正确理解高斯定理

正确理解高斯定理
正确理解高斯定理

高斯定理--说课

物理教研室第周教研活动(说课) 高斯定理 说课人: 一、教学对象 授课学生: 2017级大二学生 教学对象分析: 数学基础:对于简单的一维、二维积分基本掌握; 物理基础:在前面我们学习了电场、电场线电场强度、电场强度通量的基本知识,而这一节的内容其实还是电场强度的通量的一种特殊求法。 学生为大学二年级学生,已经学习了高等数学,能够进行微积分和矢量运算;并且已经学习了电场、电场线电场强度、电场强度通量的基本知识, 二、使用教材及参考教材 1.使用教材 《物理学教程》(第三版)下册,马文蔚、周雨青、解希顺编,高等教育出版社。---该教材中高斯定理的验证比较简单,需参考其它教材改进。 2.参考交材 1)《普通物理学》(第五版)第二册,程守洙、江之永主编,高等教育出版社。

2)《新世纪大学物理》下册,陈颖聪、田杨萌主编,华东师范大学出版社。 三、所选内容在本课程中的地位 “高斯定理”是大学物理(二)电磁学篇章中“静电场”(也即教材中第九章)这一章中的重点,是期末考试必考的知识点。高斯定理是电场的重要性质之一。高斯定理是在库仑定律基础上得到的,它适用范围比后者更广泛。库仑定律只适用于真空中的静电场,而高斯适用于静电场和随时间变化的场,高斯定理是电磁理论的基本方程之一。 四、教学目标及其重难点 教学目标: 1)理解电通量的概念 2)理解并识记高斯定理表达式 3)掌握利用高斯定理求电荷对称分布的带电体周围电场强度的方法 教学重难点: 1)高斯定理的理解(重点) 2)高斯定理计算电场强度的条件和方法(重点、难点) 五、教学方法 1.讲授法(主要方法) 复习:电场、电场线、电场强度、电场强度通量复习等基本理论; 新课:高斯定理

高中的数学公式定理大全

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secαsin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα

cot(π/2-α)=tanα sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα

cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式

对高斯定理的理解

对高斯定理的理解 1.高斯面S是静电场中的任意闭合曲面.但S面上不能有有限的电荷分布。 2.从高斯定理看电力线的性质:高斯定理说明正电荷是发出E通量的源,负电荷是吸收E通最的源。若闭合面内存在正(负)电荷.则通过闭合面的E通量为正(负).表明有电力线从面内(面外)穿出(穿入),即正(负)源电荷发射(吸收)电场线;若闭合面内没有电荷,则通过闭合面的E通量为零,意味着有多少电场线穿入就有多少电场线穿出,说明在没有电荷的区域内电场线不会中断. 在闭合面内,电荷空间分布的变化将改变闭合面上各点场强的大小和方向,但只要电量相同.就不会改变通过整个闭合面的E通量: 在闭合面外,有无电荷及其如何分布,将会影响闭合面上各处场强的大小和方向,但对通过整个闭合面的E通量没有贡献。 3.利用库仑定律和叠加原理导出高斯定理,库仑定律在电荷分布已知情况下,能求出场强的分布;高斯定理在电场强度分布已知时.能求出任意区域的电荷;当电荷分布具有某种对称分布时.可用高斯定理求出这种电荷系的场强分布,而且这种方法在数学上比用库仑定律简便得多;对于静止电荷的电场,可以说库仑定律与高斯定理是等价的;在研究运动电荷的电场或一般地随时间变化的电场时,库仑定律不再成立,而高斯定理却仍然有效。所以说:高斯定理是关于电场的普遍的摹本规律。 高斯定理求电场步骤 高斯定理的一个重要应用。是用来计算带电体周围电场的电场强度。实际上。对称性不是应用高斯定理求场强的条件,对于具有对称性.且能应用高斯定理求场强的问题,由于具有对称性.总可选择合适的高斯面而使计算较为简便:但在某些非对称情况下,只要高斯定理中的f-E·ds能够进行积分,则无论电荷或电场分布是否具有对称性,均能应用高斯定理求电场强度。因此对称性不是应用高斯定理求场强的条件,应用高斯定理求场强的关键是看(1)左边的积分能否进行,过分强调对称性,往往导致忽视应用高斯定理求场强的数学条件,造成对高斯定理的误解,应用高斯定理求场强问题的步骤: 1.分析场强或电荷分布的特点.进行对称性分析和判断,即由电荷分布的对称性。分析场强分布的对称性,非对称情况下,判断能够进行积分,判断f.E·ds 能否用高斯定理来求电场强度的分布。这一步是解题的关键,也是解题的难点。常见的对称性有球对称性包括均匀带电球面、球体、点电荷;轴对称性包括均匀带电的“无限长”圆柱面、圆柱体、细直线;面对称性包括均匀带电的“无限大”平面、平板。 2.根据场强分布的特点。作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过该高斯面的电通量容易计算。一般地。高斯面各面元的法线矢量n与E平行或垂直,n与E平行时.E的大小要求处处相等,使得E能提到积分号外面。 3.计算电通量f E·dS和高斯面内所包围的电荷的代数和。最后由高斯定理求出场强。

