一元二次方程概念及解法讲义

一元二次方程概念及解法讲义
一元二次方程概念及解法讲义

海豚教育个性化简案

海豚教育错题汇编

学生姓名:年级:科目:

授课日期:月日上课时间:时分------ 时分合计:小时

教学目标1. 理解并掌握一元二次方程的一般形式;

2. 会用直接开平方法、配方法、公式法解一元二次方程;

3. 能根据方程特征,灵活选择解方程的方法。

重难点导航1. 一元二次方程的解法;

2. 根据方程特征,灵活选择适当的方法解方程.

教学简案:

一元二次方程的概念及解法

知识点一:一元二次方程的概念知识点二:一元二次方程的解知识点三:解一元二次方程

授课教师评价:□ 准时上课:无迟到和早退现象

(今日学生课堂表□ 今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握现符合共项)□ 上课态度认真:上课期间认真听讲,无任何不配合老师的情况

(大写)□ 海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现象审核人签字:学生签字:教师签字:

备注:请交至行政前台处登记、存档保留,隔日无效(可另附教案内页)大写:壹贰叁肆签章:

1. 已知关于x 的一元二次方程()002

≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

海豚教育个性化教案

一元二次方程的概念及解法

知识点一:一元二次方程的概念

(1)定义:只含有一个未知数........,并且未知数的....最高次数是.....2.,这样的整式方程....

就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax

(3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:02=++c bx ax 时,应满足(a≠0)

例1:下列方程①x 2+1=0;②2y(3y-5)=6y 2+4;③ax 2+bx+c=0 ;④

0351=--x x

,其中是一元二次方程的有 。 变式:方程:①13122

=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次程的是 。

例2:一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

变式1:一元二次方程3(x —2)2=5x -1的一般形式是 ,二次项系数是 ,一次项系数是 ,常数项是 。

变式2:有一个一元二次方程,未知数为y ,二次项的系数为-1,一次项的系数为3,常数项为-6,请你写出它的一般形式______________。

例3:在关于x 的方程(m-5)x m-7+(m+3)x-3=0中:当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。

变式1:已知关于x 的方程(m+1)x 2-mx+1=0,它是( )

A .一元二次方程

B .一元一次方程

C .一元一次方程或一元二次方程

D .以上答案都不对

变式2:当m 时,关于x 的方程5)3(72=---x x

m m 是一元二次方程

知识点二:一元二次方程的解

(1)概念:使方程两边相等的未知数的值,就是方程的解。

(2)应用:利用根的概念求代数式的值;

【典型例题】

1. 已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )

A .3-

B .3

C .0

D .0或3 2. 已知322-+y y 的值为2,则1242++y y 的值为 。

3. 若x=a 是方程x 2-x-2015=0的根,则代数式2a 2-2a-2015值为 。

4. 关于x 的一元二次方程()0422

2=-++-a x x a 的一个根为0,则a 的值为 。

5. 已知关于x 的一元二次方程()002

≠=++a c bx ax 的系数满足0=+-c b a ,则此方程必有一根为 。 【举一反三】

1. 已知关于x 的方程2

60x kx --=的一个根为3x =,则实数k 的值为( )

A .1

B .1-

C .2

D .2-

2. 若m 2-5m+2=0,则2m 2-10m+2016= 。

3. 若关于x 的方程(a+3)x 2-2x+a 2-9=0有一个根为0,则a= 。

4. 一元二次方程ax 2+bx+c=0,若4a-2b+c=0,则它的一个根是 。

5. 若x=1是关于x 的一元二次方程()002≠=++a c bx ax 一个根,求代数式2007(a+b+c)的值

知识点三:解一元二次方程

一:直接开平方法

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如2()x m n +=的一元二次方程。根据平方根的定义可知,x m +是n 的平方根,当0n ≥时,x m n +=±,x m n =-±,当n<0时,方程没有实数根。

用直接开平方法解一元二次方程的理论根据是平方根的定义,达到降次转化之目的。

(1)形如)0(2≥=p p x 的方程的解是x=p ±。

当p=0时,==x x 210

(2)形如

()()02≥=+p p n mx 的方程的解为x=p n m ±-。 形如()02=+-n m a x 的方程可先化成()2n x a m

-=-的形式,再用直接开平方法解。

【例题讲解】

1、方程(x-2)2=9的解是( )

A .x 1=5,x 2=-1

B .x 1=-5,x 2=1

C .x 1=11,x 2=-7

D .x 1=-11,x 2=7

2、若方程x 2=m 的解是有理数,则实数m 不能取下列四个数中的( )

A .1

B .4

C .

