费马大定理的启示

费马大定理的启示
费马大定理的启示

“费马大定理”的启示

“设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。

当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。

这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。

首先,我们来看一个公式:

2

2

2z

y

x= +。

有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?”

没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。

但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍[]1注,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。

我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》[]2注序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。

言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说

我们讲究的是说走就走的旅行,神经病才研究这个,有这功夫,走两遍不就观光了吗?这就是实用主义和智力竞赛之间的区别。从一开始就分道扬镳了。

毕达哥拉斯就是前文那个公式的发现者。毕达哥拉斯(约公元前580~约前500)古希腊数学家、哲学家。他的信徒们组成了一个唯心主义学派——毕达哥拉斯学派。这个政治和宗教团体旨在用“数”去描述世间一切,他们从数学中感受到了整个世间那种美妙,他们认为数就是世界的规律。这也难怪,没有手机食物单调,娱乐空乏的年代,人们尤其是那些高智商圣贤智力充裕的人们找到了这个世界上让他兴奋的事情——从事“数”的研究,他的门徒们发现原来世间一切,上帝就是通过“数”来统治世界的。比如:音乐,和音好听,是因为一根弦是另一根弦的整数倍。凡此种种,这不就是天神的暗示么,我们就应该在数中生活啊,我们的一切包括生命就应该奉献、祭祀给这些数。公正的说这个学派早期它推动了数学研究发扬了这种精神,但后期也阻碍了数学的发展,著名的数学史上“第一次数学危机”就是又这个学派成员西帕索

斯发现了2,从而颠覆了毕达哥拉斯学派的数学信仰,因为毕达哥拉斯终生的信仰就是,世间一切都是由整数构成,小数是两个整数的比,而西帕索斯发现一个问题:当x=y=1时,z等

于什么?现在的初中生都知道是2。,而根据那个时候的数系,这推翻了毕达哥拉斯的世界理论依据。因为根号2是一个无限不循环小数,无法被两个整数表示。我们来证明根号2永远不能化成分数即可。这里又要用到反证法(高中数学课本有证明过程我复制了一下),我们先假设√2=a/b(a,b都是正整数不用说了吧)。现在,我们平方一次,a^2/b^2=2,于是,a^2=2*(b^2),这样一看,a^2就是偶数了,那么,a必然也是偶数。那就设a=2m吧,(2m)^2=2*(b^2),4*(m^2)=2*(b^2),b^2=2*(m^2),再一看,b也成偶数了,好吧,设为2n。现在问题来了,根号2不仅可以化成a/b,还可以化成m/n,而且,后者更简洁。按照同样的方法,可以一直化简下去,而分数必然存在最简形式,不可能无限化简,于是得出矛盾。所以,根号2永远不能化成分数。毕达哥拉斯最后没有办法解决,就像坚持日心说的布鲁诺一样西帕索斯本人也就被同门扔到河里杀害。此后30年数系才进一步扩充到了实数领域。

考虑到希腊文明的数学挺牛的,而这个毕达哥拉斯还不够牛,只是名气比较大而已,所以,我们得让古希腊人多出场几位。接下来,我可以推荐两个与费马大定理有关的重量级人物。

一个是欧几里得,欧几里得最大的贡献体现在几何学,最牛的著作叫《几何原本》。不过,他也有很多数论成就,所以,在费马大定理的故事中,他的名字会反复出现,根号2是无理数是他第一个证的,有无穷多个素数是他第一个证的,算术基本定理也是他第一个证的。罗胖不是提到“比如说我们学平面几何都知道,由那么简单的几个公理,居然可以推出如此缤纷的一个定理的世界”,第一个系统性(这个系统太牛逼了)地干这个事情的人就是欧几里得。至于那么简单的公理到底是几个?这个是有数字的,23个定义,5条公理,5条公设,这是所有推导的基础。当然,《几何原本》也有一些不严谨的地方,却仍然笑傲江湖两千年,直到希尔伯特写出《几何基础》,才算彻底完善了欧几里得几何。不过,欧几里得还是给后人挖了一个坑,就是他的第五公设比较啰嗦,怎么看都不像一个公理而像一个定理。于是,无所牛人前赴后继去证明这个东西,却发现,所有宣称证明了第五公设的人,其证明都陷入了循环论证的陷阱中,换句话说,证来证去只是它自己不同的变形而已。这个第五公设真正的问题在哪里呢?很简单,欧几里得几何叫平面几何,这个第五公设只在平面几何中成立,而别的公理或公设却都是具有普遍适用性的。修改一下第五公设,别的公理不变,非欧几何就诞生了。事实上,非欧几何遇到的最大障碍不是数学家解决这个问题的水平不够,而是来自传统观念的压力。高斯早就研究

