实验四 多种信号音及铃流信号发生器

实验四 多种信号音及铃流信号发生器
实验四 多种信号音及铃流信号发生器

学院:专业:班级:

图4—1 本实验系统传送信号流程图

4、数字信号的产生

在数字程控交换机中直接进行交换的是PCM数字信息,在这样的情况下如何使用户家收到信号音(如拨号音、回铃音、忙音等)是一个重要的问题。因为模拟信号产生的信号音是不能通过PCM交换系统的,这就要求设计一个数字信号发生器,使之能与交换网络输出这样一些PCM信息,这些数字信息经过非线性译码后能成为一个我们所需的模拟信号音。

)传统方式产生数字信号音

图4—3 450HZ正弦波信号一个周期取样示意图

我们对正弦信号再以每隔125us取样一次,并将取样所得的正弦信号幅度按照A规律十

图4—4 数字信号产生电流原理图

5、拨号音及控制电路

主叫用户摘机,CPU检测到该用户有摘机状态后,立即向该用户发出声音信号,表示可以拨号,当CPU中央处理单元收到第一个拨号脉冲后,立即切断该声音信号,该声音信号就叫拨号音。拨号音由上述数字信号产生,一旦一有用户摘机,交换网路把数字信号音送给该用户,经过TP3067的译码,提供给用户450hz的正弦波。

图4—5断续电路原理图

7、忙音及控制电路

忙音表示被叫用户处于忙状态,此时用户应该挂机,等一会在从新呼叫

本试验箱大于采用0、35秒断,0、35秒继续的400hz—450hz的方波信号,图4—6是该电路的原理图。

图4—6忙音控制电路的原理图。

图4—7铃流信号发生电路的原理图

上述四种信号在本实验系统中均有具体的电路实现,然而在程控交换机中,信号音还不止上述几种,在此做一简单介绍,不作实验要求。

1、数字程控交换原理实验箱

2、电话机

F=25hz,Vpp=2.0V

(3)用户3振铃时,示波器观测TP33A测试点波形为方波:不振铃时无波形。

(4)用户3摘机通话后,用户3先挂机,此时用户1听到忙音。示波器

TP61的波形:

TP62的波形:

复习题库答案

《现代交换原理》复习题库 一、填空题 1、电话通信的基本目标是实现用户间话音信号的传递。 2、构成电话网的三要素为用户设备、交换设备和传输设备。 3、电话交换技术发展的三个阶段为人工交换阶段、机电式自动交换阶段和程控交换阶段。 4、电话呼叫分为本局呼叫、出局呼叫、入局呼叫和转接呼叫。 5、目前电话系统中常用的语音信号的数字化技术是脉冲编码调制(PCM)技术。 6、在PCM技术中,语音信号的数字化分为抽样、量化和编码三个过程,其中抽 样频率通常采取 8000 H Z,量化级通常采用256级,编码位数为 8位。 7、在PCM30/32路时分多路复用系统中,一帧的话路容量为 30 路,一帧的传输速率为 2.048 Mbps,每个时隙的传输速率为 64 Kb/s,一帧的时间长度为 125 μs。 8、在PCM二次群中,话路容量为 120 路,传输速率为 8.448 Mb/s。 9、数字交换网络的两种基本功能为时分交换和空分交换。 10、若输入复用线上一帧内的时隙数为512,则在T接线器中, SM中存储单元的个数为512, 每个存储单元的字长为 8 位;CM中存储单元的个数为 512 ,字长为 9位。 11、多路复用是指多路信号在同一传输线路上传输,目前多路复用的方法有两类:时分多 路复用和频分多路复用。 12、某集中式T型交换网络,其每一个T接线器连接的PCM复用线上1帧内的时隙数为256, 语音信号采用8位编码制,若取集中比为8:1,则该集中式T型交换网络中需要 8 个语音存储器,每个语音存储器中存储单元的个数为 256 ,字长为 8 位;需要1个控制存储器,控制存储器中存储单元的个数为 256 ,控制字长为 11 位。 13、一个DSE有 16 个交换端口,每个端口有接收和发送两个部分,一个DSE可以完成 16 个输入信道和 16 个输出信道之间信息的交换。 14、由DSE构成的DSN中,由选面级和选组级两部分构成,最大为 4 级 4 面。 15、在S1240交换机中,选面级中每个DSE的16端口可接16条PCM链路,其中 0~7、12~15 共12个端口接控制单CE, 8~11 共4个端口接选组级,每个DSN最多可接入 6144 个CE。 16、若两个终端模块的网络地址分别是2452和1072,则它们之间的接续路由需要经过 7 条 选择命令,在第 4 级返回。

