概率论例题

概率论例题
概率论例题

概率论例题

例1.设某班车起点站上车人数X 服从参数为λ(λ>0)的泊松分布,并且中途不再有人上车。而车上每位乘客在中途下车的概率为p )1p 0(<<,且中途下车与否相互独立,以Y 表示在中途下车的人数。试求(1)(X,Y )的联合概率分布律;(2)求Y 的分布律(列)。

解:X 可能的取值是0,1,2,…..,k ,…,n ,... P{X =k }=

!

k e k λ

λ-

Y 可能的取值是0,1,2,…,r ,…,k

P{x =k, y =r }=P{x=k}P{y=r/x=k}=

!

k e k λ

λ-r k r r k q p C - r=0,1,2,…,k

当r>k 时,P{x=k, y=r}=0, Y 的边缘分布

P{Y = r }=∑+∞

===0

},{k r y k x P =∑+∞

====0

}/{}{k k x r y P k x P =∑

+∞

=--r

k r k r r k k

q p C e k λλ!

=∑+∞

=--+--r k r k r

q r r k k k k p e )(!)

1()1(!

1)

(λλλ =∑+∞=---r k r

k r

rq r k r p e )()!

(1!1)(λλ

=rq r e r p e --!1)(λλ=rp r e r p -!)(λ r = 0, 1, 2, … , 验证Y 的分布律

∑+∞

==0

}{r r y P = 1 ?

例2. 解 因为η只取非负值,所以当0y ≤时,

2()()

()

F y P y P y ηηξ=<=<

=

0y >时

2()()())

F y P y P y y y ηηξξ=<=<=<

2

2

2

2

12()t t t dt dt dt ξ--===

2

20

u u y

y

e

-

-=

=?

?

所以

20

,0()0,0u y y F y y η-?>?=??≤??

1

y --?

这样平均来说,可以减少40%的工作量.

例4.按规定,某车站每天8:00-9:00,9:00-10:00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间相互独立. 其规律为

一旅客8:20到车站,求他候车时间的数学期望. 解 设旅客的候车时间为X (以分计). X 的分布律为

在上表中,例如

其中A 为事件“第一班车在8:10到站”,B 为“第二班车在9:30到站”. 候车时间的数学期望为

32132

()10+30+ 50+ 70+ 90=27.2266363636

E X =?????(分).

例5.某商店对某种家用电器的销售采用先使用后付款的方式. 记使用寿命为X (以年计),规定:

1X ≤, 一台付款1500元; 12X <≤ ,一台付款2000元;

23X <≤,一台付款2500元;3X >,一台付款3000元.

设寿命X 服从指数分布,概率密度为

10

1, 0 ()100 , 0x

e x

f x x -?>?=???

试求该商店对上述家电收费(Y 元)的数学期望.

解 先求出寿命X 落在各个时间区间的概率,即有

1

/10

0.10

1{1}d 10.0952,10x P X e x e --==-=?

≤ 2

0.20.310

1

1{12}d 0.086110

x P X e x e e ---<==-=?

≤,

3/10

0.20.321{23}d 0.077910

x P X e x e e ---<==-=?

≤, 0.310

3

1{3}d 0.0740810

x P X e x e ∞

-->===?

. 一台收费

得()2732.15E X =,即平均一台收费2732.15元. □

例6 ()max ,M X Y =及()min ,N X Y =的分布 设,X Y 是两个相互独立的随机变量,它们的分布函数分别为()X F x 和()Y F y .现在来求()max ,M X Y =及()min ,N X Y =的分布函数.

由于()max ,M X Y =不大于z 等价与X 和Y 不大于z ,故有

{}{},P M z P X z Y z =≤≤≤.

又由于X 和Y 相互独立,得到()max ,M X Y =的分布函数为

(){}{}{}{}max ,F z P M z P X z Y z P X z P Y z ===≤≤≤≤≤

即有

()()()m a x X Y F z F z F z =.

类似地,可得到()min ,N X Y =的分布函数为

(){}{}{}{}{}min 11,1F z P N z P N z P X z Y z P X z P Y z ==->=->>=->?>≤.