过非欧几何,但迟迟不敢发表,因为担心遭受各种攻击。还有一个波尔约,研究非欧几何成就斐然,可惜被高斯一盆凉水浇灭了激情。再一个就是罗巴切夫斯基,名气最大的非欧几何创始人,生前遭受各种打击,仍不屈不挠传播罗氏几何,死后多年才被承认,被赞誉为“几何学中的哥白尼”。这三个人不约而同地研究了非欧几何中的双曲几何情形,却留下一种椭圆几何情形,让黎曼捡了个漏。不过,黎曼搞定这种情形可不是凭运气,他从思路上就领先其他人了,其他人都是从公理系统出发研究,黎曼手握微分几何之武器直接玩起了曲率,不仅补充了椭圆几何的情形,还一举统一了欧氏平面几何、罗氏双曲几何和他的椭圆几何。这种牛逼人的牛逼事儿讲起来还是蛮有意思的。

好啦,下一个古希腊人,丢番图。欧几里得写了本《几何原本》,成了几何学的一代宗师,丢番图写了本《算术》,也是数论中的经典之作,他本人也荣登“代数学之父”的宝座。他提出的丢番图方程让无数后人为之奋斗,至今仍有大量问题未能解决。《算术》是本好书,费马有空就抱着读,费马大定理就是读《算术》的心得。

按照时间顺序,下一个该费马出场了。费马这辈子活得可是够值了。官场得意、婚姻美满、家庭幸福、子女争气,更牛逼的是,一个业余爱好让他名垂青史。读读别的数学家的故事,贫困、疾病、家庭不幸,还是来自同行的打击,各种问题层出不穷,简直就是“天才多磨难”,而费马的小日子,滋润得让人嫉妒。而且,费马这人不像同行那么玩命死磕,不就一业余爱好嘛,玩票心态就好了。结果,很多灵感嗖嗖地冒出来,挡都挡不住。后来人们一总结,这家伙比很多职业数学家成就还大:解析几何的发明者之一,对于微积分诞生的贡献仅次于牛顿和莱布尼茨,概率论的主要创始人之一,以及17世纪数论界第一人。不过,费马还是干了一件不厚道的事儿,就是在费马大定理的问题上,他宣称自己有了一个美妙的证法,就是不说,害得数学家们为之死磕了三百多年。

接下来,该欧拉上场了。欧拉是有史以来最多产的数学家,虽然眼睛不好使,但心算能力却是一流,简直是一台人体计算机。成就太多太多,就只好省略了。我们知道几件事就够了。欧拉无比牛逼,却仅仅证明了费马大定理n=3的情形,说明费马大定理真的很难。此外,罗胖提到哥德堡七桥问题,想说明西方人这种琢磨精神和中国人不同,其实,这个论据不充分,论点也不对,中国人也搞出了很多孤立的趣题和难题,这一点,东西方人是相似的。区别在哪儿呢?区别在于西方有欧拉这种数学家,他不是搞明白一个孤立问题就完事儿啦,而是由此出发,上升到理论高度,圆满地解决一类问题,更牛逼的是,一群数学家马上跟进,搞出更多东西,直到形成系统仍在推进,这就是我一直强调的数理系统的可怕之处。其实,这个哥德堡七桥问题本质上就是一笔画问题,中国人恰好也研究过,但中国人只是把它当成一种游戏,从来没想过要搞出一个数学分支。而到了西方人那里,“七桥问题”的研究是图论研究的开端,同时也为拓扑学的起源。顺便说下,“四色问题”和“七桥问题”是同类问题,属于图论,也可以看成拓扑学问题。别看“七桥问题”被欧拉轻松搞定,这个“四色问题”看似简单,却是一道难度绝不亚于费马大定理的难题。爱因斯坦的老师闵可夫斯基就曾经在学生面前夸下海口要证明之,结果失败只好放弃。最后,这个证明是依靠计算机完成的,虽然计算机的证明无法核对,这让很多数学家很不爽,但是,这提供了证明问题的新思路,也标志着计算机将在数学世界中发挥更大的作用,你能说,这种问题的研究没有意义吗?更何况,在证明的过程中,虽然多次失败,数学家们得到的东西可比问题本身多得多,这正是证明难题的意义,它会催生出很多宝贝,从而进一步完善数理体系。

下一个,该讲高斯了。高斯的贡献就不说了,这种神级人物,有多大贡献都是正常的,我讲讲他的两个毛病吧。第一个,就是研究问题时,只发表成熟而完善的证明,却不让别人捕捉

到他的证明思路的蛛丝马迹。这非常不好,他的思路会给别人很多启发,反而是证明步骤,可利用价值低多了。另一个就是,高斯本人很牛逼,可是,却没干过什么提携后生的事情,反而不利于别人成长。也不是说他故意打击人家,就是别人觉得他牛逼,想请他指点一二时,他要么压根儿不理睬,要么冷冰冰的。前文提到的阿贝尔,其成果寄给高斯看,让高斯给扔了,伽罗华临死前写的东西也没忘给高斯寄一份儿,估计高斯也没看,波尔约(这次可是他朋友的儿子)研究非欧几何的成果,想得到他的支持,他说自己早就研究过了,波尔约于是心灰意冷。当然,高斯虽然有缺点,但他由于过于牛逼,世人赞扬崇拜唯恐不及,缺点也就没人计较了。

伽罗华肯定也是要谈的,但是,前面讲的伽罗华的故事太多了,这里不再赘述。就说一点,有人认为伽罗华是一个好色之徒,这是不公平的。一来,他是法国人,他只是做了一个正常法国男人会做的事情;二来,他也没有到处沾花惹草;三来,这件事本身就可能是一个圈套,作为一个激进的共和派青年,政府早就想把他弄死。说到底,伽罗华是一个数学天才,但运气不好,他之所以政治上这么激进,也是数学方面处处碰壁郁闷无处发泄造成的。当然了,伽罗华的悲剧也有自身缺点,就是写东西太简洁,年轻人容易浮躁,天才更是年少轻狂,思想本来就已经非常超前了,又不表述清楚,那些前辈们怎么会认真看呢?