14 D .12 3、对于形如

p x =2的一元二次方程,能直接开平方的条件是___________________。 4、方程0162=-x 的根是________________________。

5、用直接开平方法解下列方程: (1)81162=x (2)

24322=m

( 3)0259

2=-x (4)()0364122

=--x

【同步训练】

1、用直接开平方法解方程(x-3)2=8,得方程的根为( )

A .x=3+23

B .x 1=3+22,x 2=3-22

C .x=3-22

D .x 1=3+23,x 2=3-23

2、方程12

(x-3)2=0的根是( ) A .x=3 B .x=0 C .x 1=x 2=3 D .x 1=3,x 2=-3 3、方程()900622=+x 的根是________________________。

4、方程()16922

=-t 的根是_____________________。 5、用直接开平方法解下列方程:

(1)()072=-x (2)()12821

12

=+y (3)09)13(42

=--x (4)9161642=++x x

二:配方法

配方法的理论根据是完全平方公式2

22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:(1)把常数项移到方程的右边 (2)把二次项系数化为1

(3)等式的两边同时加上一次项系数一半的平方(4)配成完全平方式

(5运用开平方法求解。

20ax bx c ++=

2ax bx c +=- (1)

2b c x x a a

+=- (2) 222

22b b c b x x a a a a ????++=-+ ? ????? (3) 2222b c b x a a a ????+=-+ ? ?????

(4) 【例题讲解】

1、用配方法解关于x 的一元二次方程x 2-2x-3=0,配方后的方程可以是( )

A .(x-1)2=4

B .(x+1)2=4

C .(x-1)2=16

D .(x+1)2=16

2、若一元二次方程式x 2-2x-3599=0的两根为a 、b ,且a >b ,则2a-b 之值为何?( )

A .-57

B .63

C .179

D .181

3、用适当的数填空:

①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;

③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )2

4、将二次三项式2x 2-3x-5进行配方,其结果为_________.

5、已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.

6、将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,?所以方程的根为_________.

7、若x 2+6x+m 2是一个完全平方式,则m 的值是

8、用配方法解下列方程:

(1)015122=-+x x (2)982=+x x (3)2532=-x x

(4)

0444

12=--x x (5)0342=--x x (6)x x 7422=-

9、用配方法求解下列问题

(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。

【举一反三】

1.把方程x+3=4x 配方,得( )

A .(x-2)2=7

B .(x+2)2=21

C .(x-2)2=1

D .(x+2)2=2

2.用配方法解方程x 2+4x=10的根为( )

A .2±10

B .-2±14

C .-2+10

D .2-10

3. 用配方法解下列一元二次方程

(1)9642=-x x (2)0542=--x x (3)01322=-+x x (4)07232

=-+x x

三:公式法

(1)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

由配方法得2222b c b x a a a ????+=-+ ? ????? ,化简:22224b c b x a a a ??+=-+? ??

? 22224244b ac b x a a a ??+=-+? ??? 222424b b ac x a a -??+=? ???22424b b ac x a a

-+=±? 2422b b ac x a a -=-±?242b b ac x a

-±-= 一元二次方程)0(02

≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a

ac b b x 2142b b ac x a

-+-=,2242b b ac x a ---= 公式法的步骤:就把一元二次方程的各系数分别代入,这里a 为一次项系数,b 为二次项系数,c 为常数项。

【典型例题】

例1:一般地,对于一元二次方程ax 2+bx+c=0(a≠0),当b 2-4ac≥0时,它的根是_____,当b-4ac<0时,方程_________. 例2:用公式法解方程x 2=-8x-15,其中b 2-4ac=_______,x 1=_____,x 2=________.

例3:一元二次方程x 2-2x-m=0可以用公式法解,则m=( ).

A .0

B .1

C .-1

D .±1

例4:不解方程,判断所给方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有( )

A .0个

B .1个

C .2个

D .3个

例5:方程(x+1)(x-3)=5的解是( )

A .x 1=1,x 2=-3

B .x 1=4,x 2=-2

C .x 1=-1,x 2=3

D .x 1=-4,x 2=2

例6:一元二次方程06222

=-+x x 的根是( )

A. 221==x x

B. 22,021==x x

C. 23,221-==x x

D. 23,221=-=x x 例7:一元二次方程x 2-3x-1=0的解是 。

例8:用公式法解下列方

(1)23520x x --+=; (2)22330x x ++=; (3)2210x x -+=;

例9:若x 2-xy-3y 2=0(y >0),求

y

x 的值.

【举一反三】

1. 用公式法解方程x 2=-8x-15,其中b 2-4ac=_______,x 1=_____,x 2=________.

2. 用公式法解方程4y 2=12y+3,得到( )

A .y=362-±

B .y=362±

C .y=3232±

D .y=3232

-± 3. 不解方程,判断所给方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有( )

A .0个

B .1个

C .2个

D .3个

4. 用公式法解方程

(1)x 2+15x=-3x; (2)x 2+x-6=0;

(3)3x 2-6x-2=0; (4)4x 2-6x=0

四:因式分解法

(1)x 2+12x =0;

(2)4x 2-1=0; (3)042)2(2

=+++x x ; (4)x 2-4x -21=0;

(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0; (7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0.

用适当方法解下列方程:

(1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0;

(5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9; (7)7-2x 2=-15 (8)030222

=--x x

(9)5x 2-(52+1)x +10=0; (10)2x 2-8x =7; (11)(x +5)2-2(x +5)-8=0.