即 ()()()m i n 111X Y F z F z F z =---????????.

例7.有2个相互独立工作的电子装置,它们的寿命 (1,2)k X k = 服从同一指数分布,其概率密度为

1, 0 ()0.0 , 0x e x f x x θθ-?>?=>???

≤,

若将这2个电子装置串联联接组成整机,求整机寿命(以小时计)N 的数学期望.

解 (1,2)k X k =的分布函数为

1,0,()0,0.

x e x F x x θ-??

->=???≤

由第三章§5(5.8)式12min(,)N X X =的分布函数为

22min 1, 0()1[1()] 0, 0

x

e x F x F x x θ-??

->=--=???≤

因而N 的概率密度为

2min , 0

()2

0, 0x

e x

f x x θθ-?>?=???

≤ 于是N 的数学期望为

2/min 0

2()()d d 2

x x

E N xf x x e x θθ

θ

--∞

=

==

??

.

例8.一民航机场的送客车载有20位旅客,自机场开出,旅客有10个站可以下车。如果到达一个车站没有人下车则不停车。以X 表示停车的次数,求E X (设每位旅客在各个车站下车是等可能的, 并设各旅客是否下车相互独立)。

解 引人随机变量

0, 1,2,

,10.1,i i X i i ?==??

在第站没有人下车,在第站有人下车,

易知 1210.X X X X =++

+ 现在来求()E X .

按题意, 任一旅客在第i 站不下车的概率为10

9

, 因此20位旅客都不在第i 站下车的概率为(

109)20,在第i 站有人下车的概率为1-(10

9

)20,也就是 202099

{0}(),{1}1(),1,2,

,10.1010

i i P X P X i ====-=

由此

209

()1(),1,2,

10.10

i E X i =-=

进而 1210()()E X E X X X =+++

121020

()()()

9 10[1()]8.784().

10

E X E X E X =++

=-=次

概率统计练习题答案

《概率论与数理统计》练习题7答案7 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设随机事件A 、B 互斥,(), (),P A P P B q ==则()P A B =( )。 A 、q B 、1q - C 、 p D 、1p - 答案:D 2、某类灯泡使用时数在500小时以上的概率为0.5,从中任取3个灯泡使用,则在使用500小时之后无一损坏的概率为:( )。 A 、 18 B 、2 8 C 、38 D 、 4 8 答案:A 3、设ξ的分布函数为1()F x ,η的分布函数为2()F x ,而12()()()F x aF x bF x =-是某随机 变量ζ的分布函数,则, a b 可取( )。 A 、32, 55a b = =- B 、2 3a b == C 、13 , 22a b =-= D 、13 , 22 a b ==- 答案:A 4、设随机变量ξ,η相互独立,其分布律为: 则下列各式正确的是( )。 A 、{}1P ξη== B 、{}14 P ξη== C 、{}12 P ξη== D 、{}0P ξη== 答案:C

^^ 5、两个随机变量的协方差为cov(,)ξη=( )。 A 、() () 2 2 E E E ηηξξ-- B 、()()E E E E ξξηη-- C 、()()2 2 E E E ξηξη-? D 、()E E E ξηξη-? 答案:D 6、设随机变量ξ在11,22?? -???? 上服从均匀分布sin ηπξ=的数学期望是( )。 A 、0 B 、1 C 、 1π D 、2π 答案:A 7、设12100,,,ξξξ???服从同一分布,它们的数学期望和方差均是2,那么 104n i i P n ξ=?? <<≥???? ∑( )。 A 、 12 B 、212n n - C 、12n D 、1 n 答案:B 8、设12, , , n X X X 是来自正态总体2(, )N μσ的样本( )。 A 、2 11~(,)n i i X X N n μσ==∑ B 、2 11()~(0, )n i X N n n σμ=-∑ C 、22 2111()~(1)n i i X n n μχσ=?--∑ D 、22 21 11()~()n i i X X n n χσ=?-∑ 答案:B 9、样本12(,, , )n X X X ,2n >,取自总体ξ,E μξ=,2D σξ=,则有( )。