前面提到的这些人都是大神,年轻时就很牛逼,然后牛逼了一辈子(虽然有的人一辈子也很短)。事实上,数学这个东西,最牛逼的思想往往是年轻人创立的,年长者只能为数学大厦添个砖加个瓦,却很少再有开山之举。一个数学家,如果到三十岁还没搞出什么成就,这辈子基本上就这样了。所以,数学界的最高奖菲尔兹奖只发给40岁以下的人,放宽到40岁,已经把各种意外都考虑进去了,可是,怀尔斯却是意外中的意外。他年轻时实在不够牛逼,三十多岁还在埋头苦干,到了四十岁却一举成名。我想,与其把怀尔斯的故事看成一个牛逼数学家的创奇,不如看成一个老屌丝逆袭的励志故事。都说数学家成名要趁早,比如他的同行陶哲轩同学,人家7岁进高中,9岁进大学,10岁、11岁、12岁参加国际数学奥林匹克竞赛分别拿下铜奖、银奖、金奖,20岁获得博士学位,24岁当教授,31岁时拿下菲尔兹奖。而31岁的怀尔斯在干嘛,默默无闻。混到33岁时,怀尔斯终于决定要干点什么了,命运也正好给了他一个机会。1985年,德国数学家格哈德·弗赖指出了谷山-志村猜想和费马大定理之间的关系,1986年,美国数学家里贝特证明了这一命题。怀尔斯意识到自己的机会来啦,费马大定理绕了一大圈,竟然和自己现在最擅长的领域椭圆曲线有关,必须赌一把了。于是,怀尔斯开始了长达七年的闭关修炼,当然了,修炼的时候还得偶尔放放风,因为之前不够牛,教授的位置不牢固,不发表论文会下岗的。修炼的过程前面讲过,就不说了,总之,博采众家之长,功力大大加深,七年之后出山,一举震动江湖。但是,数学家对待证明的态度是非常严谨的,数学证明一旦通过就永远正确,他们必须对后人负责,所以,怀尔斯的论文需要经过严格审查。六个顶级数学家开始对怀尔斯天书般的论文进行漫长的死磕,终于有一天,一个叫尼克·凯兹的发现了漏洞。说来也巧,当初怀尔斯论文发表前,想找个人内测一下,找的就是尼克·凯兹,那个时候,这哥们儿没发现问题,这都公开了,却揪出问题了,这让怀尔斯情何以堪:你丫是不是在逗我?事实上,这是个大问题,足以破坏怀尔斯的证明。至此,怀尔斯逆袭受挫,如果漏洞不能修复,不会有人为费马大定理的证明道路上多一个失败者而惋惜。好在这时怀尔斯已经混成了终身教授,不用担心下岗的风险了,宅在家里好好研究就行了。这次,他还找了一个助手,叫泰勒,这人是他之前的学生,一个牛逼而又值得信任的人,又经过将近一年的奋斗,终于填补了漏洞且简化了证明。怀尔斯一跃成为武林泰斗,这一次,地位无人撼动。接下来,我们要给怀尔斯几句颁奖词:他不一定是最聪明的,也不一定有着耀眼头衔,但一定以科学为生命,一定坚韧、谦和并一步一个脚印向前走。

在这里,我还要提一下两个人:谷山丰和志村五郎。志村五郎是一个勤奋的人,很多地方和怀尔斯气质很像,而谷山丰,是一个真正的天才。谷山-志村猜想是费马大定理证明过程中最重要的一环,可是,在怀尔斯享受各种荣誉的时候,却很少有人愿意提及他们(虽然谷山丰在30多年前就自杀了,但志村五郎还在)。数学的世界,有时候,也是只认成功者。讲这件事,也是提醒大家:在费马大定理的故事中,怀尔斯不是唯一的主角,无数人为之奋斗过,他们甘为基石,他们也是英雄。