海豚教育个性化教案(真题演练)

1.(2014?甘孜州)一元二次方程x2+px-2=0的一个根为2,则p的值为()

A. 1

B. 2

C. -1

D. -2

海豚教育1对1出门考(_______年______月______日周_____)

学生姓名_____________ 学校_____________ 年级______________ 等第______________

1、下列方程中,常数项为零的是 ( )

A 、x 2+x=1

B 、2x 2-x-12=12

C 、2(x 2-1)=3(x-1)

D 、2(x 2+1)=x+2

2、已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于 ( )

A 、1

B 、-1

C 、0

D 、2 3、下列方程:①x 2=0,② 21x

-2=0,③22x +3x=(1+2x)(2+x),④32x -x =0,⑤32x x -8x+ 1=0中,一元二次方程的个数是 ( )

A 、1个

B 、2个

C 、3个

D 、4个

4、方程x (x+1)=3(x+1)的解的情况是 ( )

A 、x=-1

B 、x=3

C 、3,121=-=x x

D 、以上答案都不对

5、把方程4 —x 2 = 3x 化为ax 2 + bx + c = 0(a≠0)形式为 ,则该方程的二次项系数、一次项系数和常数项分别为 。

6、在关于x 的方程(m-5)x m-7+(m+3)x-3=0中:当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。

7、方程042=-x x 的解为 .

8、已知关于x 的一元二次方程x 2+kx+k=0的一个根是–2,那么k=____。

9、已知y=x 2-2x-3,当x= 时,y 的值是-3。

10、若方程02=-m x 有整数根,则m 的值可以是_________(只填一个)。

11、解下列方程

(1)x 2-4x+4=0

(2)8y 2

-2=4y (配方法)

(3)y y 2222=+ (4)()()1314-=-x x x

评语: 3A 作业:

周一: 周二:

周三: 周四:

周五:

该3A 作业要求在 月 日之前完成

一元二次方程应用一对一辅导讲义

课 题 一元二次方程的应用 授课时间: 2016-03-26 8:00——10:00 备课时间:2016-03-24 教学目标 1、综合运用一元二次方程和其他数学知识解决如面积、利润、增长率与降低 率等生活中的实际问题。 2、注意找准等量关系及检验根是否符合实际意义。 3、从现实问题中构建一元二次方程数学模型。 重点、难点 会运用一元二次方程解决简单的实际问题 考点及考试要求 1.一元二次方程的应用 2.一元二次方程实际问题 教 学 内 容 第一课时 一元二次方程的应用知识梳理 1.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.19 2.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________. 3.用适当的方法解下列一元二次方程. (1).22(3)5x x -+= (2).22330x x ++= 课前检测

1. 一元二次方程的实际应用????? ???????????????动点问题数字问题面积问题 利润问题增长率(降低率)问题常见类型、答步骤:设、列、解、验 2. 解题循环图: 3. 利用一元二次方程解决许多生活和生产实际中的相关问题,它的一般方法是: (1)根据题意找到等量关系,列出一元二次方程。 (2)特别要对方程的根注意检验,根据实际做出正确取舍,以保证结论的准确性。 第二课时 一元二次方程的应用典型例题 考点一:增长率(降低率)和利润问题 典型例题 知识梳理

(一)增长率(降低率)问题: 【例1】某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率. (二)利润问题: 【例2】商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降低1元,商场平均每天可多售出2件,求: (1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)若要使商场平均每天赢利最多,请你帮助设计方案。

一元二次方程的概念

一元二次方程的概念 知识点: 一、一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2,这样的整式方程称为一元二次方程。 识别一元二次方程必须抓住三个方面: (1)整式方程 (2)含有一个未知数 (3)未知数的最高次数是2次 【例】下列方程中哪些是一元二次方程?哪些不是?说说你的理由. (1)16x 2= (2)0125x 2=--x (3)032x 2=-+y (4)03x 1 2=-+x (5)0x 2= (6)052x 24=--x 二、一元二次方程的一般形式:02 =++c bx ax (a ≠0) 一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下的形式:02=++c bx ax (a ≠0).这种形式叫做一元二次方程的一般形式。其中2ax 是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项. 【整理】2ax 是二次项,a 是二次项系数, bx 是一次项,b 是一次项系数, c 是常数项. 例1.把6)4)(3(-=-+x x 化成一元二次方程的一般形式,并写出它的二次项系数,一次 项系数和常数项。 例2.指出 mx 2-nx-mx+nx 2=p 二次项,一次项,二次项系数,一次项系数, . 练习:把下列方程化成一元二次方程的一般形式,并指出二次项系数,一次项,常数项。 ①()x x x x 3422 -=- ②()()2 21248-+=+x x x ③12132=+-x x ④ ()0p 2 2≠+-=++-n m q nx mx nx mx 小结:理解一元二次方程以下方面入手: (1)一元:只含有一个未知数,"元"的含义就是未知数 (2)二次:未知数的最高次数是2,注意二次系数不等于0. (3)方程:方程必须是整式方程,这是判断的前提。