信号源实验

信号源实验

实验一 信号源实验 一、 实验目的 1、 掌握频率连续变化的各种波形的产生方法 2、 掌握用FPGA 产生伪随机码的方法 3、 掌握码型可变NTZ 码的产生方法 4、 了解用FPGA 进行电路设计的基本方法 5、 了解帧同步信号与同步信号在整个通信系统中的作用 6、 熟练掌握信号源模块的使用方法 二、 实验内容 1、 观察频率连续可变信号发生器输出的各种波形及7段数码管的显示 2、 观察点频方波信号的输出 3、 观察点频正弦波信号的输出 4、 波动拨码开关,观察码型可变NRZ 码的输出 5、 观察位同步信号和帧同步信号输出 6、 改变FPGA 程序,扩展其他波形 三、 实验器材 1、 信号源模块 2、 20M 双踪示波器 3、 频率计 4、 PC 机 5、 连接线 四、 实验原理 信号源模块可以大致分成模拟部分和数字部分,分别产生模拟信号和数字信号。 1、 模拟信号源部分 地址选择器 数据存储器 预置分频器 单 片机 D/A 滤波器 波形选择 显示驱动 频率调节 模拟信号输出 64KHz 方波带通滤波器64KHz 正弦波 32KHz 方波 带通滤波器32KHz 正弦波 1MHz 方波带通滤波器1MHz 正弦波

模拟信号源部分可以输出频率和幅度可任意改变的正弦波(频率变化范围100Hz~10KHz)、三角波(频率变化范围100Hz~1KHz)、方波(频率变化范围100Hz~10KHz)、锯齿波(频率变化范围100Hz~1KHz)以及32KHz、64KHz、1MHz、的点频正弦波(幅度可以调节)。 我们已经将各种波形在不同频段的数据写入了数据存储器U005(2864)并存放在固定的地址中。 2、数字信号源部分 数字信号源部分可以产生多种频率的点频方波、NRZ码以及位同步信号和帧同步信号。 24MHz晶振3分频可预置 分频器 BS FS 1M256K8K 64K Z8K NRZ码产生器码型调节 分频比选择 NRZ码分频器 分频器 2BS 2分频2分频 晶振出来的方波信号经3分频后分别送入分频器和另外一个可预知分频器分频,前一频器分频后可得到1MHz、256KHz、64KHz、8KHz的方波以及8KHz 的窄脉冲信号。可预置分频的分频比可通过拨码开关SW101、SW102来改变,分频比范围是1~9999。分频后的新号即为整个系统的位同步信号(从信号输出点“BS”输出)。数字信号源部分还包括一个NRZ码产生电路,通过该电路可产生24位为一帧的周期性NRZ码序列,该序列的码型可通过拨码开关SW103、SW104、SW105来改变。 五、实验步骤 1、插上电源线,打开交流开关,再按下开关POWER1、POWER2,按一下复位 键,信号源模块开始工作。 2、模拟信号源部分 a、观察“32K正弦波”、“64K正弦波”、“1M正弦波”可并分别改变各正弦波 的幅度。 b、按下“复位”波形指示灯“三角波”亮,数码管M001~M004显示“2000”。 c、按一下“波形选择”,“三角波”亮,输出波形为是三角波。逐次按下“波形 选择”轮流输出正弦波、三角波、锯齿波和方波。 d、波形选择为正弦波,改变输出信号的频率,观察“模拟输出”点的波形,计 算其频率是否与数码管显示的一致。转动“幅度调节1”改变幅度 e、分别选择为三角波,锯齿波,方波重复上述实验

信号发生器实验报告

低频电路课程设计 OCL 功率放大器设计 学院名称: 电气信息工程学院 专 业: 测控技术与仪器 班 级: 08测控1班 姓 名: 朱彬彬 学 号: 08314105 指导老师: 王云松 2010年 6 月20 日 JIANGSU TEACHERS UNIVERSITY OF TECHNOLOGY 电气信息工程学院

1设计课题:OCL功率放大器 为了保证功率,效率和失真三个指标满足一定的要求,早期的功率放大器多采用变压耦合。这种电路变压器体积大,比较笨重,耗损多,而且高频和低频部分频响特性不好,在引入负反馈时,很容易自激。随着电子技术的发展,后来被无输出变压器的功率放大电路(OTL)代替。在OTL电路中,虽去掉了变压器,但为了能用但电源供电,输出端接了一个大电容,这个大电容影响了电路的低频特性,于是出现了OCL电路。 OCL功放是在OTL功放的基础上发展起来的,它比OTL功放的频带更宽,保真度更高。OCL功放是一种直接耦合的多级放大器,它运用了许多电子器件,包含了多种基本电路形式。 OCL功率放大器采用两组电源供电,使用了正负电源,在电压不太高的情况下,也能获得较大的输出功率,省去了输出端的耦合电容,使放大器低频特性得到扩展,OCL功放电路也是定压式输出电路,其电路由于性能比较好,所以广泛的应用于高保真扩音设备中。 2 主要技术指标 最大不失真输出功率:Pom≥8w 负载阻抗(扬声器):R L=10Ω 频率响应:f=50Hz~20kHz 非线性失真系数:γ≤功率放大器1% 输入灵敏度:Vi≤300mv 稳定性:电源升高和降低20%时,输出零点漂移≤100mv 3实验用仪器: 直流稳压电源一台 低频信号发生器一台 低频毫伏表一台 示波器一台 万用表一台 晶体管图示仪一台 失真度测量仪一台 4电路原理 OC L功率放大器时一种直接耦合的多级放大器,总体可分为三个部分