费马大定理的故事,至此终于可以结束了。

回顾人类解开宇宙奥秘的各个节点,探得进化论,主要靠达尔文;揭示力学原理,主要靠牛顿;艰深的相对论,可能有许多天才不懂,但创建它,也全凭一个爱因斯坦。发现元素周期律,创建精神分析理论,还有宇宙大爆炸、DNA分子结构模型……都只有一个两个人。唯独这个中学生都能看懂的费马大定理,各路英雄好汉,有的退避三舍,有的自愧无力,有的倾尽其力也只抓上一鳞半爪,连万能的计算机也无可奈何。但是,我们不仅仅要看到它的困难,更要看到困难背后的意义,费马大定理是一只“会下金蛋的鹅”(希尔伯特语):因为它,扩展了“无穷递降法”和虚数的应用;催生出库默尔的“理想数论”;促成了莫德尔猜想、谷山--志村猜想得证;拓展了群论的应用;加深了椭圆方程的研究;找到了微分几何在数论上的生长点;发现了伊利瓦金—弗莱切方法与伊娃沙娃理论的结合点;推动了数学的整体发展和研究……费马大定理催生出一批又一批重量级数学家,这是货真价实的事实,也是真正的厉害之处。“一个民族有一些关注天空的人,他们才有希望;一个民族只是关心脚下的事情,那是没有未来的。”

[]1注我国古代就有丰富的数学典籍,如:前文中的《周脾算经》、东汉末年比美《几何原本》

的《九章算术》、公元400年的数学入门读物《孙子算经》,而盛唐时的李淳风,就是那个有名的“推背图”的道学家,他在算学馆整理编注了著名的《算学十书》虽然水平很次,没能培养出什么像样的数学家,但不可否认对盛唐的商业和天文历法有积极推动作用,此后各种不提,直到共济会的利玛窦和我国的徐光启共同翻译了《几何原本》等海外著作。但奇怪的是中国的数学新著往往都出现在乱世和盛世。数学家也星光璀璨,如:祖冲之,秦九韶,刘徽、杨辉,等。

[]2注

《古今数学思想》不仅在科学界,在整个学术文化界都广泛、持久的影响。

费马猜想之证明.

费马猜想之证明 景光庭 引言:20世纪60年代初,笔者首次接触“费马猜想”。在以后的岁月中,笔者断断续续地研究它。直至1992年,才有机会在《潜科学》上相继发表过三篇论文,这次是最终的证明。 虽然美国数学家怀尔斯因发表论证“费马猜想”的文章,并于1997年荣膺国际上的沃尔夫斯克尔数学大奖,但并没有推开蒙在世界数学家心头上的阴云。笔者曾通过《美国教育交流中心》向怀尔斯寄去了总长仅一页的论文复印件,并明确指出,他在证明中将“费马方程”转化为椭圆曲线,而笔者转化为抛物线,这是不能共存的。何况笔者的转化过程,浅显得连中学生都能读懂,无懈可击,百分之百的正确。怀尔斯巨著难道不是沙滩上的一座摩天大厦?我也向德国马克斯普朗克研究所的学者法尔廷斯寄去了论文复印件,亦表述了上述观点,因为他是少数几个通读怀尔斯论文,并唯一肯定和帮助怀尔斯将论文从二百多页化减到一百三十页的学者 。遗憾的是至今未复。 如果怀尔斯不屑回答一个业余数学爱好者提出的疑问,对他就是一个绝妙的讽刺,因为他以毕生精力研究攻克和使他一举成名的“费马猜想”提出者费马是律师,而不是法兰西学院的院士。恰恰相反,数学只是他的业余爱好。他与人交流数学心得,往往是在通信中进行的,并不象今天这样只有在学术界认可的刊物上发表的文章才能被专家认可。如果当年的学术界也对费马这样苛求,那么今天根本不存在什么“费马猜想”这个问题了。 定理:2>p P P P Z Y X =+ (1) 中,p 为奇素数,X ,Y ,Z 无正整数解。 证:假设X ,Y ,Z 均有正整数解。 令 X=x ,Z = x +a (a 为正整数), Y = y 0+a (y 0为正整数),约定(x ,y 0,a )=1 ,则有: p p p a x a y x )()0+=++( (2) 即: 0 (1) 12221101120221010=----++++--------x a c x a c ax c y a c y a c ay c y p p p p p p p p p p p p p p p (3) 不失一般性,可设1),(0≥=d y x 1),(,,11101===y x dy y dx x ,以d 除 (3)式, 并令:10-=p d b ,,2 1 1-=p p ad c b ……,1 11---=p p p p a c b , 于是:0 (11212111111) 1 110=----+++-----x b x b x b y b y b y b p p p p p p 11 1 123122111 1 211110............s y b x b x b x b x b y b y b p p p p p p p =++++= +++------- 11221111011.......----=----p p p p b y b y b y b x s 11231221111.......----=----p p p p b x b x b x b y s

世界数学难题——费马大定理

世界数学难题——费马大定理 费马大定理简介: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 [编辑本段] 理论发展 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