一元二次方程公共根

一元二次方程公共根问题 若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 两个一元二次方程只有一个公共根的解题步骤: 1.设公共根为α,则α同时满足这两个一元二次方程; 2.用加减法消去α2的项,求出公共根或公共根的有关表达式; 3.把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式. 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 2?= ⑵ 2b ak -=或2b ak --,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围 1 已知一元二次方程x 2-4x +k =0有两个不相等的实数根, (1)求k 的取值范围. (2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值. 2 若两个关于x 的方程x 2+x +a =0与x 2+ax +1=0只有一个公共的实数根,求a 的值 3 已知a >2,b >2,试判断关于x 的方程x 2-(a +b )x +ab =0与x 2-abx +(a +b )=0有没有公共根,请说明理由. 4求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根. 5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值

第二章一元二次方程培优奥赛讲义

九上第二章一元二次方程培优讲义一.填空题(共15小题) 1.已知a是方程x2﹣2013x+1=0一个根,求a2﹣2012a+的值为.2.附加题:已知m,n都是方程x2+2007x﹣2009=0的根,则(m2+2007m﹣2008)(n2+2007n﹣2010)的值为. 3.若m为实数,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,则x2﹣3x+m=0的根是. 4.已知x=﹣1是方程ax2+bx+c=0根,那么的值是. 5.已知a,b是等腰三角形ABC的两边长,且a、b满足a2+b2+29=10a+4b,则这个等腰三角形的周长为. 6.若实数a、b、c满足a2+b2+c2+4≤ab+3b+2c,则200a+9b+c=. 7.已知关于x的方程x2+(a﹣6)x+a=0的两根都是整数,则a的值等于.8.若方程x2﹣4|x|+5=m有4个互不相等的实数根,则m应满足.9.已知:a2+b2=1,a+b=,且b<0,那么a:b=. 10.方程(x2+3x﹣4)2+(2x2﹣7x+6)2=(3x2﹣4x+2)2的解是.11.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=.12.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是. 13.α,β为关于x的一元二次方程x2﹣x+2=0的两个根,则代数式2α2+β2+β﹣3的值为. 14.中新网4月26日电,据法新社26日最新消息,墨西哥卫生部长称,可能已有81人死于猪流感(又称甲型H1N1流感).若有一人患某种流感,经过两轮传染后共有81人患流感,则每轮传染中平均一人传染了人,若不加以控制,以这样的速度传播下去,经三轮传播,将有人被感染. 15.一个两位数,个位数字比十位数字的平方大3,而这个两位数字等于其数字之和的3倍,如果这个两位数的十位数字为x,则方程可列为.

一元二次方程的定义教案

第二章一元二次方程 1 认识一元二次方程 第1课时一元二次方程的定义 【知识与技能】 探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识. 【过程与方法】 在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系. 【情感态度】 通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用. 【教学重点】 一元二次方程的概念. 【教学难点】 如何把实际问题转化为数学方程. 一、情境导入,初步认识 问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形? 问题2:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米? 你能设出未知数,列出相应的方程吗? 【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫. 二、思考探究,获取新知

你能通过观察下列方程得到它们的共同特点吗? (1)(100-2x)(50-2x)=3600 (2)(x+6)2+72=102 【教学说明】 分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2. 【归纳结论】方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫作一元二次方程; 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a、b、c为常数,a≠0) 这种形式叫作一元二次方程的一般形式.其中ax2是二次项,a是二次项的系数;bx是一次项,b是一次项系数;c是常数项. 活动中教师应重点关注: (1) 引导学生观察所列出的两个方程的特点; (2)让学生类比前面复习过的一元一次方程定义得到一元二次方程定义; (3)强调定义中体现的3个特征: ①整式;②一元;③2次. 【教学说明】 让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的. 三、运用新知,深化理解 1.下列方程是一元二次方程的有. (1)x2+1/x-5=0(2)x2-3xy+7=0 (3)=4(4)m3-2m+3=0 x2-5=0(6)ax2-bx=4 (5) 2 解答:(5) 2.已知方程(m+2)x2+(m+1)x-m=0,当m满足_______时,它是一元一次方程;当m满足_______时,它是一元二次方程. 解析:当m+2=0,即m=-2时,方程是一元一次方程;当m+2≠0,即m≠

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

讲义一元二次方程讲义

考点一、概念 (1)内容:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax (3)关键点:强调对最高次项的讨论:①次数为“2”;②系数不为“0”。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: 1、方程782=x 的一次项系数是 ,常数项是 。 2、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 考点二、方程的解 ⑴内容:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:①利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 说明:任何时候,都不能忽略对一元二次方程二次项系数的限制. 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。 例4、已知b a ≠,0122=--a a ,0122=--b b ,求=+b a 变式:若0122=--a a ,0122=--b b ,则 a b b a +的值为 。 针对练习:

一元二次函数解法 辅导讲义

课题一元二次方程的解法 重点、难点熟练掌握一元二次方程的解法 教学内容 一元二次方程的解法: ①因式分解法: 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零. →因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 例题:用因式分解法解方程:3(x-3)=(x-3)2 练习:(2x+3)2=24x (2x-1)(3x+4)=x-4 1.2y-0.04=9y2 (2x-1)2+3(2x-1)=0 ②开平方法:方程的左边是完全平方式,右边是非负数x2=a(a》0) 例题:3x2-27=0; 练习:(x+1)2=4 (2x-3)2=7 x2+2x-3=0 ③配方法:把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法. 用配方法解一元二次方程的步骤: 1.变形:把二次项系数化为1 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解. 例题:x2-6x=-8

