.4V了,就不能称其输出高电平,所以可以说FCT3807输出高电平的驱动能力为8mA。 同样道理,FCT3807输出低电平的驱动能力为24mA。 3.怎么通过数字芯片的驱动能力来估算输出信号的过冲等指标 仍然以Pericom的FCT3807为例,其输出为高电平时的输出阻抗为: RH= (3.3V – 3V )/ 8mA = 37.5欧姆。 其输出为低电平时的输出阻抗为: RL= 0.3V / 24mA = 12.5欧姆。 从上面的计算可以看出,3807输出为高电平和输出为低电平时的驱动能力不一样,也就是输出阻抗不一样,所以用串联匹配的方法很难做到完全匹配,常常表现为overshoot-大

常见电源稳压芯片

LM2930T-5.0 5.0V低压差稳压器 LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) 线性LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) 线性LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A)

LM337T 三端可调-1.2V to -37V稳压器(1.5A) 线性LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) 线性LM350T 三端可调1.2V to 32V稳压器(3A) 线性LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源 LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源 MC34063 充电控制器

TFT LCD液晶显示器的驱动原理

TFT LCD液晶显示器的驱动原理 我们针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver所送出波形的timing图. SVGA分辨率的二阶驱动波形 我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=786432个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver 来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着768个gate

driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate d river打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压. 而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的t iming介绍过一次呢?因为我们接下来要讨论的feed through电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc). Cs on common架构且common电压固定不动的feed through电压 我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成f eed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed thro ugh电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame 的时间比例是不正确的.在此我们是为了能仔细解释每个frame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将7

TFTLCD显示基本知识详解

TFT LCD显示原理详解 <什么是液晶> 我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一): 图(一) a:背景 两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。 图(六) b:TFT LCD显示原理 液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。

图(七) b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。下层的偏光板与上层偏光板, 角度也是恰好差异90度。所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。效果如图(七)中前两个图所示。 b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。 c:TFT-LCD驱动电路。 为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。最后,将驱动电路装配在TAB(自动焊接柔性线路板)上,用ACF(各向异性导电胶膜)、TCP(驱动电路柔性引带)与液晶显示屏相连接。 d:TFT-LCD工作原理 首先介绍显示原理。液晶显示的原理基于液晶的透光率随其所施电压大小而变化的特性。当光通过上偏振片后,变成线性偏振光,偏振方向与偏振片振动方向一致,与上下玻璃基板上面液晶分子排列顺序一致。当光通过液晶层时,由于受液晶折射,线性偏振光被分解为两束光。又由于这两束光传播速度不同(相位相同),因而当两束光合成后,必然使振光的振动方向发生变化。通过液晶层的光,则被逐渐扭曲。当光达到下偏振片时,其光轴振动方向被扭曲了90度,且与下偏振片的振动方向保持一致。这样,光线通过下偏振片形成亮场。加上电压以后,液晶在电场作用下取向,扭曲消失。这时,通过上偏振片的线性偏振光,在液晶层不再旋转,无法通过下偏振片而形成暗场。可见液晶本身不发光,在外光源的调制下,才能显示,在整个显示过程中,液晶起到一个电压控制的光阀作用。TFT-LCD的工作原理则可简述为:当栅极正向电压大于施加电压时,漏源电极导通,当栅极正向电压等于0或负电压时,漏源电极断开。漏电极与ITO象素电极连结,源电极与源线(列电极)连结,栅极与栅线(行电极)连结。这就是TFT-LCD的简单工作原理