静电场中的高斯定理

静电场中的高斯定理 [摘要] 高斯定理是静电学的重要定理,它可以通过数学证明方法得到,同时 要注意高斯面的选择和对高斯定理的理解。 [关键字] 高斯定理 高斯面 证明 注意事项 [内容] 高斯定理是静电学中的一个重要定理,它反映了静电场的一个基本性质,即静电场是有源场,其源就是电荷。可以将其表述为:在静电场中,通过任意闭合曲面的电通量,等于该闭合曲面所包围的电荷的代数和的ε0 分之一,而与闭合曲面外的电荷无关。高斯定理的表达式如下: ? ?= ?=ΦV e dq 1 d εS S E 其中,E 表示在闭合曲面上任一dS 面处的电场强度,而EdS 则表示通过面元dS 的电场强度通量, 就表示通过整个闭合曲面S 的电场强度通量, 习惯上称闭合曲面S 为高斯面。由高斯定理可知:静电场是有源的,发散的,源头在电荷所在处,由此确定的电场线起于正电荷,终于负电荷。 下面对于静电场中的高斯定理进行证明: (a )点电荷在球面中心 点电荷q 的电场强度为 r r q 41 30??=πεE 球面的电通量为 2 20S 2 030q r 4r 4q d r 4q d r r q 41 d εππεπεπε= ??==???=????S S S E S S (1) (b )点电荷在任意闭曲面外

闭曲面S 的电通量为 ()??? ?++= ++=??? =?S S S S S E zdxdy r 1ydxdz r 1xdydz r 14q zdxdy ydxdz xdydz r 1 4q d r r q 41d 3330S 3030 πεπεπε (2) 根据高斯公式 ?????++=???? ? ???+??+??S V R Q P R Q P dxdy dzdx dydz dxdydz z y x (3) 并考虑到3 33r z r y ,r x === R Q P ,在S 内有连续一阶的偏导数,故式(2)可以用高斯公式计算。 将式(2)代入式(3)中得 ()???? ?? ? =???? ? ??? ???????? ???+???? ???+???? ???= ++= ++=??? =?V 33303330 S 3030 0dxdydz z r z y r y x r x 4q zdxdy r 1 ydxdz r 1xdydz r 14q zdxdy ydxdz xdydz r 1 4q d r r q 41d πεπεπεπεS S S S S E

【大全】中考数学常用公式和定理大全

【关键字】大全 中考数学常用公式定理 1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.…,,.无限不环循小数叫做无理数.如:π,-,0.…(两个1之间依次多1个0).有理数和无理数统称为实数. 2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14. 3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=- 4.07×105,0.=4.3×10-5. 5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab. 6、幂的运算性质:①am×an=am+n.②am÷an=am-n.③(am)n=amn.④(ab)n=anbn.⑤()n=n. ⑥a-n=,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3)3=9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)o=1,(-)0=1. 7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念) 8、一元二次方程:对于方程:ax2+bx+c=0: ①求根公式是x=,其中△=b2-叫做根的判别式. 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根. ②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2). ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0. 9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比率函数(y与x成正比率),图象必过原点. 10、反比率函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n个数x1,x2,…,xn,那么: ①平均数为:; ②极差: 用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:

静电场的高斯定理复习题,DOC

-选择题 1.关于高斯定理的理解有下面几种说法,其中正确的是: ()A 如果高斯面上E 处处为零,则该面内必无电荷; ()B 如果高斯面内无电荷,则高斯面上E 处处为零; ()C 如果高斯面上E 处处不为零,则高斯面内必有电荷; ()D 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。 〔〕 答案:()D 2. ()A q 3.面的电通量为1φ,2φ,()A φ()B φ()C φ()D φ 4. () A () B () C () D 〔〕答案:()C 5.有两个点电荷电量都是q +,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。在球面上取两块相等的小面积1S 和2S ,其位置如图所示。设通过1S 和2S 的电场强度通量分别为1φ和2φ,通过整个球面的电场强度通量为φ,则 ()A 120,/q φφφε>=;()B 120,2/q φφφε<=; ()C 120,/q φφφε==;()D 120,/q φφφε<=。 〔〕 q S 2

答案:()D 6.一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化: ()A 将另一点电荷放在高斯面外;()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内;()D 将高斯面半径缩小。 7.A q -()A ()B 小为()C ()D 〔〕8. ( (9. (Q 60 ε ()C 穿过每一表面的电通量都等于 Q 30 ε;()D 穿过每一表面的电通量都等于0 24Q ε 〔〕 答案:()D 10.高斯定理0 nt i d ε∑?= ?q S E S ()A 适用于任何静电场。

初二数学公式定理大集合-(详细)

实 数 考点一、实数的概念及分类 1、实数的分类 正整数 整数 零 有理数 负整数 正实数 实数 分数 实数 零 负实数 无理数(无限不循环小数) 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3 π +8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等 考点三、平方根、算数平方根和立方根 1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。 一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。 正数a 的平方根记做“a ±”。 2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性: -a (a <0) a ≥0 3、立方根 如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。 代 数 式 考点一、整式的有关概念 1、代数式 用运算符号把数或表示数的字母连接而成的运算式子叫做代数式。单独的一个数或一个字母也是代数式。 2、单项式 只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313 -。一个单项式中,所有字母的指数的和叫做 这个单项式的次数。如c b a 235-是6次单项式。 考点二、多项式 1、多项式 几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。 单项式和多项式统称整式。 用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。 注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。 (2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。 2、同类项 所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。 3、添(去)括号法则 (1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。 (2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。 4、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。 整式的乘法:),(都是正整数n m a a a n m n m +=? ),(都是正整数) (n m a a mn n m = )()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=- 0()1(0)a a =≠ 11 ()(0)a a a -= ≠ 整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数 注意:(1)单项式乘单项式的结果仍然是单项式。 (2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相 同。 (3)计算时要注意符号,多项式的每一项都包括它前面的符号,同时还要注意单 项式的符号。 (4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。 (5)公式中的字母可以表示数,也可以表示单项式或多项式。 (6)),0(1 );0(10为正整数p a a a a a p p ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的 商相加,单项式除以多项式是不能这么计算的。 考点三、因式分解 1、因式分解

静电场中的高斯定理

静电场中的高斯定理: 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 ()1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平 的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量 只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 下面举一些例子来说静电场中高定理的应用: 例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。试求球体内外的场强分布及其方向。 解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 23d d 4d 4d q V Ar r r Ar r ρ==?π=π 在径为r 的球面内包含的总电荷为 430d 4d Ar r r A V q V r ππρ==?=???? ()r R ≤

高斯定理

简析高斯定理在电场中的应用 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 () 1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 步骤: 1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过 该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n 与E 平行时, E 的大小要求处处相等,使得E 能提到积分号外面; 3.计算电通量???S d E 和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。 应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。 利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。 典型例题: 例题1、设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3) 带电面右半空间