练习:(1)3x 2+6x-4=0 (2)2x 2-5x+2=0 ④公式法: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax 2+bx+c=0(a ≠0). 2.b 2-4ac ≥0. 例题:X 2+2x-3=0 练习: -2m 2+4=-3m 23a 2-a-4 1=0 8y 2-2y-15=0 △ 用三种方法解方程:2532=-x x (1)用因式分解法解: 解:移项,得 3x2-5x-2=0 ( 使方程右边为零) 方程左边因式分解,得(x-2)(3x+1)=0 (方程左边因式分解成A`B=0的形式) 即 x-2=0或3x+1=0(A=0或B=0) 31 ,221-==∴x x (2)用配方法解: 解:两边同时除以3,得: 32352=-x x 左右两边同时加上 2 )65( ,得: .3625323625352+=+-x x 即 .3649652=??? ? ?-x 开平方,得:.36496 5±=-x .31,221-==∴x x (3)用公式法解: 解:移项,得02532=--x x ( 这里a=3,b=-5,c=-2) ())2(34542 2-??--=-∴ac b =49 6753249)5(±=?±--=∴x () .04a c b .2a 4a c b b x 22≥--±-=

一元二次方程基本概念

一元二次方程基本概念 1、基本概念: 方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程(等式),叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 2、解方程常用方法: (1). 直接开平方法: 由应用直接开平方法解形如x2=p(p≥0),那么x=转化为应用直接开平方法解 形如(mx+n)2=p(p≥0),那么mx+n= (2).配方法: 左边不含有x的完全平方形式、左边是非负数的一元二次方程可化为左边是含有x的完全平方形式、右边是非负数、可以直接降次解方程得方程。 转化过程如下: x2-64x+768=0 移项→x2-64x=-768 两边加( 64 2 )2使左边配成x2+2bx+b2的形式→ x2-64x+322=-768+1024 左边写成平方形式→(x-32)2=?256 ? 降次→x-32=±16 即x-32=16或x-32=-16 解一次方程→x1=48,x2=16 可以验证:x1=48,x2=16都是方程的根 例1.解下列方程 (1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0 分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.

解:(1)移项,得:x 2+6x=-5 配方:x 2+6x+32=-5+32(x+3)2=4 由此可得:x+3=±2,即x 1=-1,x 2=-5 (2)移项,得:2x 2+6x=-2 二次项系数化为1,得:x 2+3x=-1 配方x 2+3x+(32)2=-1+(32)2(x+32)2=54 由此可得x+32=x 132,x 232 (3)去括号,整理得:x 2+4x-1=0 移项,得x 2+4x=1 配方,得(x+2)2=5 x+2=x 1,x 2 总结用配方法解一元二次方程的步骤. (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. (3)公式法: 一元二次方程ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,它的两个根 x 1=2b a -+, x 2=2b a - 解:移项,得:ax 2+bx=-c 二次项系数化为1,得x 2+ b a x=- c a 配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a )2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0 ∴2244b ac a -≥0 直接开平方,得:x+2b a =±2a

二次函数与一元二次方程讲义

二次函数与一元二次方程 1?通过探索,理解二次函数与一元二次方程之间的联系. 2?能运用二次函数及其图象确定方程和不等式的解或解集. 3?根据函数图象与x轴的交点情况确定未知字母的值或取值范围. 、情境导入

如图,是二次函数y = ax2+ bx + c图象的一部分,你能通过观察图象得到一元二次方程ax2+ bx + c = 0的解集吗?不等式ax2+ bx + c<0的解集呢? 二、合作探究 探究点一:二次函数与一元二次方程 【类型一】二次函数图象与x轴交点情况判断 F列函数的图象与x只有一个交点的 A. y= x2+ 2x —3 B. y = x2+ 2x + 3

C. y = X2—2x + 3 D . y= x2—2x + 1 解析:选项 A 中b2—4ac= 22—4X1 x(—3) = 16 >0 ,选项B 中b2—4ac = 22—4x i x 3= —8 v 0,选项C 中b2—4 ac= (—2)2—4 x i x3 = —8 v 0,选项D 中b2—4 ac = (—2)2— 4x i x i = 0 ,所以选项D的函数图象与X轴只有一个交点,故选 D. 【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴 如图,对称轴平行于y轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为___________

解析:???点(1 , 0)与(3 , 0)是一对对称点,其对称中心是(2 , 0) ,???对称轴的方程是x = 2. 方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程. 【类型三】利用函数图象与x轴交点情况确定字母取值范围 1 若函数y = mx2+ (m + 2)xm + 1 的图象与x轴只有一个交点,那么m的值为() A. 0 B . 0 或2 C. 2 或—2 D. 0, 2 或—2 解析:若m丸,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式 1 为零来求解;若m = 0,原函数是一次函数,图象与x轴也有一个交点.由(m + 2)2—4m$ m + 1)= 0,解得m = 2或一2,当m = 0时原函数是一次函数,图象与x轴有一个交点, 所以当m = 0, 2或一2时,图象与x轴只有一个交点. 方法总结:二次函数y = ax2+ bx + c,当b2—4ac >0时,图象与x轴有两个交点;当 b2—4ac= 0时,图象与x轴有一个交点;当b2—4ac v0时,图象与x轴没有交点.