74LS系列芯片资料

74、74HC、74LS系列芯片资料 74、74HC、74LS系列芯片资料 系列电平典型传输延迟ns 最大驱动电流(-Ioh/Lol)mA AHC CMOS 8.5 -8/8 AHCT COMS/TTL 8.5 -8/8 HC COMS 25 -8/8 HCT COMS/TTL 25 -8/8 ACT COMS/TTL 10 -24/24 F TTL 6.5 -15/64 ALS TTL 10 -15/64 LS TTL 18 -15/24 注:同型号的74系列、74HC系列、74LS系列芯片,逻辑功能上是一样的。 74LSxx的使用说明如果找不到的话,可参阅74xx或74HCxx的使用说明。 有些资料里包含了几种芯片,如74HC161资料里包含了74HC160、74HC161、74HC162、74HC163四种芯片的资料。找不到某种芯片的资料时, 可试着查看一下临近型号的芯片资料。 7400 QUAD 2-INPUT NAND GATES与非门 7401 QUAD 2-INPUT NAND GATES OC与非门 7402 QUAD 2-INPUT NOR GATES或非门 7403 QUAD 2-INPUT NAND GATES与非门 7404 HEX INVERTING GATES反向器 7406 HEX INVERTING GATES HV高输出反向器 7408 QUAD 2-INPUT AND GATE与门 7409 QUAD 2-INPUT AND GATES OC与门 7410 TRIPLE 3-INPUT NAND GATES与非门 7411 TRIPLE 3-INPUT AND GATES与门 74121 ONE-SHOT WITH CLEAR单稳态 74132 SCHMITT TRIGGER NAND GATES 触发器与非门 7414 SCHMITT TRIGGER INVERTERS触发器反向器 74153 4-LINE TO 1 LINE SELECTOR四选一 74155 2-LINE TO 4-LINE DECODER译码器 74180 PARITY GENERATOR/CHECKER奇偶发生检验 74191 4-BIT BINARY COUNTER UP/DOWN计数器 7420 DUAL 4-INPUT NAND GATES双四输入与非门 7426 QUAD 2-INPUT NAND GATES与非门 7427 TRIPLE 3-INPUT NOR GATES三输入或非门 7430 8-INPUT NAND GATES八输入端与非门 7432 QUAD 2-INPUT OR GATES二输入或门 7438 2-INPUT NAND GATE BUFFER与非门缓冲器 7445 BCD-DECIMAL DECODER/DRIVER BCD译码驱动器

LED电子显示屏常见驱动方式介绍

LED电子显示屏常见驱动方式介绍 目前市场上LED显示屏的驱动方式有静态扫描和动态扫描两种,静态扫描又分为静态实像素和静态虚拟,动态扫描也分为动态实像和动态虚拟。下面由明新源科技为大家介绍下LED电子显示屏常见的驱动方式吧。 河南明新源相关负责人介绍说,在一定的显示区域内,同时点亮的行数与整个区域行数的比例,称扫描方式;室内单双色一般为1/16扫描,室内全彩LED显示屏一般是1/8 扫描,室外单双色一般是1/4扫描,室外全彩显示屏一般是静态扫描。驱动IC一般用国产HC595,台湾MBI5026,日本东芝TB62726,一般有1/2 扫,1/4扫,1/8扫,1/16扫。 举列说明:一个常用的全彩模组像素为16*8 (2R1G1B),模组总共使用的LED灯是:16*8(2+1+1)=512个,如果用MBI5026 驱动,MBI5026 为16位芯片,512/16=32 (1)如果用8个MBI5026芯片,是动态1/4扫虚拟。 (2)如果用16个MBI5026芯片,是动态1/2扫虚拟。 (3)如果用32 个MBI5026芯片,是静态虚拟。 (4)用6个MBI5026芯片,是动态1/4扫实像素。 (5)用12个MBI5026芯片,是动态1/2扫实像素。 (6)如果板子上两个红灯串连,用个MBI5026芯片,是静态实像素。 在LED单元板,扫描方式有1/16,1/8,1/4,1/2,静态。LED电子显示屏常见驱动方式介绍还有哪些,该如何区分呢?一个最简单的办法就是数一下单元板的LED灯数目和74HC595的数量。计算方法:LED的数目除以74HC595的数目再除以8 =几分之一扫描。 实像素与虚拟是相对应的简单来说,实像素屏就是指构成显示屏的红绿蓝三种发光管中的每一种发光管最终只参与一个像素的成像使用,以获得足够的亮度。虚拟像素是利用软件算法控制每种颜色的发光管最终参与到多个相邻像素的成像当中,从而使得用较少的灯管实现较大的分辨率,能够使显示分辨率提高四倍。

led液晶显示器的驱动原理

led液晶显示器的驱动原理 LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与 TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对 TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于 Cs(storage capacitor)储存 电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在 CMOS 的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 , 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.