高斯定理在电磁学中的应用 毕业论文

第 19 页 ,共 20 页 目 录 1 高斯定理的表述 1.1数学上的高斯公式 1.2静电场的高斯定理 1.3磁场的高斯定理 2高斯定理的证明方法 2.1.1静电场的高斯定理 2.1.2磁场的高斯定理 2.2高斯定理的直接证明 2.3高斯定理的另一种证明 2.4对称性原理及其在电磁学中的应用 3理解和使用高斯定理应注意的若干问题的讨论与总结 (a) 定理中的 E 是指空间某处的总电场强度 (b) 注意ξ int ∑?= ?q dS E s 中 E 和 dS 的矢量性 (c) 正确理解定理中的∑int q (d) 不能只从数学的角度理解ξ int ∑?= ?q dS E s (e) 对高斯面的理解 4 高斯定理的应用? 4.1利用高斯定理求解无电介质时电场的强度 4.2利用高斯定理求解有电介质时电场的强度 5将高斯定理推广到万有引力场中 5.1静电场和万有引力场中有关量的类比 5.2万有引力场中的引力场强度矢量 5.3万有引力场中的高斯定理 6结束语 参考文献

高斯定理在电磁学中的应用 摘要:高斯定理是电磁学的一条重要定理,它不仅在静电场中有重要的应用,而且也是麦克斯韦电磁场理论中的一个重要方程。本文比较详细的介绍了高斯定理,并提供了数学法、直接证明法等方法证明它,总结出应用高斯定理应注意的几个问题,从中可以发现高斯定理在解决电磁学相关问题时的方便之处。最后把高斯定理推广到万有引力场中去。 关键词:高斯定理,应用,万有引力场 引言 高斯定理又叫散度定理,高斯定理在物理学研究方面,应用非常广泛,应用高斯定理求曲面积分、静电场、非静电场或磁场非常方便,特别是求电场强度或者磁感应强度。虽然有时候应用高斯定理求解电磁学问题很方便,但是它也存在一些局限性,所以要更好的运用高斯定理解决电磁学问题,我们首先应对高斯定理有一定的了解。 1 高斯定理的表述 1.1数学上的高斯公式 设空间区域V 由分片光滑的双侧封闭曲面S 所围成,若函数,,P Q R 在V 上连续,且有一阶 连续函数偏导数,则 S V P Q R dxdydz Pdydz Qdzdx Rdxdy x y z ?? ???++=++ ????? ?????? 1-1 其中S 的方向为外发向。1-1式称为高斯公式[1] 。 1.2静电场的高斯定理 一半径为r 的球面S 包围一位于球心的点电荷q ,在这个球面上,场强→ E 的方向处处垂直于球面,且→ E 的大小相等,都是2 04q E r πε= 。通过这个球面S 的电通量为 o o o o εππεπεπε φq r r q dS r q dS r q S d E s s s e = ?= = ?=?=??????→ → 22 2 2 4444 其中 S dS ?? 是球面积分,等于2 4r π。从此例中可以看出,通过球面S 的电通量只与其中的电量q 有关,与高斯面的半径r 无关。若将球面S 变为任意闭合曲面,由电场线的连续性可知,通过该闭合曲面的电通量认为0q ε。

初中三年数学常用公式定理大全

初中数学定理、公式汇编 第一篇数与代数 第一节数与式 一、实数 1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,等;无限不环循小数叫做无理数. 如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数. 2.数轴:规定了原点、正方向和单位长度的直线叫数轴。实数 和数轴上的点一一对应。 3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值, 记作∣a∣。正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。如:丨-_丨=;丨3.14-π丨=π- 3.1 4. 4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。 a的相反数是-a,0的相反数是0。 5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末 一个数字止,所有的数字,都叫做这个近似数的有效数字. 如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整 数),这种记数法叫做科学记数法. 如:407000=4.07× 105,0.000043=4.3×10-5. 7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的 反而小。