DDS信号发生器 实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y EDA技术高级应用 实验报告 姓名:禾小鬼 同组人: 学号:16S 班级:信息2班 指导教师:xxx 院系:电信学院

实验一函数信号发生器 一、实验内容 实验内容包括下面两个方面 1.熟悉quartus ii开发环境 第一次接触quartus ii开发环境,首先可以通过新建一个工程熟悉quartus ii的各种基本操作。需要学习的包括以下几个方面:选器件,采用原理图方法画一个电路图实现某种功能,并对这个功能进行行为仿真以验证功能上的正确性。 2.设计一个函数信号发生器 在开始之前,首先要明确设计目的,我们的想要用电路图方法实现设计一个“函数信号发生器”。然后,可以先根据自己的思路想好一个电路图的设计方案,再开始实验。 二实验结果 1.第一步:建立一个新的工程 新建工程的过程中,最重要的是设置器件,不同的器件的设计之间并不兼容。会有一个综合的信息框,注明了我所做的设置,看看没问题就可以了。然后新建一个原理图文件schematic,作为顶层文件,将顶层文件命名为DDS在上面进行画图。 2.第二步:画电路图 本次实验采用软件自带的器件库MegaWizard Plug-in Manager中的器件。自定义3个ROM,并将ROM表中存储事先准备好的三种波形的数据文件,波形数据文件由matlab产生,ROM中存储8bit-32words的数据,包括一个时钟输入,一个5位地址输入和一个7位输出;还需要一个5位计数器,用以输出读取ROM 的地址;一个时钟控制整个电路工作; 我画的电路图,如图1所示。其原理为:三个ROM表存储三种波形数据,整个电路通过时钟控制,时钟每翻转一次,计数器加一,产生一个地址,输入到

函数信号发生器实训报告

电子与信息工程 综合实验课程报告 实验名称:基于单片机的信号发生器的设计与实现班级:电子1班 组员:徐丹许艳徐梅 指导教师:张辉 时间:2013-6-8至2011-6-16

目录 前言......................................................................... 错误!未定义书签。 1 波形发生器概述 (2) 1.1波形发生器的发展状况 (2) 1.2国内外波形发生器产品比较 (3) 2 方案论证与比较 (4) 2.1 方案一 (4) 2.2 方案二 (5) 2.3 方案三 (5) 3 硬件原理 (5) 3.1 MCS-51单片机的内部结构 (6) 3.1.1 内部结构概述 (6) 3.1.2 CPU结构 (6) 3.1.3 存储器和特殊功能寄存器 (7) 3.2 P0-P3口结构 (7) 3.3 时钟电路和复位电路 (8) 3.3.1时钟电路 (8) 3.3.2单片机的复位状态 (9) 3.4 DAC0832的引脚及功能 (10) 4 软件原理 (11) 4.1 主流程图 (12) 4.1.1 方波仿真图 (13) 4.1.2 三角波仿真图 (14) 4.1.3 锯齿波仿真图 (15) 4.1.4 梯形波仿真图 (16) 4.1.5 正弦波仿真图 (17) 4.2附录:实物图 (17) 总结 (18) 致谢 (19) 参考文献 (19)

1 波形发生器概述 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。 1.1波形发生器的发展状况 波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。函数波形发生器具有连续的相位变换、和频率稳定性等优点,不仅可以模拟各种复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通讯,组成自动测试系统,因此被广泛用于自动控制系统、震动激励、通讯和仪器仪表领域。 在70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形,则电路结构非常复杂。同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。 在70 年代后,微处理器的出现,可以利用处理器、A/D/和D/A,硬件和软件使波形发生器的功能扩大,产生更加复杂的波形。这时期的波形发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。 90 年代末,出现几种真正高性能、高价格的函数发生器、但是HP公司推出了型号为HP770S的信号模拟装置系统,它由HP8770A任意波形数字化和HP1776A波形发生软件组成。HP8770A实际上也只能产生8 中波形,而且价格昂贵。不久以后,Analogic公司推出了型号为Data-2020的多波形合成器,Lecr oy 公司生产的型号为9100 的任意波形发生器等。 到了二十一世纪,随着集成电路技术的高速发展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的发展,2003 年,Agilent 的产品33220A能够产生17 种波形,最高频率可达到20M,2005 年的产品N6030A 能够产生高达500MHz 的频率,采样的频率可达1.25GHz。由上面的产品可以看出,函数波形发生器发展很快近几年来,国际上波形发生器技术发展主要体现在以下几个方面:

模拟信号源实验报告

实验1 模拟信号源实验 一、实验目的 1.了解本模块中函数信号产生芯片的技术参数; 2.了解本模块在后续实验系统中的作用; 3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.频率计1 台 3.20M 双踪示波器1 台 4.小电话单机1 部 三、实验原理 本模块主要功能是产生频率、幅度连续可调的正弦波、三角波、方波等函数信号(非同步函数信号),另外还提供与系统主时钟同源的2KHZ 正弦波信号(同步正弦波信号)和模拟电话接口。在实验系统中,可利用它定性地观察通信话路的频率特性,同时用做PAM、PCM、ADPCM、CVSD(Δ M)等实验的音频信号源。本模块位于底板的左边。 1.非同步函数信号 它由集成函数发生器XR2206 和一些外围电路组成,XR2206 芯片的技术资料可到网上搜索得到。函数信号类型由三档开关K01 选择,类型分别为三角波、正弦波、方波等;峰峰值幅度范围0~10V,可由W03调节;频率范围约500HZ~5KHZ,可由W02 调节;直流电平可由W01 调节(一般左旋到底)。非同步函数信号源结构示意图,见图2-1。 2.同步正弦波信号 它由2KHz 方波信号源、低通滤波器和输出放大电路三部分组成。2KHz 方波信号由“时钟与基带数据发生模块”分频产生。U03 及周边的阻容网络组成一个截止频率为2KHZ 的低通滤波器,用以滤除各次谐波,只输出一个2KHz 正弦波,在P04 可测试其波形。用其作为PAM、PCM、ADPCM、CVSD(Δ M)等模块的音频信号源,其编码数据可在普通模拟示波器上形成稳定的波形,便于实验者观测。W04 用来改变输出同步正弦波的幅度。同步信号源结构示意图,见图2-2。

多种信号音及铃流信号发生器实验

信息科学与工程学院《程控交换原理》上机实验报告 专业班级电信姓名学号 实验时间 2010年 12月 2 日指导教师成绩

图4—1 本实验系统传送信号流程图 4、数字信号的产生 在数字程控交换机中直接进行交换的是PCM数字信息,在这样的情况下如何使用户家收到信号音(如拨号音、回铃音、忙音等)是一个重要的问题。因为模拟信号产生的信号音是不能通过PCM交换系统的,这就要求设计一个数字信号发生器,使之能与交换网络输出这样一些PCM信息,这些数字信息经过非线性译码后能成为一个我们所需的模拟信号音。 )传统方式产生数字信号音 )由图4—2可知,这是一种常见的PCM编码方式,400HZ—500HZ的正弦信号由硬(3)数字电路产生数字音信号

图4—3 450HZ正弦波信号一个周期取样示意图 我们对正弦信号再以每隔125us取样一次,并将取样所得的正弦信号幅度按照A规律十三 图4—4 数字信号产生电流原理图 5、拨号音及控制电路 主叫用户摘机,CPU检测到该用户有摘机状态后,立即向该用户发出声音信号,表示可以拨号,当CPU中央处理单元收到第一个拨号脉冲后,立即切断该声音信号,该声音信号就叫拨号音。拨号音由上述数字信号产生,一旦一有用户摘机,交换网路把数字信号音送给该用户,经过TP3067的译码,提供给用户450hz的正弦波。

图4—5断续电路原理图 7、忙音及控制电路 忙音表示被叫用户处于忙状态,此时用户应该挂机,等一会在从新呼叫 本试验箱大于采用0、35秒断,0、35秒继续的400hz—450hz的方波信号,图4是该电路的原理图。 图4—6忙音控制电路的原理图。