常用 系列芯片手册

常用74系列芯片手册 7400TTL2输入端四与非门 7401TTL集电极开路2输入端四与非门 7402TTL2输入端四或非门 7403TTL集电极开路2输入端四与非门 7404TTL六反相器 7405TTL集电极开路六反相器 7406TTL集电极开路六反相高压驱动器 7407TTL集电极开路六正相高压驱动器 7408TTL2输入端四与门 7409TTL集电极开路2输入端四与门 7410TTL3输入端3与非门 74107TTL带清除主从双J-K触发器 74109TTL带预置清除正触发双J-K触发器 7411TTL3输入端3与门 74112TTL带预置清除负触发双J-K触发器 7412TTL开路输出3输入端三与非门 74121TTL单稳态多谐振荡器 74122TTL可再触发单稳态多谐振荡器 74123TTL双可再触发单稳态多谐振荡器 74125TTL三态输出高有效四总线缓冲门 74126TTL三态输出低有效四总线缓冲门 7413TTL4输入端双与非施密特触发器 74132TTL2输入端四与非施密特触发器 74133TTL13输入端与非门 74136TTL四异或门 74138TTL3-8线译码器/复工器 74139TTL双2-4线译码器/复工器 7414TTL六反相施密特触发器

74145TTL BCD—十进制译码/驱动器 7415TTL开路输出3输入端三与门 74150TTL16选1数据选择/多路开关 74151TTL8选1数据选择器 74153TTL双4选1数据选择器 74154TTL4线—16线译码器 74155TTL图腾柱输出译码器/分配器 74156TTL开路输出译码器/分配器 74157TTL同相输出四2选1数据选择器74158TTL反相输出四2选1数据选择器7416TTL开路输出六反相缓冲/驱动器74160TTL可预置BCD异步清除计数器74161TTL可予制四位二进制异步清除计数器74162TTL可预置BCD同步清除计数器74163TTL可予制四位二进制同步清除计数器74164TTL八位串行入/并行输出移位寄存器74165TTL八位并行入/串行输出移位寄存器74166TTL八位并入/串出移位寄存器 74169TTL二进制四位加/减同步计数器7417TTL开路输出六同相缓冲/驱动器74170TTL开路输出4×4寄存器堆 74173TTL三态输出四位D型寄存器 74174TTL带公共时钟和复位六D触发器74175TTL带公共时钟和复位四D触发器74180TTL9位奇数/偶数发生器/校验器74181TTL算术逻辑单元/函数发生器 74185TTL二进制—BCD代码转换器 74190TTL BCD同步加/减计数器 74191TTL二进制同步可逆计数器 74192TTL可预置BCD双时钟可逆计数器