8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果 叫幂。 9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这 个数a就叫做x的平方根(也叫做二次方根式)。一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身; 负数没有平方根. 10.开平方:求一个数a的平方根的运算,叫做开平方. 11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13.开立方:求一个数a的立方根的运算叫做开立方. 14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)4的平方根是士2,误认为4平方根为士 2,知道4=2. 15.二次根式: (1)定义:形如a(a≥0)的式子叫做二次根式. 16.二次根式的化简: 17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式. 18.同类二次根式:几个二次根式化成最简二次根式以后,如果被

大学物理课堂教学设计:高斯定理

课堂教学设计4:高斯定理 【授课内容】:高斯定理 【所在章节】:第7章:静电场与恒定电场7.2节:高斯定理 【授课对象】:2018级大数据学院(软件工程、数字工程、网络工程专业) 【教学学时】:2学时 一、学情分析 (一)教材内容分析 本书将“高斯定理”编排在第7 章“静电场”的第2节,是整个电学部分两个基本定理之一。在本节之前,教材已经介绍了库仑定律求解真空中静止点电荷周围激发的静电场问题,学生感觉利用该定律求解静电场在有些情况下比较复杂.本节内容安排了从特殊到一般的高斯定理的归纳过程,由特殊的以点电荷为球心的球面积分模型出发,进行不断变化,最终得出一般表达式,让学生亲身经历高斯定理的推导过程.根据电荷的分布特点,选择适当的高斯面,使用此定理能够更为方便地求出具有对称性分布的电场强度,将高斯定理与库仑定律联系对比,使学生认识到用高斯定理求解具有某种对称性的带电体周围分布的电场时较一般方法更加简单方便.同时也说明了静电场是有源场.电场中高斯定理的学习为之后稳恒磁场高斯定理的学习和理工科专业后续专业课程(比如电子信息工程专业课《电磁场与波》的学习)中计算电场强度奠定了基础,学生通过学习该定理能掌握科学的思维方法和研究方法,体验物理学中的对称和谐之美。 (二)学生学习基础分析 学生在学习本节之前,已掌握了利用库仑定律求解真空中静止点电荷周围的电场强度E,体会到利用该定律求解对数学尤其是积分运算要求较高且计算过程比较复杂,那么,求解带电体周围激发的静电场E是否还有其他相对简便的方法?静电场是否是有源场?这些都是要和学生共同解决的问题.更重要的是静电场和稳恒磁场的物理规律具有一定的对称性,静电场的学习将为后续稳恒磁场的学习做铺垫。 二、教学目标设计 (一)知识与技能 1、深刻理解电场强度E的闭合曲面积分(或E的通量)与该闭合面所包围电荷之间的关系; 2、电通量概念的理解和正负的判断; 3、对于多个点电荷或连续分布带电体周围激发的电场,理解闭合曲面上E的本质

高中数学公式定理定律大全

高中数学公式大全 (最全面,最详细) 高中数学公式大全 抛物线: y = ax *+ bx + c 就是 y 等于 ax 的平方加上 bx 再加上 c a > 0 时开口向上 a < 0 时开口向下 c = 0 时抛物线经过原点 b = 0 时抛物线对称轴为 y 轴 还有顶点式 y = a ( x+h) * + k 就是 y 等于 a 乘以( x+h)的平方 +k -h 是顶点坐标的 x k 是顶点坐标的 y 一般用于求最大值与最小值抛物线标准方程 :y^2=2px 它表示抛物线的焦点在 x 的正半轴上 , 焦点坐标为 (p/2,0) 方程为 x=-p/2 由于抛物线的焦点可在任意半轴 , 故共有标准方程 准线y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积 =4/3(pi )(r^3) 面积=(pi)(r^2) 周长=2(pi)r

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式: L=2πb+4(a -b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长 (2πb)加上四倍的该椭圆长半轴长( a)与短半轴长( b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长 ( a)与短半轴长( b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率 T,但这两个 公式都是通过椭圆周率 T 推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI* 高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-