一元二次方程的概念及解法

题型切片(四个)对应题目 题 型 目 标 一元二次方程的概念例1;例2;演练1;例8 直接开平方法解一元二次方程例3;例4;演练2; 配方解一元二次方程例5;例6;演练3;演练4; 因式分解法解一元二次方程例7;演练5. 模块一一元二次方程的概念 知识互联网 一元二次方程的基本解法 题型切片

定 义 示例剖析 一元二次方程定义:只含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程. 判断一个方程是否是一元二次方程,必须符合以下四个标准: ⑴整式方程. ⑵方程中只含有一个未知数. ⑶化简后方程中未知数的最高次数是2. ⑷二次项的系数不为0 22210x x -+= 此方程满足: 整式方程; 只含有一个未知数x ; x 的最高次数是2,系数是2 所以这个方程是一个一元二次方程. 一元二次方程的一般式:20ax bx c ++=()0a ≠. 其中2ax 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项. 一元二次方程22210x x -+=, 其中221a b c ==-=,,. 一元二次方程的根: 如果0x 满足2000(0)ax bx c a ++=≠,则0x 就是方程 20(0)ax bx c a ++=≠的一个根. 1满足2110-=,则1是方程20x x -=的一个根.0满足2000-=,则0是方程20x x -=的另一个根.∴0,1是方程20x x -=的两个根,表示为12=0, =1x x 一元二次方程都可化成如下形式: 20ax bx c ++=(0a ≠) . 1.“可化成”是指对整式方程进行去分母,去括号,移项、合并同类项等变形. 2.一般形式中,b 、c 可以是任意实数,而二次项系数0a ≠,若0a =,方程就不是一元二次方程了,也未必是一次方程,要对b 进行讨论. 3.要确认一元二次方程的各项系数必须先将此方程化为一般形式,然后确定a 、b 、c 的值,不要漏掉..符号.. . 4.项及项的系数要区分开. 建议 强调掌握一元二次方程一般形式对学习一元二次方程很重要,这种从形式上认识数学概念的方法,在今 后学习基本初等函数时也要使用. 【例1】 1. 判断下列方程是不是一元二次方程. 【例2】 ⑴ 2210x kx --=(k 为常数) ⑵ 4 13 x =+ ⑶ 210x -=; 【例3】 ⑷ 250x = ⑸ 20x y += ⑹ ()()2 2 33x x +=-; 【例4】 夯实基础 知识导航

用图象法求一元二次方程的根

用图象法求一元二次方程的根 学习了二次函数之后,可以利用图象求一元二次方程的根。下面介绍几种具体的方法: 方法一:直接画出函数y=ax2+bx+c 的图象,则图象与x 轴交点的横坐标就是方程ax2+bx+c=0的根.其步骤一般为:(1)作出二次函数y=ax2+bx+c 的图象;(2)观察图象与x 轴交点的个数;(3)若图象与x 轴有交点,估计出图象与x 轴交点的横坐标即可得到一元二次方程的近似根. 方法二:先将方程变形为ax2+bx=-c ,再在同一坐标系中画出抛物线y=ax2+bx 和直线y=-c 的图象,则图象交点的横坐标就是方程的根. 方法三:可将方程化为 a c x a b x ++ 2=0,移项后为 a c x a b x --=2.设y=x2和y=a c x a b --,在同一坐标系中画出抛物线y=x2和直线y=a c x a b - - 的图象,则图象交点的横坐标就是方程的根.这种方法显然要比方法一快捷得多,因为画抛物线远比画直线困难得多. 例:二次函数2 (0)y ax bx c a =++≠的图象如图1所示,根 据图象解答下列问题: (1)写出方程2 0ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集. (3)写出y 随x 的增大而减小的自变量x 的取值范围. (4)若方程2 ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 解:(1)观察图象,抛物线与x 轴交于两点(1,0)、(3,0)故方程 20ax bx c ++=的两个根 11 x =, 23 x = . (2)不等式2 0ax bx c ++>,反映在函数图象上,应为图象在x 轴上方的部分,因此不等式2 0ax bx c ++>的解集应为13x <<. (3)因为抛物线的对称轴为x=2且开口向下,所以在对成轴的右侧y 随x 的增大而减小故自变量x 的取值范围为2x > (4)若使方程2 ax bx c k ++=有两个不相等的实数根,也就是抛物线 2(0)y ax bx c a =++≠的图象与直线y=k 有2 个不同的交点,观察图象可知抛物线的顶点