LED显示屏专用驱动芯片详细介绍

目前,LED显示屏专用驱动芯片生产厂家主要有TOSHIBA(东芝)、TI(德州仪器)、SONY(索尼)、MBI{聚积科技}、SITI(点晶科技)等。在国内LED显示屏行业,这几家的芯片都有应用。 TOSHIBA产品的Xing价比较高,在国内市场上占有率也最高。主要产品有TB62705、TB62706、TB62725、TB62726、TB62718、TB62719、TB62727等。其中TB62705、TB62725是8位源芯片,TB62706、TB62726是16位源芯片。TB62725、TB62726分别是TB62705、TB62706的升级芯片。这些产品在电流输出误差(包括位间和片间误差)、数据移位时钟、供电电压以及芯片功耗上均有改善。作为中档芯片,目前”TB62725、TB62726已经逐渐替代了TB62705和TB62706。另外,TB62726还有一种窄体封装的TB62726AFNA芯片,其宽度只有6.3mm(TB62706的贴片封装芯片宽度为8.2mm),这种窄体封装比较适合在点间距较小的显示屏上使用。需要注意的是,AFNA封装与普通封装的引脚定义不一样(逆时针旋转了90度)。TB62718、TB62719是TOSHIBA针对高端市场推出的驱动芯片,除具有普通恒流源芯片的功能外,还增加了256级灰度产生机制(8位PWM)、内部电流调节、温度过热保护(TSD)及输出开路检测(LOD)等功能。此类芯片适用于高端的LED全彩显示屏,当然其价格也不菲。TB62727为TOSHIBA的新产品,主要是在TB62726基础上增加了电流调节、温度报警及输出开路检测等功能,其市场定位介于TB62719(718)与TB62726之间,计划于2003年10月量产。 TI作为世界级的IC厂商,其产品Xing能自然勿用置疑。但由于先期对中国LED市场的开发不力,市场占有率并不高。主要产品有TLC5921、TLC5930和TLC5911等。TLC5921是具有TSD、LOD功能的高精度16位源驱动芯片,其位间电流误差只有±4%,但其价格一直较高,直到最近才降到与TB72726相当的水平。TLC5930为具有1024级灰度(10位PWM)的12位源芯片,具有64级亮度可调功能。TLC5911是定位于高端市场的驱动芯片,具有1024级灰度、64级亮度可调、TSD、LOD等功能的16位源芯片。在TLC5921和TLC5930芯片下方有金属散热片,实际应用时要注意避开LED灯脚,否则会因漏电造成LED灯变暗。 SONY产品一向定位于高端市场,LED驱动芯片也不例外,主要产品有CXA3281N和CXR3596R。CXA3281N是8位源芯片,具有4096级灰度机制(12位PWM)、256级亮度调节、1024级输出电流调节、TSD、LOD和LSD(输出短路检测)等功能。CXA3281N主要是针对静态驱动方式设计的,其最大输出电流只有40mA。CXA3596R是16位源芯片,功能上继承了CXA3281N的所有特点,主要是提高了输出电流(由40mA增加到80mA)及恒流源输出路数(由8路增加到16路)。目前CXA3281N的单片价格为1美元以上,CXA3596R价格在2美元以上。 MBI(聚积科技)的产品基本上与TOSHIBA的中档产品相对应,引脚及功能也完全兼容,除了恒流源外部设定电阻阻值稍有不同外,基本上都可直接代换使用。该产品的价格比TOSHIBA的要低10~20%,是中档显示屏不错的选择。MBI的MBl5001和MBl5016分别与TB62705和TB62706对应,MBl5168千口MBl5026分另(j与TB62725禾口TB62726对应。另外,还有具有LOD功能的其新产品MBl5169(8位源)、MBl5027(16位源)、64级亮度调节功能的MBl5170(8位源)和MBl5028(16位源)。带有LOD及亮度调节功能的芯片采用MBI公司的Share-I-OTM技术,其芯片引脚完全与不带有这些功能的芯片,如MBl5168和MBl5026兼容。这样,可以在不变更驱动板设计的情况下就可升级到新的功能。

段码LCD液晶屏驱动方法

TFT液晶屏:https://www.360docs.net/doc/3514253997.html, 段码LCD液晶屏驱动方法 段码LCD液晶屏驱动方法 首先,不要以为用单片机来驱动就以为段码屏是直流驱动的,其实,段码屏是交流驱动,什么是交流?矩形波,正弦波等。大家可能会经常用驱动芯片来玩,例如HT1621等,但是有些段式屏IO口比较少,或者说IO口充足的情况下,也可以省去写控制器的驱动了。与单片机接口方便,而后者驱动电流小,功耗低、寿命长、字形美观、显示清晰、视角大、驱动方式灵活、应用广泛。但在控制上LCD较复杂,因为LCD 电极之间的相对电压直流平均值必须为0,否则易引起LCD氧化,因此LCD不能简单地用电平信号控制,而要用一定波形的方波序列来控制。 LCD显示有静态和时分割两种方式,前者简单,但是需要较多的口线;后者复杂,但所需口线较少,这两种方式由电极引线的选择方式确定。下面以电子表的液晶显示为例,小时的高位同时灭或亮,分钟的高位在显示数码1~5时,其顶部和底部也是同时灭或亮,两个dot点也是同时亮或灭,其驱动方式是偏置比为1/2的时分割驱动,共有11个段电极和两个公共电极。但是,IO模拟驱动段式液晶有一个前提条件,就是IO必须是三态,为什么? 下面我们一起细细道来: 第一步,段码式液晶屏的重要参数:工作电压,占空比,偏压比。这三个参数非常重要,必须都要满足。 第二步,驱动方式:根据LCD的驱动原理可知,LCD像素点上只能加上AC电压,LCD显示器的对比度由COM脚上的电压值减去SEG脚上的电压值决定,当这个电压差大于LCD的饱和电压就能打开像素点,小于LCD阈值电压就能关闭像素点,LCD型MCU已经由内建的LCD驱动电路自动产生LCD驱动信号,因此只要I/O口能仿真输出该驱动信号,就能完成LCD的驱动。 段码式液晶屏幕主要有两种引脚,COM,SEG,跟数码管很像,但是,压差必须是交替变化,例如第一时刻是正向的3V,那么第二时刻必须是反向的3V,注意一点,如果给段码式液晶屏通直流电,不用多久屏幕就会废了,所以千万注意。下面我们来考虑如何模拟COM口的波形,以1/4D,1/2B为例子:

常见存储器芯片资料(简版)

2716 2716指的是Intel2716芯片,Intel2716是一种可编程可擦写存储器芯片封装:双列直插式封装,24个引脚 基本结构:带有浮动栅的MOS管 封装:直插24脚, 引脚功能: Al0~A0:地址信号 O7~O0:双向数据信号输入输出引脚; CE:片选 OE:数据输出允许; Vcc:+5v电源, VPP:+25v电源; GND:地 2716读时序:

2732 相较于2716: Intel2716存储器芯片的存储阵列由4K×8个带有浮动栅的MOS管构成,共可保存4K×8位二进制信息 封装:直插24脚 引脚功能: A0~A11地址 E片选 G/VPP输出允许/+25v电源 DQ0~7数据双向 VSS地 VCC+5v电源 2732读时序

2764、27128、27256、27512等与之类似27020 存储空间:256kx8 读写时间:55/70ns 封装:直插/贴片32脚 引脚功能:

A0~A17地址线 I/O0~7数据输入输出 CE片选 OE输出允许 PGM编程选通 VCC+5v电源 VPP+25v电源 GND地 27020读时序: 27040与之类似 RAM--6116 6116是2K*8位静态随机存储器芯片,采用CMOS工艺制造,单一+5V供电,额定功耗160mW,典型存取时间90/120ns, 封装:24线双列直插式封装.

引脚功能: A0-A10为地址线; CE是片选线; OE是读允许线; WE是写允许线. 操作方式: RAM—6264 6264是8K*8位静态随机存储器芯片,采用CMOS工艺制 造,单一+5V供电,最大功耗450mW,典型存取时间70/100/120ns, 封装:直插式28脚 引脚功能: A0~A12:地址线 WE写允许 OE读允许 CS片选

液晶显示器常用通用驱动板

液晶显示器常用通用驱动板 2009-12-31 18:22 1.常用“通用驱动板”介绍 目前,市场上常见的驱动板主要有乐华、鼎科、凯旋、华升等品牌。驱动板配上不同的程序,就驱动不同的液晶面板,维修代换十分方便。常见的驱动板主要有以下几种类型: (1) 2023 B-L驱动板 2023B-L驱动板的主控芯片为RTD2023B,主要针对LVDS接口设计,实物如图1所示。 图1 2023B-L驱动板实物 该驱动板的主要特点是:支持LVDS接口液晶面板,体积较小,价格便宜。主要参数如下: 输入接口类型:VGA模拟RGB输入; 输出接口类型:LVDS; 显示模式:640×350/70Hz~1600×1200/75Hz; 即插即用:符合VESA DDC1/2B规范; 工作电压:DC 12V±1.0V,2~3A; 适用范围:适用于维修代换19in以下液晶显示器驱动板。 2023B-L驱动板上的VGA输入接口各引脚功能见表2,TXD、RXD脚一般不用。

表2 VGA插座引脚功能 2023B-L驱动板上的按键接口可以接五个按键、两个LED指示灯,各引脚功能见表3。 表3 2023B-L驱动板上的按键接口引脚功能 2023B-L驱动板上的LVDS输出接口(30脚)引脚功能见表4。 表4 2023B-L驱动板LVDS输出接口各引脚功能 2023B-L驱动板上的高压板接口引脚功能见表5。