费马大定理证明

【法1】 等轴双曲线方程的通解与费尔玛大定理的证明 滕锡和 (河南鲁山 江河中学 邮编:467337) 摘 要: 由等轴双曲线方程与费尔玛方程的内在联系,寻找到一种费尔玛方程是否有正整数解 的充要条件,再由对此条件的否定,证明了费尔玛大定理,并且把费尔玛大定理与勾股定理有机地统一起来。 关键词: 完全+ Q 解;可导出+ Q 解;连环解 中图法分类号: 文献标识码:A 文章编号: 1 R +通解 本文所用数集:N ---自然数集,Q ---有理数集,R ---实数集。本文讨论不超出+R 的范围。 本文中方程n n n z y x =+及同类方程中的指数n ∈N ,以后不再说明。 引理1 方程 n n n z y x =+ (n ≥2) (1) 有N 解的充要条件是它有+ Q 解。 引理2 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是它有既约N 解。 这样,在以后的讨论中只需讨论+ Q 解及既约N 解的情形,可使过程简化。 引理3 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是方程 -1n n X Y = (n ≥2) (2) 有+ Q 解。 证明 充分性 如果方程(2)-1n n X Y =(n ≥2)有+ Q 解,设(v u v w ,)()u v w N ∈两两互素,,为其+ Q 解,则( v w )n -(v u )n =1,n n n w v u =+ 。于是方程(1)n n n z y x =+(n ≥2)有N 解()w v u ,,。 必要性 如果方程(1)n n n z y x =+(n ≥2)有N 解,设()w v u ,,() u v w N ∈两两互素,,

费马最后定理的故事

●今年6月间,德国哥庭根大学的大会堂里,500名数学家齐聚,观看普林斯顿大学数学家魏尔斯(Andrew Wiles)领取沃夫斯柯奖。沃夫斯柯是一位德国工业家的名字,他在20世纪初遗赠10万马克设立此一奖项,给予世界上头一个能解决费马最后定理之人。当时10万马克是不小的一笔数目,约等于200万美金,而几个月前由魏尔斯领到时,不过相当5万美金左右,但是这确是近世数学界的盛事,魏尔斯不只是证明了费马最后定理,也替未来的数学带来革命性新发展。费马最后定理的发明者自然是一个叫费马的人。费马(Pierre deFermat)1601年出生在法国西南方小镇。费马并不是一个数学家,他的职业是一名法官。当时为了保持法官立场的公正,通常不鼓励他们出外社交,因此每天晚上费马便钻研在他嗜好的数学之中,悠然自得。在1637年的某一天,费马正在阅读古希腊大数学家戴奥芬多斯的数学译本,忽然灵光乍现,就在书页空白处,写下有名的费马定理。费马定理的内容其实很简单,它只是基于一个方程式(X+Y=Z)。这个方程式当n等于2时,就是人们熟知的毕氏定理,中国数学上所称的勾股弦定理,其内容即直角三角形两边平方和等于其斜边的平方。如32.+42.=52.(9+16=25)。费马当时提出的难题是,当这个方程式(X+Y=Z)的n大于2时,就找不到任何整数来符合这个方程式。例如33.+43.(27+64)=91,但是91却不是任何整体的3次方。费马不仅写下了这个问题,他同时也写道,自己已经发现了证明这个问题的妙法,只是书页的空白处不够大,无法写下证明。结果他至死都没有提出他的证明,却弄得300多年来数学界群贤束手,也使他的难题得到一个费马最后定理的称号。19世纪时,法国的法兰西科学院,曾经分别两度提供金质奖章和300法郎之赏,给予任何可以解决此一难题之人,不过并没有多大进展。20世纪初捐出10万马克奖金的沃夫斯柯,事实上也是一个对费马最后定理着迷的“数痴”,据一些历史学家研究,沃夫斯柯原本一度已打算自杀,但由于对解决费马定理着迷,而放弃求死之心,因此他后来便在遗嘱中捐出巨款,原因是他认为正是费马定理救了他一命。重赏之下必有勇夫,但是解决数学难题却非人人可为。20世纪公认的德国天才数学家希伯特(D. Hilbert)就不愿去碰费马定理,他的理由是自己没那么多时间,而且到头来还可能落得失败的下场。虽然费马定理还是让许多数学家萦怀于心,但是他们看这个难题就有如化学家看炼金术一样,只是一个古老的浪漫梦。秘密钻研7年突破难题最后解决这个世纪难题的魏尔斯,早在1936年他10岁之时,便有着挑战费马定理的浪漫梦想,他在英国桥剑地方的图书馆中读到这个问题,便决心一定要找出证明方法。他学校的老师并不鼓励他浪费时间于这个不可能之事,大学老师也试图劝阻他,最后他进了英国剑桥大学数学研究所,他的指导教授指引他转入数学中比较主流的领域做椭圆曲线。魏尔斯自己也没有料到,这个由古希腊起始的数学研究训练,最后会导致他再回到费马定理之上。1927年,日本数学家谷山丰提出一个讨论椭圆曲线的数学结构,后来在美国普林斯顿大学的日本数学家志村五郎,再将这个结构发展得更为完备。这个被称为“志村—谷山猜想”的数学结构,居然成为化繁为简,通向解决费马定理的绝妙佳径。1984年德国萨兰大学的数学家佛列发展出一种很奇特也很简单的关联,将“志村—谷山猜想”和费马定理扯在一块,佛列提出的关联经过好几位数学家的努力,最后终于证明了如果要证明费马最后定理,可以经由证明“志村—谷山猜想”来完成。魏尔斯是1993年在英国剑桥大学,正式宣布他已解决费马最后定理,在此之前他已秘密的工作达7年之久,原因不只是怕受到公众压力,也害怕其他数学家抄袭他的想法,在这段期间,魏尔斯连和太太去度蜜月中都未能从“附魔”脱身。最后的结果是魏尔斯并不需要证明整个的“志村—谷山猜想”,他只要证明一些特定的椭圆形曲线是具备某种特性。但是这些特定的椭圆曲线还是有无穷多个,因此证明技巧上依然十分困难。魏尔斯基本上利用了数学上常用的归纳法,他的办法有点像推倒骨牌的游戏,如果要推倒无限多张的骨牌,你必须确知的乃是一张骨牌倒下时,一定会碰到的下张骨牌。魏尔斯在1993年6月23日觉得他的证明已十分完整,于是便在剑桥大学牛顿数学研究所的研讨会上正式宣布。300年悬案终有解300多年数学悬案终于解决,不只数学界哗然震惊,数学门墙之外的社会大众亦感