高斯定理的应用

简析高斯定理在电场中的应用 高斯定理是物理学中电学部分的重要定理之一,在简化计算具有对称性的电场中有着重要应用,例如均匀带电的平面、直线、圆柱体、球面、球体等的电场的计算. 如果不理解高斯定理,不熟练掌握高斯定理的应用技巧,就会感到高斯定理深不可测. 下面,笔者就几年来的教学体会对高斯定理及其在电场中的应用作以简要分析. 三、高斯定理在电场中的应用 [例题1]设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3)带电面右半空间的场强与左半空间的场强,对带电平面是对称的. 为了计算右方一点A 的场强,在左取它的对称点B ,以AB 为轴线作一圆柱,如图-3所示. 对圆柱表面用高斯定理, 图-3 ?∑= +=?=s e e e q ds E 0 εφφφ两个底面侧面 (1) 0=侧e φ (2) ES e 2=两个底面φ (3) 圆柱内的电荷量为 ∑=S q σ (4) 把(2)、(3)、(4)代入(1)得 02εσ=E =12 810 85.82103.9--???V/m=5.25×103 V/m [例题2]设有一根无限长块均匀带正电直线,电荷线密度为λ=5.0×10-9C/m ,放置在真空中,求空间距直线1m 处任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在无限长块均匀直线上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与直线垂直向外的方向上存在(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)以直线为轴线的圆柱面上各点的场强数值相等,方向垂直于柱面(如图-4).

静电场的高斯定理复习题

- 选择题 1.关于高斯定理的理解有下面几种说法,其中正确的是: ()A 如果高斯面上E 处处为零,则该面内必无电荷; ()B 如果高斯面内无电荷,则高斯面上E 处处为零; ()C 如果高斯面上E 处处不为零,则高斯面内必有电荷; ()D 如果高斯面内有净电荷, 则通过高斯面的电场强度通量必不为零。 〔 〕 答案:()D 2.如在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ()A 0/q ε; ()B 0/2q ε; ()C 0/4q ε; ()D 0/6q ε。 〔 〕 答案:()D 3.在电场强度为E Ej =的匀强电场中,有一如图所示的三棱柱,取表面的法线向外,设过面AA'CO ,面B'BOC ,面ABB'A'的电通量为1φ, 2φ,3φ,则 ()A 1230Ebc Ebc φφφ===; ()B 1230Eac Eac φφφ=-==; ()C 22123Eac Ec a b Ebc φφφ=-=-+=-; ()D 22 123Eac Ec a b Ebc φφφ==+=。 〔 〕 答案:()B 4.已知一高斯面所包围的体积内电荷代数和 0i q =∑,则可肯定: ()A 高斯面上各点场强均为零。 ()B 穿过高斯面上每一面元的电通量均为零。 ()C 穿过整个高斯面的电通量为零。()D 以上说法都不对。 〔 〕 答案:()C 5.有两个点电荷电量都是q +,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。 在球面上取两块相等的小面积1S 和2S ,其位置如图所示。设通过1S 和2S 的电场强度通量分别为1φ和 2φ,通过整个球面的电场强度通量为φ,则 ()A 120,/q φφφε>=; ()B 120,2/q φφφε<=; ()C 120,/q φφφε==; ()D 120,/q φφφε<=。 〔 〕 答案:()D 6.一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化: ()A 将另一点电荷放在高斯面外; ()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内; ()D 将高斯面半径缩小。 答案:()B 7.A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。则 x y z a b c E O A A B B C x O q q a 2a S 1 S 2 A S +q r -q B

三年级下册数学公式定理定义大全

必背定义、定理公式 三角形的面积=底×高÷2。公式S= a×h÷2 正方形的面积=边长×边长公式S= a×a 长方形的面积=长×宽公式S= a×b 平行四边形的面积=底×高公式S= a×h 梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7.什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.什么叫方程式?答:含有未知数的等式叫方程式。 9.什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

小学数学公式大全(定理和概念)

小学数学公式大全(定理部分) 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不 变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们 的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加, 结果不变。如:(2+4)×5=2×5+4×5。 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不 是0的数都得0。 7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、方程式:含有未知数的等式叫方程式。 9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减, 先通分,然后再加减。 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先 通分然后再比较;若分子相同,分母大的反而小。 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 小学数学公式大全(概念部分) 1,加法交换律:两数相加交换加数的位置,和不变。 2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

相关文档
最新文档