一元二次方程讲义-绝对经典实用教案.doc

一元二次方程 ●夯实基础 例1 已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围_________. 例2 若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. ●能力提升 1、已知方程2240a b x x x --+=是关于x 的一元二次方程,求a =______、b =______. 2、若方程(m-1)x 2+ x=1是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠1 B .m≥0 C .m≥0且m≠1 D .m 为任何实数 ●培优训练 例3 m 为何值时,关于x 的方程2 ((3)4m m x m x m --+=是一元二次方程. 例4已知方程20a b a b x x ab +---=是关于x 的一元二次方程,求a 、b 的值. ●练习 1、m 为何值时,关于x 的方程2 ((3)4m m x m x m -+=是一元二次方程. 2、已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围. 3、已知关于x 的方程22()(2)x a ax -=-是一元二次方程,求a 的取值范围. 4、若 2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值. 5、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为________ ●夯实基础 (1)2269(52)x x x -+=- 21)x -= (3) 211 063 x x +-= (4) 231y += 板块一 一元二次方程的定义 板块二 一元二次方程的解与解法

一元二次方程知识点复习及典型题讲解

一元二次方程复习课1)一元二次方程的概念: 中考常见题型: 例1、下列方程中哪些是一元二次方程?试说明理由。 x?22x??122x?4?(x?2)2x?43x?2?5x?3x?1(1)(2)(3)(4) 2bx+a=0, x —2、方程(2a 2在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一 —4)例次方程?2。,求m的一元二次方程(m-1)x+3x-5m+4=0有一根为2例3 、已知关于x 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项练习一、????????222y?3y2y?1??y1??2x?2?3x2 2x(x-1)=3(x-5)-4 2(m?3)x?nx?m?0x练习二、关于,在什么条件下是一元二次方程?在什么条件下是一元一的方程次方程? 2)一元二次方程的解法: 1)直接开平方法(换元思想): 2)配方法: 3)求根公式(符号问题): 4)因式分解法(十字交叉法): 中考常见题型: 例1:考查直接开平方法和换元思想。 1)(x+2)=3(x+2) (2)2y(y-3)=9-3y (3)( x-2) — x+2 =0 22( 249??1x?2x2 4)(2x+1)=(x-1) (5) 2( 2:用配方法解方程x+px+q=0(p2-4q≥0). 2例

例3:用配方法解方程: 22xx(1)-6x-7=0;(2)+3x+1=0. 2205x??2x?2x?7x?20?42(3)(50. 2x4 ())3x+-3= 2?4bacb2(x?)?2ax?bx?c?0(a?0)2aa4呢?例4:能否用配方法把一般形式的一元二次方程转化为 22-1=0 -(4k+1)x+2k取什么值时,关于x的方程2x例5、当k 方程没有实数根.有两个不相等的实数根; (2)有两个相等实数根; (3) (1) -c)x+b=0ABC的三边的长,求证方程ax-(a+ba例6、已知,b,c是△222222没有实数根. 练习:222 +n=0无实数根.,求证关于x的方程2x+2(m+n)x+m.若 1m≠n +m=0.求证:关于x的方程x+(2m+1)x-m2 22有两个不相等的实数根. 7例: 2220??x3)?65?(2x3)?(20?x?7x10?0??3992x?x)(2 1()()3 3)一元二次方程的应用(常见四类题型):

一元二次方程的概念说课稿

21.1 一元二次方程说课稿 各位评委老师好: 我今天说课的题目内容是:一元二次方程。这节课我将从教材、目标、教法、过程、板书这五方面进行分析。 一、教材的地位和作用 一元二次方程是新人教版九年制义务教育课本中九年级上第21 章的第一节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习二次函数、可化为一元二次方程的其它高元方程、一元二次不等式等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。一、内容和内容解析 二、教学目标 根据大纲的要求、本节教材的内容和学生已有的知识经验,确定本节课的三维目标:知识与能力目标:(1)继续体会方程是刻画数量关系的一个有效数学模型;(2)理解一元二次方程的概念,一般形式,会将一元二次方程化成一般形式,正确识别一般形式中的项和系数; (3)培养学生观察、类比、归纳的能力。 过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。 3、教学重点与难点 要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。教学重点:理解一元二次方程的概念,掌握它的一般形式。教学难点:;一元二次方程的概念,正确识别一般式中的项及系数。 三、教法、学法: 因为学生已经学习了一元一次方程、二元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景--- 数学模型----------- 概念归纳” 的模式。指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。 四、教学过程设计1.创设情境,引入新知 请同学们阅读本章的章前问题--- 雕像的黄金分割问题,并回答:

初中一对一精品辅导讲义:一元二次方程应用



一元二次方程的应用
1、综合运用一元二次方程和其他数学知识解决如面积、利润、增长率与降低 率等生活中的实际问题。 2、注意找准等量关系及检验根是否符合实际意义。 3、从现实问题中构建一元二次方程数学模型。
教学目标
重点、难点 考点及考试要求
会运用一元二次方程解决简单的实际问题 1.一元二次方程的应用 2.一元二次方程实际问题

第一课时



一元二次方程的应用知识梳理
课前检测
1.已知三角形两边长分别为 2 和 9,第三边的长为二次方程 x2-14x+48=0 的一根, 则这个三角形的周 长为( A.11 ) B.17 C.17 或 19 D.19
2.已知两数的积是 12,这两数的平方和是 25, 以这两数为根的一元二次方程是___________. 3.用适当的方法解下列一元二次方程. (1). (3 ? x)2 ? x2 ? 5 (2). x2 ? 2 3x ? 3 ? 0
4.若方程(m-2)xm2-5m+8+(m+3)x+5=0 是一元二次方程,求 m 的值