表5 2023B-L驱动板上的高压板接口引脚功能 (2)203B-L驱动板 2023B-L主要针对TTL接口设计,其上的LVDS接口为插孔,需要重新接上插针后才能插LVDS插头。2023B-T驱动板实物如图6所示。 图6 2023B-T驱动板实物图 2023B-T驱动板体积比2023B-L稍大,价格也相对高一些,其主要参数如下: 输入接口类型:VGA模拟RGB输入; 输出接口类型:TTL; 显示模式:640×350/70Hz~1280×1024/75 Hz: 即插即用:符合VESA DDC1/2B规范; 工作电压:DC 12V±1.0V,2~3A; 适用范围:适用于维修代换20in以下液晶显示器的驱动板。 2023B-T驱动板的VCA输入接口、按键接口、LVDS输出接口、高压板接口引脚功能与前面介绍的2023B-L驱动板基本一致。

常用LCD驱动IC集锦

本文主要是介绍一些常用的LCD驱动控制IC的型号,同时附上datasheet,方便学习或正在使用的LCD的朋友能够更好地编写LCD的驱动程序。 因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD模块引脚定义是固定支持并行,还是可选择并行或串行的方式。 一、字符型LCD驱动控制IC 市场上通用的8×1、8×2、16×1、16×2、16×4、20×2、20×4、40×4等字符型LCD,基本上都采用的KS0066作为LCD的驱动控制器 下载:《KS0066 数据手册》(英文) 二、图形点阵型LCD驱动控制IC 1、点阵数122×32--《SED1520 数据手册》(英文) 2、点阵数128×64 (1)ST7920/ST7921,支持串行或并行数据操作方式,内置中文汉字库 下载:《ST7920 数据手册》(英文) (2)KS0108,只支持并行数据操作方式,这个也是最通用的12864点阵液晶的驱动控制IC 下载:《KS0108 数据手册》(英文) (3)ST7565P,支持串行或并行数据操作方式 下载:《ST7565P 数据手册》(英文) (4)S6B0724,支持串行或并行数据操作方式 下载:《S6B0724 数据手册》(英文) (5)T6963C,只支持并行数据操作方式 下载:《T6963C 数据手册》(英文) 3、其他点阵数如192×6 4、240×64、320×64、240×128的一般都是采用T6963c 驱动控制芯片 4、点阵数320×240,通用的采用RA8835驱动控制IC 下载:《RA8835 数据手册》(英文) 这里列举的只是一些常用的,当然还有其他LCD驱动控制IC,在写LCD驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC数据手册吧。

液晶屏驱动1622芯片资料

文件型号YM1622 文件类型服务文件 版本02.3 段式液晶显示模块使用手册 YM1622 深圳市耀宇科技有限公司地址:深圳市南山区西丽北路八十号南粮综合楼三楼 邮编:518055电话:(0755)26700011 26622385 26701033 26622308传真:(0755)26701033 https://www.360docs.net/doc/3514253997.html, E-mail:yaoyulcm@https://www.360docs.net/doc/3514253997.html, szyaoyu@https://www.360docs.net/doc/3514253997.html,

一.概述 YM1622是一种段式的液晶显示器。它主要采用动态驱动原理由行驱动—控制器和列驱动器两部分组成了。此显示器可采用了COB的软封装方式,通过导电橡胶和压框连接LCD或金属管脚连接LCD,使其寿命长,连接可靠,抗震;或者热压胶纸连接。 二.特性 1.操作电压 2.4V-5.2V 2.内置32KHz RC 振荡器 3.掉电Power down 4.内置32×8 位显示RAM;最大可显示256段,且可多级联用。 5.3线串行接口 6.一个8 阶时基和看门狗定时器WDT 7.读/写地址自动增加 三.硬件说明 1.引脚特性 引脚号引脚名称级别引脚功能描述 1 /CS H/L片选信号,低电平有效 读信号,数据在/RD的上升沿被读入MCU 2 RD* H/L 写信号,数据在/WR的上升沿被写入LCM 3 WR H/L 4 DATA H/L 串行输入/输出信号 电源(负) 5 VSS 0V 7 VLCD* LCD驱动正电压.LCD驱动电压=VLCD-VSS 电源(正) 8 VDD +5V 9 /IRQ*H/L 时基和看门狗定时器WDT溢出标志 10 BZ,/BZ* H/L 2KHz or 4KHz音频输出 注: 1)*的引脚可以不使用,以具体的接口图为准. 2)引脚顺序以具体的接口图为准.

相关文档
最新文档