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

信号源实验

实验一信号源实验 一、实验目的 1、掌握频率连续变化的各种波形的产生方法 2、掌握用FPGA产生伪随机码的方法 3、掌握码型可变NTZ码的产生方法 4、了解用FPGA进行电路设计的基本方法 5、了解帧同步信号与同步信号在整个通信系统中的作用 6、熟练掌握信号源模块的使用方法 二、实验内容 1、观察频率连续可变信号发生器输出的各种波形及7段数码管的显示 2、观察点频方波信号的输出 3、观察点频正弦波信号的输出 4、波动拨码开关,观察码型可变NRZ码的输出 5、观察位同步信号和帧同步信号输出 6、改变FPGA程序,扩展其他波形 三、实验器材 1、信号源模块 2、20M双踪示波器 3、频率计 4、PC机 5、连接线 四、实验原理 信号源模块可以大致分成模拟部分和数字部分,分别产生模拟信号和数字信号。 1、模拟信号源部分 模拟信号源部分可以输出频率和幅度可任意改变的正弦波(频率变化范围100Hz~10KHz)、三角波(频率变化范围100Hz~1KHz)、方波(频率变化范围

100Hz~10KHz)、锯齿波(频率变化范围100Hz~1KHz)以及32KHz、64KHz、1MHz、的点频正弦波(幅度可以调节)。 我们已经将各种波形在不同频段的数据写入了数据存储器U005(2864)并存放在固定的地址中。 2、数字信号源部分 数字信号源部分可以产生多种频率的点频方波、NRZ码以及位同步信号和帧同步信号。 晶振出来的方波信号经3分频后分别送入分频器和另外一个可预知分频器分频,前一频器分频后可得到1MHz、256KHz、64KHz、8KHz的方波以及8KHz 的窄脉冲信号。可预置分频的分频比可通过拨码开关SW101、SW102来改变,分频比范围是1~9999。分频后的新号即为整个系统的位同步信号(从信号输出点“BS”输出)。数字信号源部分还包括一个NRZ码产生电路,通过该电路可产生24位为一帧的周期性NRZ码序列,该序列的码型可通过拨码开关SW103、SW104、SW105来改变。 五、实验步骤 1、插上电源线,打开交流开关,再按下开关POWER1、POWER2,按一下复位键, 信号源模块开始工作。 2、模拟信号源部分 a、观察“32K正弦波”、“64K正弦波”、“1M正弦波”可并分别改变各正弦波的 幅度。 b、按下“复位”波形指示灯“三角波”亮,数码管M001~M004显示“2000”。 c、按一下“波形选择”,“三角波”亮,输出波形为是三角波。逐次按下“波形 选择”轮流输出正弦波、三角波、锯齿波和方波。 d、波形选择为正弦波,改变输出信号的频率,观察“模拟输出”点的波形,计 算其频率是否与数码管显示的一致。转动“幅度调节1”改变幅度 e、分别选择为三角波,锯齿波,方波重复上述实验 f、模拟信号放大通道:链接“模拟输出”点与“IN”点,观察“OUT”点波形, 转动“幅度调节2”改变输出信号的幅度 3.数字信号源部分

模电函数信号发生器实验报告

电子电路模拟综合实验 2009211120 班 09210580(07)号 桂柯易

实验1 函数信号发生器的设计与调测 摘要 使用运放组成的积分电路产生一定频率和周期的三角波、方波(提高要求中通过改变积分电路两段的积分常数从而产生锯齿波电压,同时改变方波的占空比),将三角波信号接入下级差动放大电路(电流镜提供工作电流),利用三极管线性区及饱和区的放大特性产生正弦波电压并输出。 关键词 运放积分电路差动发达电路镜像电流源 实验内容 1、基本要求: a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。 1)输出频率能在1-10KHz范围内连续可调,无明显失真; 2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%-70%; 3)三角波Uopp=8V; 4)正弦波Uopp>1V。 b)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的 电路原理图(SCH) 2、提高要求: a)三种输出波形的峰峰值Uopp均可在1V-10V范围内连续可调。 b)三种输出波形的输出阻抗小于100欧。 c)用PROTEL软件绘制完整的印制电路板图(PCB)。 设计思路、总体结构框图 分段设计,首先产生方波-三角波,再与差动放大电路相连。 分块电路和总体电路的设计(1)方波-三角波产生电路: 正弦波产生电路三角波产生电路 方波产生电路

首先,稳压管采用既定原件2DW232,保证了输出方波电压Uo1的峰峰值为12V,基本要求三角波输出电压峰峰值为8V,考虑到平衡电阻R3的取值问题,且要保证R1/Rf=2/3,计算决定令Rf=12K,R1=8K,R3=5K。又由方波的上升、下降沿要求,第一级运放采用转换速度很快的LM318,Ro为输出限流电阻,不宜太大,最后采用1K欧电阻。二级运放对转换速度要求不是很高,故采用UA741。考虑到电容C1不宜过小,不然误差可能较大,故C1=0.1uF,最后根据公式,Rw抽头位于中点时R2的值约为300欧,进而确定平衡电阻R4的阻值。考虑到电路的安全问题,在滑阻的接地端串接了一个1K的电阻。(注:实际调测时因为滑阻转动不太方便,所以通过不断换滑阻的方式确定适当频率要求下Rw的阻值,我的电路最后使用的是1K欧的滑阻) (2)正弦波产生电路:

最新09级电信(本)程控交换原理实验系统指导书

09级电信(本)程控交换原理实验系统指导 书

实验四多种信号音及铃流信号发生器实验 一.实验目的 1.了解电话通信中常用的几种信号和铃流信号的电路组成与产生方法。 2.熟悉这些音信号在传送过程中的技术要求和实现方法。 二.预习要求 预习有关拨号音、忙音、回铃音、铃流等有关内容。 三.实验仪器 1.程控交换实验箱 一台 2.电话单机 二台 3.20MHz示波器 一台 四.实验原理 1.用户信号系统 我们知道,在用户话机与电信局的交换机之间的线路上,要沿两个方向传递语言信息。但是,为了接通一个电话,除了上述情况外,还必须沿两个方向传送所需的控制信号。比如,当用户想要通话时,必须首先向程控机提供一个信号,能让交换机识别并使之准备好有关设备,此外,还要把指明呼叫的目的地的信号(被叫)发往交换机。当用户想要结束通话时,也必须向电信局交换机提供一个信号,以释放通话期间所使用的设备。除了用户要向交换机传送信号之外,还需要传送相反方向的信号,如交换机要向用户传送关于交换机设备状况,以及被叫用户状态的信号。

由此可见,一个完整的电话通信系统,除了交换系统和传输系统外,还应有信号系统。 普通电话信号是目前各种终端信令中最为简单的一种,话机发出的信令以直流电流的通断表示,交换机产生的则主要是各种音频频率的正弦波。 2.信令定义 摘机:话机发出的请求通信的命令。 挂机:由话机发出,表示话机已结束或放弃通信。 拨号音:由交换机发出,促请话机用户输入被叫话机的号码。 忙音:由交换机发出,通知主叫用户通信网络或被叫话机目前正忙。 拨号:话机发出的被叫话机的号码,供通信网接续话路时使用。 回铃音:由交换机发出,提示主叫用户被叫话机正处于振铃状态。 振铃:由交换机发出,供被叫话机发出铃声,促请用户应答。 3.信令编码 摘机:环线直流电流由开路变为导通。 挂机:环线直流电流由导通变为开路。 拨号音:持续的450Hz的正弦波。 忙音:450Hz的正弦波,每导通0.35秒后间断0.35秒。 拨号:采用双音多频拨号方式,即DTMF=(Dual Tone Multifrequency)。 回铃音:450Hz的正弦波,每导通1秒后间断4秒。 振铃:25Hz的正弦波,每导通1秒后间断4秒。

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

函数信号发生器实验报告

北京邮电大学 电子电路综合设计实验报告 课题名称:函数信号发生器的设计和调试 院系:信息与通信工程学院 班级: 2012211113 姓名:李鸣野 学号:2012210362 班内序号:01 摘要 函数(波形)信号发生器能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。方波-三角波产生电路主要有运放组成,其中由施密特触发器多谐振荡器产生方波,积分电路将方波转化为三角波,差分电路实现三角波-正弦波的变换。该电路振荡频率由第一个电位器调节,输出方波幅度的大小由稳压管的稳压值决定;正弦波幅度和电路的对称性分别由后两个电位器调节。

关键词:方波,三角波,正弦波 基本要求: a)设计一个设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器 1)输出频率能在1-10khz范围内连续可调,无明显失真; 2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%--70%; 3)三角波Uopp=8V; 4)正弦波Uopp≥1V。 b)用PROTEL软件绘制完整的电路原理图(SCH) 设计思路: 要产生方波,需要用稳压管和比较器组成方波产生电路。稳压管为实验提供的6v稳压管。方波经过RC积分电路积分得到三角波,幅度为Uo2m=±(UZ+UD),由R1和Rf的比值及稳压管的稳压值决定,实验要求三角波峰峰值为8v,故根据公式推导后,选用20K的电阻作为R1,30K的电阻作为Rf。R3为12K。R4为直流平衡电阻,应与R2保持一致,均为5K。R0为限流电阻,根据实验要求选用2K。 三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。R e取阻值为100Ω,C1、C2、C4为隔直流电容,取C1=C2=C3=33uF。Rp1调节三角波

实验一信号源实验共7页

通信原理实验报告(一) 颜平 222011315220096 实验一信号源实验 一.实验目的 1.了解频率连续变化的各种波形的产生方法。 2.理解帧同步信号与位同步信号在整个通信系统中的作用。 3.熟练掌握信号源模块的使用方法。 二.实验内容 1.观察频率连续可变信号发生器输出的各种波形及7段数码管的显示。2.观察点频方波信号的输出。 3.观察点频正弦波信号的输出。 4.拨动拨码开关,观察码型可变NRZ码的输出 5.观察位同步信号和帧同步信号的输出 三.实验器材 1.信号源模块 2.20M双踪示波器 一台3.频率计(可选) 一台 4.PC机(可选) 一台