概率论试题(含解析)

1、事件A B 、独立,且()0.8,()0.4P A B P A ?==,则P(AB) 2、设()f x 是连续型随机变量X 的概率密度函数 ()f x 非负。 3、随机变量),(~2σμN X ,则概率{1}P X μ≤+随着σ的变大而 (A )变小; (B )变大; (C )不变; (D )无法确定其变化趋势。 答:( A ) 6、某人投篮,每次命中的概率为2 3 ,现独立投篮3次,则至少命中3次的概率为. 7、已知连续型随机变量X 的概率密度函数为(1)2,1()0, x Ae x f x --??≥=???其它,则常数A = . 8、二维随机变量(,)X Y 的分布函数为(12)(13),0,0 (,)0,x y x y F x y --?-->>=?? 其它,则概率 P(Y>2)= . 9、已知随机变量X Y 、的方差分别为2,1DX DY ==,且协方差(,)0.6Cov X Y =,则D(X+Y)= 设,A B 为随机事件,且()0,(|)1P B P A B >=,说明什么? 某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第5次射击恰好第2次命中目标的概率为( )C 14P 2(1-p )3 三、解答题(本大题共6小题,每小题10分,共60分)。 一、已知男人中有8%是肝病患者,女人中有0.35%是肝病患者。今从男女人数相等的人群中随机地挑选一人,恰好是肝病患者,问此人是男性的概率是多少? 四、 11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品的概率分别为0.8, 0.1, 0.1. 顾客购买时,售货员随意取一箱,而顾客随意查看四只,若无残品,则买下,否则,退回。现售货员随意取一箱玻璃杯,求顾客买下的概率。(结果保留3个有效数字) 解:设B 表示售货员随意取一箱玻璃杯,顾客买下;i A 表示取到的一箱中含有i 个残品, 0,1,2i =,则所求概率为 2 ()(|)()...............................................................................(5') 1918171618171615 0.810.10.1...........................(9')2019181720191817 0.9i i i P B P B A P A ==??????=?+? +???????≈∑43...................................................................................................(10')

高中概率与统计试题

概 率与统计 1. (安徽理19). 为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望 3E ξ=,标准差σξ为 2 (Ⅰ)求n,p 的值并写出ξ的分布列; (Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率 【解:】(1)由233,()(1),2E np np p ξσξ===-=得112p -=,从而1 6,2 n p ==, ξ的分布列为 (2)记”需要补种沙柳”为事件A,则()(3),P A P ξ=≤得 或156121 ()1(3)16432 P A P ξ++=->=-= 2. (安徽文18) 在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”. (Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率。 (Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率。

【解:】(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有后鼻音“g ”的概率为 3 10 ,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为 33327 1010101000 ??= (2)设(1,2,3)i A i =表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g ”的事件,且其相应的概率为(),i P A 则 127323107()40C C P A C == ,3333101 ()120 C P A C == 因而所求概率为 3. (北京理17) 甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列. 【解:】(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3 324541 ()40 A A P E C A ==, 即甲、乙两人同时参加A 岗位服务的概率是 1 40 . (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541 ()10 A P E C A ==, 所以,甲、乙两人不在同一岗位服务的概率是9()1()10 P E P E =-= . (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务, 则23 5334541 (2)4 C A P C A ξ===. 所以3 (1)1(2)4 P P ξξ==-== ,ξ的分布列是

概率统计习题及答案

1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( D )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( C ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( B ) A.91 9910098 .02.0C B.i i i i C -=∑100100 9 10098 .02.0 C.i i i i C -=∑100100 10 10098 .02.0 D.i i i i C -=∑- 1009 0100 98 .02.01 4、设)3,2,1(39)(=-=i i X E i ,则)( )3 12 53(32 1=+ +X X X E B A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 23 2 1X X X X X c +++? 服从t 分布。( C ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14(N ,则其概率密度为( A ) A.6 )14(2 61- -x e π B. 3 2 )14(2 61- - x e π C. 6 )14(2 321- - x e π D. 2 3 )14(2 61-- x e π 7、321,,X X X 为总体),(2 σμN 的样本, 下列哪一项是μ的无偏估计( A ) A. 32 12 110 351X X X + + B. 32 1416131X X X ++ C. 32 112 5 2 13 1X X X + + D. 32 16 13 13 1X X X + + 8 、设离散型随机变量X 的分布列为 则常数C 为( C ) (A )0 (B )3/8 (C )5/8 (D )-3/8