安德鲁怀尔斯的证明比我复杂一百倍

安德鲁怀尔斯的证明比我复杂一百倍 安德鲁怀尔斯的证明用了130页,并利用了连费马都没接触的理论来证明,充分说明他的证明并没有揭开费马所说的美妙证明的历史真相。真正理解费马原始思想的人是我。我只用了一页的版面通俗地透彻地严格地证明了这一结论。是真金还是铜大家可以验证。 揭开费马大定理真相 当整数n大于2时X n +Y n=Z n 没有正整数解。显然X、Y、Z都不会是零。 证明方法: 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。又由于当n=ab时X1 +X2n+X3n =0可写成(X1a)b+(X2a)b+(X3a)b=0; 因此只要证明当整数n为大于2的质数X1n+X2n+X3n =0没有非零的整数解,可类推X n +Y n=Z n 没有正整数解,而n=4没有整数解早已被人证明。现在我们需要证明当当n为大于2质数时X1n+X2n+X3n =0没有非零的整数解。 假设存在有整数解,会不会出现冲突呢,会的。 如果X1n+X2n+X3n =0存在有整数解,而n为大于2质数,因此必存: X1X2+X2X3+X3X1=d (d为整数更是有理数);X1X2X3=c(c为整数更是有理数)也就是说必存在这样的方程组; X1n+X2n+X3n =0 (1) X1X2+X2X3+X3X1=d (d为整数更是有理数) (2) X1X2X3=c(c为整数更是有理数) (3) 由方程组必可合成关于X的一元n次方程,又由于若X1=X2或X1=X3或X2=X3均不存在整数解,原因是2X1n+X3n=0没有非零整数解,因此倘若有非零整数解也只能是X1、X2、X3 互不相等。由于作为底的仅有X1、X2、X3且均要同时有理地合成为【f(X)】n 的形式现在的问其题在于,关于X的一元n次方程(n为质数)既要把未知数都配方成n次方内,又要表示出三个解的不相等。而d、b均为有理数,能做得到吗?做不到的,我们知道,当n 为质数时若将方程有理化成【f(X)】n =P;只能反映有一个实数解,其他是虚数解。说明X1、X2、X3取有理数解是不相容的。更谈不上整数解。也就是说要符合费马所规定条件的方程是不存在,因此我的假设是不成立的。 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。 当n为合数时,n可分解成质因素,可将一个质因数写成括号外的方次来证明,如果n 只含质因素2,n必可写成4m的形式,可当成4次方程来证明。而n=4时,费马本人已证明。至此费马定理证明完毕。

WILES证明费马大定理的成功时间为何其说不一

WILES证明费马大定理的成功时间为何其说不一? WILES证明费马大定理的成功时间为何其说不一? 他的证明是否又被发现“漏洞”? 在《征服费马定理的最后竞赛》中真正夺冠的应该是哪国人? 1993年,国内新闻媒体说:350多年的数学难题被美国普林斯顿大学数学教授wiles证明。《黑龙江日报》在《科技世界》版头条发表了哈工大青年数学家曹珍富的文章《英国数学家证明了费尔马大定理》(副题:困扰人类350多年的数学难题今朝有解)。但是。几年后(1997)这位青年数学家又在《生活报》发文说:wiles是1995年证明成功的。 1994年,《中国青年报》发文说:wiles迫于社会舆论压力不得不透漏真情,说他遇到了料想不到的困难,还需要做很多工作。 1995年,《参考消息》(4月5日)载文《征服费马定理的最后竞赛》中说:wiles的证明被发现“漏洞”,他自己“堵不上”,想找合作者……。 2000年,哈工大理学院院长说:wiles最后成功的时间是1996年1月。 2002年,中科院一位院士在《教育台》的《学术报告厅》中宣讲时说wiles是1994年证明成功。 Wiles证明费尔马大定理成功的时间为何其说不一? 还有更加令人不解的: 一、2003年,远方出版社出版的《数理化之谜》中说:千古之谜费马大定理,至今尚无人完全证明。 二、2007年,哈尔滨出版社出版的《数学的故事》中说:30年前,美国数学家大卫·曼福特证明了“如果不定方程有整数解,那么这种解是非常少的”。这是目前关于“费尔马问题”最好的研究成果。 为什么这两本书中,对wiles的证明成功却“只字皆无”?莫非wiles的证明又被发现了“漏洞”? 大千世界无奇不有。1993年8月1日,《松花江报》发表了一篇该报记者写的报道《谷立煌宣称证明了费尔马大定