5.连接线若干 四.实验原理 信号源模块可以大致分为模拟部分和数字部分,分别产生模拟信号和数字信号。 1.模拟信号源部分 图1-1 模拟信号源部分原理框图 如上原理框图部分, 模拟信号源部分可以输出频率和幅度可任意改变的正弦波(频率变化范围100Hz~10KHz)、三角波(频率变化范围100Hz~1KHz)、方波(频率变化范围100Hz~10KHz)、锯齿波(频率变化范围100Hz~1KHz)以及32KHz、64KHz、1MHz的点频正弦波(幅度可以调节) 2.数字信号源部分 可以产生多种频率的点频方波、NRZ码(可通过拨码开关SW103、SW104、SW105改变码型)以及位同步信号和帧同步信号。绝大部分电路功能由U004(EPM7128)来完成,通过拨码开关SW101、SW102可改变整个数字信号源位同步信号和帧同步信号的速率,该部分电路原理框图如图1-2所示。 图1-2 数字信号源部分原理框图

五、操作方法与实验步骤: 1、将信号源模块小心固定在主机箱中,确保电源接触良好。 2、插上电源线,打开主机箱右侧的交流开关,再按下开关POWER1、POWER2,发光二极管LED001、LED002发光,按一下复位键,信号源模块开始工作。 3、模拟信号源部分 ①观察“32K正弦波”、“64K正弦波”、“1M正弦波”各点输出的正弦波波形,对应的电位器“32K幅度调节”、“64K幅度调节”、“1M幅度调节”可分别改变各正弦波的幅度。 ②按下“复位”键使U006复位,波形指示灯“正弦波”亮,波形指示灯“三角波”、“锯齿波”、“方波”以及发光二极管LED007灭,数码管 M001~M004显示“2000”。 ③按一下“波形选择”按键,波形指示灯“三角波”亮(其他仍熄灭),此时信号输出点“模拟输出”的输出波形为三角波。逐次按下“波形选择”按键,四个波形报指示灯轮流发亮,此时“模拟输出”点轮流输出正弦波、三角波、锯齿波、和方波。 ④将波形选择为正弦波,转动旋转编码器K001,改变输出信号的频率,观察“模拟输出”点的波形,并注意计算其频率是否与数码管显示的一致。转动电位器“幅度调节1”可改变输出信号的幅度,幅度最大可达3V以上。 ⑤将波形分别选择为三角波、锯齿波、方波、重复上述实验。 4.数字信号源部分 ①拨码开关SW101、SW102的作用是改变分频器的分频比,得到不同频

实验四 多种信号音及铃流信号发生器

学院:专业:班级:

图4—1 本实验系统传送信号流程图 4、数字信号的产生 在数字程控交换机中直接进行交换的是PCM数字信息,在这样的情况下如何使用户家收到信号音(如拨号音、回铃音、忙音等)是一个重要的问题。因为模拟信号产生的信号音是不能通过PCM交换系统的,这就要求设计一个数字信号发生器,使之能与交换网络输出这样一些PCM信息,这些数字信息经过非线性译码后能成为一个我们所需的模拟信号音。 )传统方式产生数字信号音

图4—3 450HZ正弦波信号一个周期取样示意图 我们对正弦信号再以每隔125us取样一次,并将取样所得的正弦信号幅度按照A规律十 图4—4 数字信号产生电流原理图 5、拨号音及控制电路 主叫用户摘机,CPU检测到该用户有摘机状态后,立即向该用户发出声音信号,表示可以拨号,当CPU中央处理单元收到第一个拨号脉冲后,立即切断该声音信号,该声音信号就叫拨号音。拨号音由上述数字信号产生,一旦一有用户摘机,交换网路把数字信号音送给该用户,经过TP3067的译码,提供给用户450hz的正弦波。

图4—5断续电路原理图 7、忙音及控制电路 忙音表示被叫用户处于忙状态,此时用户应该挂机,等一会在从新呼叫 本试验箱大于采用0、35秒断,0、35秒继续的400hz—450hz的方波信号,图4—6是该电路的原理图。 图4—6忙音控制电路的原理图。

图4—7铃流信号发生电路的原理图 上述四种信号在本实验系统中均有具体的电路实现,然而在程控交换机中,信号音还不止上述几种,在此做一简单介绍,不作实验要求。 1、数字程控交换原理实验箱 2、电话机 F=25hz,Vpp=2.0V