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率统计习题含答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

概率统计练习题8答案

《概率论与数理统计》练习题8答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设有10个人抓阄抽取两张戏票,则第三个人抓到有戏票的事件的概率等于( )。 A 、0 B 、1 4 C 、18 D 、15 答案:D 2、如果,A B 为任意事件,下列命题正确的是( )。 A 、如果,A B 互不相容,则,A B 也互不相容 B 、如果,A B 相互独立,则,A B 也相互独立 C 、如果,A B 相容,则,A B 也相容 D 、AB A B =? 答案:B 3、设随机变量ξ具有连续的分布密度()x ξ?,则a b ηξ=+ (0,a b ≠是常数)的分布密度为( )。 A 、 1y b a a ξ?-?? ? ?? B 、1y b a a ξ?-?? ??? C 、1y b a a ξ?--?? ??? D 、 1y b a a ξ??? - ? ??? 答案:A 4、设,ξη相互独立,并服从区间[0,1]上的均匀分布则( )。 A 、ζξη=+服从[0,2]上的均匀分布, B 、ζξη=-服从[- 1,1]上的均匀分布, C 、{,}Max ζξη=服从[0,1]上的均匀分布,

D 、(,)ξη服从区域01 01x y ≤≤??≤≤? 上的均匀分布 答案:D 5、~(0, 1), 21,N ξηξ=-则~η( )。 A 、(0, 1)N B 、(1, 4)N - C 、(1, 2)N - D 、(1, 3)N - 答案:B 6、设1ξ,2ξ都服从区间[0,2]上的均匀分布,则12()E ξξ+=( )。 A 、1 B 、2 C 、0.5 D 、4 答案:B 7、设随机变量ξ满足等式{||2}116P E ξξ-≥=,则必有( )。 A 、14D ξ= B 、14 D ξ> C 、1 4 D ξ< D 、{} 15216 P E ξξ-<= 答案:D 8、设1(,,)n X X 及1(,,)m Y Y 分别取自两个相互独立的正态总体21(, )N μσ及 2 2(, )N μσ的两个样本,其样本(无偏)方差分别为21 S 及22 S ,则统计量2 122 S F S =服从F 分 布的自由度为( )。 A 、(1, 1)n m -- B 、(, )n m C 、(1, 1)n m ++ D 、( 1, 1,)m n -- 答案:A 9、在参数的区间估计中,给定了置信度,则分位数( )。 A 、将由置信度的大小唯一确定; B 、将由有关随机变量的分布唯一确定; C 、可按置信度的大小及有关随机变量的分布来选取; D 、可以任意规定。 答案:C 10、样本容量n 确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有( )。

概率论考试题以及解析汇总

——第1页—— 系名____________班级____________姓名____________学号____________ 密封线内不答题 试题一 一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( ) A.91 99 100 98 .02.0C B. i i i i C -=∑100100 9 100 98.02.0 C. i i i i C -=∑100100 10 100 98 .02.0 D.i i i i C -=∑- 1009 100 98.02.01 4、设)3,2,1(39)(=-=i i X E i ,则)()3 1 253(321=++ X X X E A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 2 3 21X X X X X c +++? 服从t 分布。( ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14( N ,则其概率密度为( ) A. 6 )14(2 61-- x e π B. 3 2)14(2 61-- x e π C. 6 )14(2 321 -- x e π D. 2 3)14(2 61-- x e π 7、 321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ 的无偏估计( ) A. 3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X + + D. 3216 1 3131X X X ++ 8 、设离散型随机变量X 的分布列为 X 1 2 3 P C 1/4 1/8 则常数C 为( ) (A )0 (B )3/8 (C )5/8 (D )-3/8 9 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X 近似的服从( ) (A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01 下,( )