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

《费马大定理》读后感800字

《费马大定理》读后感800字 费马大定理是17世纪法国数学家费马留给后世的一个不解之谜。即:当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n.无正整数解。 为证明这个命题,无数的大数学家们都在不懈努力,孜孜不倦的力求攻克。该问题的提出还在于毕达哥拉斯定理(在一个直角三角形中,斜边的平方等于两直角边的平方之和)的存在。而后欧拉用他的方式证明了x^3+y^3=z^3无正整数解。同理3的倍数也无解。费马也证明了n为4时成立。这样使得待证明的个数大大减少。终于在“谷山——志村猜想” 之后,被安德鲁·怀尔斯完全证明。 看过该书以后,一方面是对于费马大定理的证明过程的惊叹。这是一个如此艰辛的过程。阿瑟·爱丁顿爵士曾说,证明是一个偶像,数学家在这个偶像面前折磨自己。值得解决的问题会以反击来证明他的价

值。费马大定理的成功证明的实现在是它被提出后的300多年。经典数学的证明办法是从一系列公理、陈述出发,然后通过逻辑论证,一步接着一步,最后就可能得到某个结论。数学证明依靠这个逻辑过程,一经证明就永远是对的。数学证明是绝对的。也是一环扣一环的,没有索菲·热尔曼,柯西,欧拉等人在之前的研究,该定理并非能在个人的一次研究中就能得到证明。对于数学的研究是永无止境的。另一方面,我也认识到寻找一个数学证明就是寻找一种认识,这种认识比别的训练所积累的认识都更不容置疑。最近两千五百年以来,驱使着数学家们的正是这种以证明的方法发现最终真理的欲望。数学家有着不安分的想象与极具耐心的执拗。虽说当今计算机已经发展到一定地步了,它的计算速度再快,但是无法改变数学证明的需要。数学证明不仅回答了问题,还使得人们对为什么答案应该如此有所了解。 学数学能干什么?曾经也有学生这样问过欧拉,欧拉给他一些钱以后就让学生走了。培根也说过,数学使人周密。数学的证明最能培养严谨的态度。

费马大定理的3次、4次不可能的证明

A 试证:试证:x x 4+y 4=z 4在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 4-x 4=(z -x)(z 3+z 2x+z x 2+x 3)=(z -x)(z +x)(z 2+x 2)=y 4由x 、y 、z 都是大于0的正整数,所以有z >x 得:得:z z -x -x<<z +x +x< <z 2+x 2(其中若z +x +x≥≥z 2+x 2,则x(1-x)x(1-x)≥ ≥z (z -1)负数大于正数,不成立。)分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y=z +x y 2=z 2+x 2由前两式得x =0(不成立)②y 是合数,得:是合数,得:(z (z -x)a=y (z -x)b=y z 2+x 2=aby 2稍微变换一下就可以得到:((a a 2b 2-1-1) )z 2=(a 2b 2+1)x 2即:即:a a 2 b 2-1=k 12a 2b 2+1=k 22但是在整数里,但是在整数里,m m 2-n 2≠1。故这种情形不成立。∴x 4+y 4=z 4在xy xy≠ ≠0时无整数解。B 试证:试证:x x 3+y 3=z 3在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 3-x 3=(z -x)-x)( (z 2+xz +x 2)=y 3>0则有:则有:z z >x z 2+xz +x 2>z -x 分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y 2=z 2+xz +x 2即:即:z z 2+xz +x 2=y 2=(z -x)2整理得到:整理得到:xz xz =-2xz (不成立不成立) )②y 是合数,则有:是合数,则有:(z (z -x)a=y z 2+xz +x 2=ay 2整理得到:((a a 3-1-1) )z 2-(a 3+1)xz +(a 3-1)x 2=0若z 有解,需有解,需△≥△≥△≥00即:即:a a 3≤3由于a 是大于0的正整数,故a =1即:即:z z -x=y 回到第回到第① ①种情形,结果仍是不成立。 ∴x 3+y 3=z 3在xy xy≠ ≠0时无整数解。另外根据我的推到出勾股方程的满足条件或生成方法是: ((e 2-f 2)/2)2+(ef)2=((e 2+f 2)/2)2 其中e 、f 取大于0的同时为奇或偶的正整数(的同时为奇或偶的正整数(e e ≠ f )但是我在一本介绍数论的书上看到已经被人家找出来,只是形式和我的有点差异。故我通过上述方法找到了勾股方程成立的充足理由,及同样找到了其满足条件。乐哉!