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

实验 函数信号发生器的原理与使用

电子科学系实验报告 系班组实验日期年月日姓名学号同组姓名 实验操作评定:好、较好、基本掌握、较差指导老师 实验二函数信号发生器的原理与使用 二、实验目的: 二、实验仪器和设备 三、实验内容 内容: 1 熟悉掌握函数发生器各个操作部件的功能 2. 实验验证各个功能的实现过程 3 用示波器观察各种输出信号 4 验证个功能指标是否符合仪器的标示 5 总结说明仪器的特点及应用 四、实验原理 使用一个激发装置(即信号源)来激励一个系统,以便观察、分析它对激励信号的反映如何,这是电子测试技术的标准实验之一。在设计、制造飞机时,需要事先了解机体及其有关设备在各种气流、雷击、雨水、温变干扰下的反映情况;在发展冶炼技术时,需要了解炉内物态随炉脸温度燃油器喷口温度而变化的动态过程;在分析一个电子线路时,常常需要了解输出信号频率及振幅与输入信号频率及振幅之间的关系。这样,在进行上述过程的硬件或软件的模拟实验时.就需要人为地产生各种模仿的信号。系统在这些模仿的信号的激励下产生各种反应,因此,称它们为激励信号。产生这些信号的仪器设备称为信号源。 信号源包括函数信号发生器、脉冲信号发生器、音频信号发生器、任意波形信号发生器以 及扫描频率发生器等多种设备,用于各种各样的工程测试。图11.1所示的产品系列树反映出信号源之间的关系,其中直接数字器件合成(DDS)是一种较新的技术,它利用了最

现代化的数字器件的能力,成为系列产品的主干,发展出函数发生器相任意波形发生器这样高水平的产品。 基本的函数发生器提供正弦波、方波和三角波,频率范围在1MHz到约50MHz之间。图11.2显示的是一个包含两个运算放大器的基本函数发生器。器件A1是一个积分器,它提供一个三角波输出信号,它所产生的三角波信号通过正弦波形成电路而产生正弦波信号输出。器件A2是一个电压比较器,它产生一个方波信号。大多数普通价格的函数发生器都以一些单片式集成电路(IC)为基础,并能提供正弦波、方波和三角波。价格较高者则能提供触发信号*只有较宽的频率范围祁较稳定的频率.具有可变的上升时间(对方波而言)和可变的直流补偿.具有较高的频率准确度和较强的输出驱动能力,旦波形失真度小。

实验1 DDS信号源实验

班级通信1403学号201409732姓名裴振启指导教师邵军花日期 实验1 DDS信号源实验 一、实验目的 1.了解DDS信号源的组成及工作原理; 2.掌握DDS信号源使用方法; 3.掌握DDS信号源各种输出信号的测试。 二、实验仪器 1.DDS信号源(位于大底板左侧,实物图片如下) 2.频率计1台 3. 20M双踪示波器1台 4.低频信号发生器 1台 三、实验原理 直接数字频率合成(DDS—Digital Direct Frequency Synthesis),是一种全数字化的频率合成器,由相位累加器、波形ROM、D/A转换器和低通滤波器构成。时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM 的地址线位数,幅度量化噪声取决于ROM的数据位字长和D/A转换器位数。 DDS信号源模块硬件上由cortex-m3内核的ARM芯片(STM32)和外围电路构成。在 该模块中,我们用到STM32芯片的一路AD采集(对应插孔调制输入)和两路DAC输出(分别对应插孔P03、P04)。PWM信号由STM32时钟配置PWM模式输出,调幅、调频信号通过向STM32 写入相应的采样点数组,由时钟触发两路DAC同步循环分别输出其已 调信号与载波信号。对于外加信号的AM调制,由STM32的AD对外加音频信号进行采样,在时钟触发下当前采样值与载波信号数组的相应值进行相应算法处理,并将该值保存输出到DAC,然后循环进行这个过程,就实现了对外部音频信号的AM调制。 RZ8681 D实验箱的DDS信号源能够输出脉宽调制波(PWM)、正弦波、三角波、方波、扫频信号、调幅波(AM)、双边带(DSB)、调频波(FM)及对外部输入信号进行 AM调制输出。 四、各测量点的作用 调制输入:外部调制信号输入铆孔(注意铆孔下面标注的箭头方向。若箭头背离铆孔, 说明此铆孔点为信号输出孔;若箭头指向铆孔,说明此铆孔点为信号输入孔)。 P03:DDS各种信号输出铆孔。 P04:20KHZ载波输出铆孔。 P09:抽样脉冲输出铆孔。 SS01:复合式按键旋纽,按键用来选择输出信号状态;旋纽用来改变信号频率。 LCD:显示输出信号的频率。

相关文档
最新文档