高中数学概率与统计测试题

概率与统计 1.如果一个整数为偶数的 概率为 (1)a+b 为偶数的概率; (2)a+b+c 为偶数的概率。 0.6 ,且 a,b,c 均为整数,求 2.从 10 位同学 (其中 6 女,4 男)中随机选出 3 位参加测验,每位女同学能通过测验的概率 43 均为,每位男同学能通过测验的概率均为,求55 (1)选出的 3 位同学中,至少有一位男同学的概率; (2)10 位同学中的女同学甲和男同学乙同时被选中且通过测验的概率。 3.袋中有 6 个白球, 4 个红球,甲首先从中取出 3 个球,乙再从余下的 7 个球中取出 4 个球,凡取得红球多者获胜。试求 (1)甲获胜的概率; (2)甲,乙成平局的概率。 4.箱子中放着 3 个 1 元硬币, 3 个 5 角硬币, 4 个 1 角硬币,从中任取 3 个,求总钱数超过 1 元 8 角的概率。 5.有 10 张卡片,其号码分别位 1,2,3?,10,从中任取 3 张。 (1)求恰有 1 张的号码为 3 的倍数的概率; (2)记号码为 3 的倍数的卡片张数为ξ,求ξ的数学期望。 6.某种电子玩具按下按钮后,会出现白球或绿球,已知按钮第一次按下后,出现红球与绿球 1 的概率都是,从按钮第二次按下起,若前次出现红球,则下次出现红球、绿球的概率2 1 2 3 2 分别为, ;若前次出现绿球,则下次出现红球、绿球的概率分别为, ,记第 n(n ∈ 3 3 5 5 N,n ≥1) 次按下后,出现红球的概率为P n

(1)求P2的值; (2)当 n∈N,n ≥2 时,求用P n 1表示P n的表达式; (3)求P n关于 n 的表达式。 7.有甲、乙两个盒子 ,甲盒子中有 8 张卡片 ,其中两张写有数字 0,三张写有数字 1 ,三张写有数字 2 ;乙盒子中有 8 张卡片,其中三张写有数字 0,两张写有数字1,三张写有数字 2 , (1) 如果从甲盒子中取两张卡片,从乙盒子中取一张卡片,那么取出的 3 张卡片都写有 1 的概率是多少? (2)如果从甲、乙盒子中各取一张卡片,设取出的两张卡片数字之和为ξ,求ξ的分布列和期望。 8.甲、乙两位同学做摸球游戏,游戏规则规定:两人轮流从一个放有 1 个白球, 3 个黑球, 2 个红球且只有颜色不同的 6 个小球的暗箱中取球,每次每人只取一球,每取出一个后立即放回,另一个人接着取,取出后也立即放回,谁先取到红球,谁为胜者,现甲先取 (1) 求甲摸球次数不超过三次就获胜的概率; (2) 求甲获胜的概率。 9.设有均由 A,B,C 三个部件构成的两种型号产品甲和乙,当A或 B 是合格品并且 C 是合格 品时,甲是正品;当 A, B 都是合格品或者 C 是合格品时,乙是正品。若 A 、 B、C 合格的概率均是 P,这里 A ,B,C 合格性是互相独立的。 (1) 产品甲为正品的概率P1是多少? (2)产品乙为正品的概率P2 是多少? (3)试比较P1与P2的大小。 10.一种电路控制器在出厂时每四件一等品装成一箱,工人在装箱时不小心把两件二等品和两件一等品装入了一箱,为了找出该箱的二等品,我们对该箱中的产品逐一取出进行测试。 (1) 求前二次取出的都是二等品的概率; (2) 求第二次取出的是二等品的概率; (3)用随机变量ξ表示第二个二等品被取出时共取的件数,求ξ的分布列及数学