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

费马最后定理观后感

费马最后定理观后感 经过对《费马最后定理》这部纪录片的观看,我深深地感受到了数学家的那份执着,这部纪录片是关于一群人对世界数学难题的沉迷,安德鲁怀尔斯教授清楚的记得那些奋斗的时光,特别是当他回想自己证明出费马最后定理的那一刻,那个激动地梗咽的画面深深地印在了我的脑海里,这也许就是收获时的喜悦~在数学的天地里,数十年如一日的辛勤耕耘,安德鲁怀尔斯教授的这份执着与坚韧值得我们每一个人学习。 费马最后定理在长达三个多世纪的世纪中使许多杰出的数学家绞尽脑汁而不得其解。但是 , 这个定理对于推动数论的发展起到了非常重要的作用。数学思想中一些最伟大的创造是由于研究这个定理而促成的,为了证明这个定理而发展起来的一些数学方法也对其他许多问题的解决作出了贡献。特别是,怀尔斯在证明这个定理的过程中利用并进一步发展了许多现代数学概念,包括著名的志村-谷山猜想。费马最后定理的证明离不开这三百年来参与证明的每一位数学家,正是这样,才推动了数学的发展,为安德鲁怀尔斯的证明奠定了基础。不单单是数学,我们的科研成果也是在前人的基础上不断发展起来的。我们应该学会“站在巨人的肩膀上”,沿着前人的脚步继续前行。 怀尔斯在 10 岁时就开始迷上了费马的最后定理。他在英国剑桥的图书馆里阅读有关费马最后定理的著作 , 期望有朝一日会找到一个证明。他的中学教师们则向他泼冷水,叫他不要把时间浪费在这类不可能解决的问题上。他的大学讲师们也劝说他知难而退。最后,剑桥大学的研究生导师终于使他转到更为传统的数学研究上,也就是对椭圆曲线进行研究。当时,谁也没有料到他在这方面的工作会产生一个出人意外的结果,即攻克费马的最后定理。怀尔斯教授能够将自己儿时的梦想做为自己毕生的事业,尽管外界总在否定他,他还是为里心中的梦想一直坚持。安德

费马大定理是怎么证明的

费马大定理是怎么证明的 已故数学大师陈省身说道,20世纪最杰出的数学成就有两个,一个是阿蒂亚—辛格指标定理,另一个是费马大定理。当然,20世纪的重大数学成就远不止这两个,不过这两大成就却颇具代表性,特别是从科普的角度来看。 说实在的,数学虽然总是居于科学之首,可是一般人对数学可以说几乎一无所知,尤其是说到数学有什么成就、有什么突破的时候。理、化、天、地、生,门门都有很专门的概念、知识、技术,可不久之前的大成绩很容易就可以普及到寻常百姓家。激光器制造出来还不到50年,激光唱盘早已尽人皆知了,克隆出现不到10年,克隆这字眼已经满天飞了。即使人们不太懂黑洞的来龙去脉,一般人理解起来也不会有太大障碍。可是有多少人知道最新的数学成就呢?恐怕很难很难。数学隔行都难以沟通,更何况一般人呢。正因为如此,99%的数学很难普及,成百上千的基本概念就让人不知所云,一些当前的热门,如量子群、非交换几何、椭圆上同调,听起来就让人发晕。幸好,还有1%的数学还能对普通的人说清楚,费马大定理就是其中的一个。 费马大定理在世界上引起的兴趣就正如哥德巴赫猜想在中 国引起的热潮差不多。之所以受到许多人的关注,关键在于它们不需要太多的准备知识。对于费马大定理,人们只要知道数学中头一个重要定理就行了。这个定理在中国叫勾股定

理或商高定理,在西方叫毕达哥拉斯定理。它的内涵丰富,从数论的角度看就是求不定方程(即变元数多于方程数的方程)X2+Y2=Z2的正整数解。中国在很早已知(3,4,5)是这个方程的一个解,也就是32+42=52,其后也陆续得到其他解,最后知道它的所有解。这样,一个不定方程的问题得到圆满解决。 数学家的思想方向是推广,这个问题到了17世纪数学家费马的手中,就自然问,当指数变是3,4……时,又会怎样?这样费马的问题就变成不定方程Xn+Yn=Znn=3,4,……是否有正整数解的问题。费马误以为自己证明了对于所有n≥3的情形,这个方程(不妨称为费马方程)都没有正整数解,实际上,他的方法只证明n=4的情形。不过,这个他没有证明的定理还是被称为费马大定理。 这样一个叙述简单易懂的定理对于后来的数学家是一大挑战,其后200多年,数学家只是部分地解决了这个问题,可是却给数学带来丰富的副产品,最重要的是代数数论。原来的问题却成为一个难啃的硬骨头。20世纪初,有人悬赏10万德国马克,征求费马大定理的证明,成千上万的错误证明寄到评审机构那里,其中几乎没有什么真正的数学家。本书的第四章生动地描写了其中的故事。 有时我们把这些人称为业余数学爱好者,近来称之为民间科

费马点及其证明

费马点定义 在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。在平面三角形中: (1).三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (3)当△ABC为等边三角形时,此时外心与费马点重合 证明 (1)费马点对边的张角为120度。 △CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上, 又∠APC=120度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。 (3)PA+PB+PC最短 在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1

相关文档
最新文档