5.已知关于 x 的一元二次方程 x2-2kx+
1 2 k -2=0. 求证:不论 k 为何值,方程总有两不相等实数根. 2
知识梳理
、答 ?步骤:设、列、解、验 ? ?增长率(降低率)问题 ? ? ? ? ?利润问题 1. 一元二次方程的实际应用 ? ? ?常见类型?面积问题 ?数字问题 ? ? ? ? ? ?动点问题 ?
2. 解题循环图:
3. 利用一元二次方程解决许多生活和生产实际中的相关问题,它的一般方法是: (1)根据题意找到等量关系,列出一元二次方程。 (2)特别要对方程的根注意检验,根据实际做出正确取舍,以保证结论的准确性。
第二课时
一元二次方程的应用典型例题

一元二次方程全章复习与巩固—知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】 1.了解一元二次方程及有关概念; 2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程; 3.掌握依据实际问题建立一元二次方程的数学模型的方法. 【知识网络】 【要点梳理】 要点一、一元二次方程的有关概念1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 2.一元二次方程的一般式: 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释: 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2. 对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想 一元二次方程???→ 降次一元一次方程

2.基本解法 直接开平方法、配方法、公式法、因式分解法. 要点诠释: 解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法. 要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程 )0(02 ≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42 -=?. (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 2.一元二次方程的根与系数的关系 如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,a c x x =21. 注意它的使用条件为a ≠0, Δ≥0. 要点诠释: 1.一元二次方程 的根的判别式正反都成立.利用其可以解 决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题. 2. 一元二次方程根与系数的应用很多: (1)已知方程的一根,不解方程求另一根及参数系数; (2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;

一元二次方程的概念整理

一元二次方程的概念整理: 1. 一元二次方程的概念: (1)注意一元二次方程定义中的三个条件:有一个未知数,含未知数的最高次是2,整式方程,是判断一个方程是否是一元二次方程的依据。 (2)强调:要先把一元二次方程化为一般形式ax 2+bx +c =0(a ≠0),才能确定a 、b 、c 的值。 一元一次方程与一元二次方程的区别和联系 2. 一元二次方程的解法: 熟练地解一元一次方程和一元二次方程是学好其他方程的关键,一元二次方程的解法是本章的重点。 一元二次方程的基本解法有四种: (1)直接开平方法: ()它是以平方根的概念为基础,适合于形如,类型的方程。 ax b c a c +=≠≥200() (2)配方法: ()先把二次项系数化为,再对进行配方,即在方程两边同时加上一次 项系数一半的平方,就能配出一个含有未知数的一次式的完全平方式,变形为:的形式,再直接开平方解方程。 1x px p x m n n 22 220+?? ?? ?+=≥() (3)公式法: 用配方法推导求根公式,由此产生了第三种解法公式法,它是解一元二次方程的主要方法,是解一元二次方程的通法。

关键是把方程整理成一元二次方程的一般形式,确认、、的值(特别要注意正、负号),求出的值(以便决定有无必要代入求根公式), 若,则代入求根公式。a b c b ac b ac x b b ac a ?=--≥=-±-22 244042 (4)因式分解法: 适用于方程左边易于分解,而右边是零的方程。 我们在解一元二次方程时,要注意根据方程的特点,选择适当的解法,使解题过程简捷些。一般先考虑直接开平方法,再考虑因式分解法,最后考虑公式法。 对于二次项系数含有字母系数的方程,要注意分类讨论。 3. 一元二次方程根的判别式: 一元二次方程ax 2+bx +c =0(a ≠0)根的判别式△=b 2-4ac 的意义,在于不解方程可以判别根的情况,还可以根据根的情况确定未知系数的取值范围。 4. 一元二次方程的根与系数的关系: ()已知、是一元二次方程++=的两个根,那么,,,逆命题也成立。x x ax bx c a x x b a x x c a 122121200≠+=-?= 一元二次方程的两根和与两根积和系数的关系在以下几个方面有着广泛的应用: (1)已知方程的一根,求另一个根和待定系数的值。 (2)不解方程,求某些代数式的值。 (3)已知两个数,求作以这两个数为根的一元二次方程。 (4)已知两数和与积,求这两个数。 (5)二次三项式的因式分解。 …… 运用根与系数的关系,可以大大缩减了复杂的运算量,避免进行无理数的计算。 注意:在应用根与系数的关系时,不要忽略隐含条件。?≥≠???00a 5. 二次三项式的因式分解: 在实数范围内分解二次三项式ax 2+bx +c (a ≠0),可先用求根公式求出方程ax 2+bx +c =0的两个根x 1、x 2,然后写成ax 2+bx +c =a (x -x 1)(x -x 2)。当a ≠1时,分解时注意不要忘了a 。 ()()例如:x x x 2555-=+- 6. 可化为一元二次方程的分式方程的解法: 解分式方程的常用方法是去分母,换元法转化为整式方程求解。 解分式方程时,一定要注意验根,验根后要写结论。

相关文档
最新文档