概率统计例题

已知二维连续型随机向量),(Y X 的联合密度函数为 ?? ?<<<<=其他。 ,; ,, 010104),(y x xy y x f 则X 与Y 相互独立 【解:由二维连续型随机向量),(Y X 的联合密度函数为 ?? ?<<<<=其他。 , ; ,, 010104),(y x xy y x f 可得两个边缘密度函数分别为: ?? ?<<==?∞+∞ -其他。, ; , 0102),()(x x dy y x f x f X ?? ?<<==? ∞ +∞ -其他。 , ; , 0102),()(y y dx y x f y f Y 从而可得)()(),(y f x f y x f Y X ?=,所以X 与Y 相互独立。 ■12、设二维随机变量(X , Y ) ~4,01,01 (,)0,xy x y f x y <<<===??? ()1()0.5P Y X P X Y ≥=->=】

概率论试题(含解析)

一、单项选择题(本大题共5小题,每小题3分,共15分)。 1、事件独立,且,则等于 (A )0; (B )1/3; (C)2/3; (D)2/5、 ? ? 答:( B ) 2、设就是连续型随机变量得概率密度函数,则下列选项正确得就是 (A )连续; (B ); (C)得值域为[0,1]; (D)。 答:( D ) 3、随机变量,则概率随着得变大而 (A)变小; (B )变大; (C)不变; (D)无法确定其变化趋势. ? ?? ? 答:( A ) 4、已知连续型随机变量相互独立,且具有相同得概率密度函数,设随机变量,则得概 率密度函数为 (A ); (B ); (C ); (D )、 答:( D ) 5、设就是来自正态总体得容量为得简单样本,则统计量服从得分布就是 (A) (B ) (C) (D) 答:( C ) 二、填空题(本大题共5小题,每小题3分,共15分)。 6、某人投篮,每次命中得概率为,现独立投篮3次,则至少命中1次得概率为、 7、已知连续型随机变量得概率密度函数为,则常数=、 8、二维随机变量得分布函数为,则概率=、 9、已知随机变量得方差分别为,且协方差,则=1、8、 10、某车间生产滚珠,从长期实践中知道,滚珠直径(单位:c m)服从正态分布,从某 天生产得产品中随机抽取9个产品,测其直径,得样本均值=1、12,则得置信度为0、95得置信区间为、 (已知,,,) 三、解答题(本大题共6小题,每小题10分,共60分)。 11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品得概率分别为0、8, 0、1, 0、1、顾客购买时,售货员随意取一箱,而顾客随意查瞧四只,若无残品,则买下,否则,退回。现售货员随意取一箱玻璃杯,求顾客买下得概率.(结果保留3个有效数字) 解:设表示售货员随意取一箱玻璃杯,顾客买下;表示取到得一箱中含有个残品,,则所 求概率为 2 0()(|)()...............................................................................(5') 19181716181716150.810.10.1...........................(9')2019181720191817 0.9i i i P B P B A P A ==??????=?+? +???????≈∑43...................................................................................................(10') 12、已知连续型随机变量得概率密度函数为 , (1)求概率;(2)求、

高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -=++++

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

高中数学统计与概率测试题

高中数学统计与概率测试 题 Revised by Liu Jing on January 12, 2021

高中数学统计与概率测试题一选择题 1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( ) A. 1000名学生是总体 B.每名学生是个体 C.每名学生的成绩是所抽取的一个样本 D.样本的容量是100 2.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图,则以下说法不正确的是() A.获得参与奖的人数最多 B.各个奖项中三等奖的总费用最高C.购买奖品的费用平均数为元 D.购买奖品的费用中位数为2元3.滴滴公司为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查,为此将他们随机编号1,2,,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C 的人数为() A. 23 B. 24 C. 25 D. 26

4.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=( ) A. 13 B. 12 C. 10 D. 9 5 ,,, A B C D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是 A.1 3 B. 1 2 C. 5 9 D. 2 3 6.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图 根据频率分布直方图,下列说法正确的是 ①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值 ②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值 ③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值 ④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍 A.①②③ B.②③④ C.①③④ D.①④ 7.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为() A. 5 B. 4 C. 3 D. 2

相关文档
最新文档