基于开源软件Ardusub的水下机器人ROV控制系统

基于开源软件Ardusub的水下机器人ROV控制系统
基于开源软件Ardusub的水下机器人ROV控制系统

基于开源软件Ardusub的水下机器人ROV控制系统

摘要:随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作

业中发挥着越来越重要的作用。ROV作为水下作业的重要工具,对运动控制算法

要求较高,采用开源软件ArduSub,结合一种模糊串级PID控制算法实现ROV控

制系统的设计,重点对ArduSub的特点、适应配置及PID控制算法原理,包含运

动和姿态方面进行了阐述,能够良好实现ROV的水下控制。

1引言

随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作业中

发挥着越来越重要的作用。其中ROV续航持久,成本相对较低,逐渐成为水下作

业的重要工具。ROV工作于水下环境,具有非线性、易受环境影响等特点,对运

动控制算法要求较高,同时要求整个控制系统要有较好的实时性和可靠性。

2开源软件ArduSub简介

ArduSub水下机器人的控制器是一个完整的开源解决方案,提供远程操作控

制(通过智能潜水模式)和全自动的执行任务。作为DroneCode软件平台的一部分,它能够无缝地使用地面控制站的软件,可以监控车辆遥测和执行强大的任务规划

活动。它还受益于DroneCode平台的其他部分,包括模拟器,日志分析工具,为

车辆管理和控制和更高层次的api。

其主要特点在于以下几个方面:

反馈控制和稳定性:ArduSub控制器基于多旋翼自动驾驶系统,具有精确的

反馈控制,可主动维持方向。

深度保持:使用基于压力的深度传感器,ArduSub控制器可以将深度保持在

几厘米内。

航向保持:默认情况下,ArduSub在未命令转动时自动保持其航向。

相机倾斜:通过操纵杆或游戏手柄控制器与伺服或万向节电机进行相机倾斜

控制。

灯光控制:通过操纵杆或游戏手柄控制器控制海底照明。

无需编程:ArduSub控制器适用于各种ROV配置,无需任何自定义编程。大

多数参数可以通过地面控制站轻松更改。

兼容性好:ArduSub兼容许多不同的ROV框架,支持PWM输出。

由于以上特征,使得ArduSub成为一款可以很好适用于水下机器人RPV控制

系统的开源软件。

ArduSub兼容基于串行和以太网的通信接口。使用的硬件自动驾驶仪必须支

持选择的选项。Pixhawk仅支持串行连接,但可以通过配套计算机连接到以太网。其他autopilots原生支持以太网。ArduSub软件主要用于通过ArduSub进行接口,ArduSub是一种开源的跨平台用户界面,适用于所有类型的无人机。该接口通过

系绳连接到ArduSub控制器并显示车辆状态信息,并允许更新参数和设置。最重

要的是,QGC与用于指挥车辆的操纵杆或游戏手柄控制器连接。

ArduSub包含一个高级的电机库,支持多个框架,例如具有6自由度推进器

定位的BlueROV配置(图1所示)、带有并排垂直推进器的矢量ROV(图2所示)、采用单垂直推进器的ROV(图3所示)等等。

在传感器和执行器方面,除了标准的板载传感器(IMU,指南针),ArduSub

工业机器人控制系统组成及典型结构

工业机器人控制系统组成及典型结构 一、工业机器人控制系统所要达到的功能机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: 1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 2、示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 5、人机接口:示教盒、操作面板、显示屏。 6、传感器接口:位置检测、视觉、触觉、力觉等。 7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 二、工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32 位、64 位等如奔腾系列CPU 以及其他类型CPU 。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的 CPU 以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10 、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11 、网络接口 1) Ethernet 接口:可通过以太网实现数台或单台机器人的直接PC 通信,数据传输速率高达 10Mbit/s ,可直接在PC 上用windows 库函数进行应用程序编程之后,支持TCP/IP 通信协议,通过Ethernet 接口将数据及程序装入各个机器人控制器中。

【经营计划书】水下机器人创业策划书(终稿)

低成本水下机器人 策 划 书 申报项目: 低成本水下机器人 申报人: 孟永志 项目负责人: 孟永志 申报日期: 年4月17日

低成本水下机器人策划书 机器人项目创业计划执行概要 水下机器人从20世纪后半叶诞生,是工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称无人遥控潜水器,主要运用在海上救援。由于水下环境恶劣危险,人的潜水深度有限,所以水下机器人日益成为开发海洋的重要工具。在军事斗争中,无人化作战平台将在未来现代化战争中发挥重要的作用,无人舰艇将与无人地面战车、无人飞机一起在战场上进行高效卓越地作战。另外,无论战争期间还是和平时期,水下机器人还可以定期对航道、训练场、舰艇机动区实施定期或不定期检查,保障这些水域的作业安全。 载人潜水器由人工输入信号操控各种动作,由潜水员和科学家通过观察窗直接观察外部环境。其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大,由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造价高昂、工作环境受限等不利因素。 有缆水下机器人(ROV)需要由电缆从母船接受动力,并且ROV不是完全自主的,它需要人为的干预。主要由水面设备(包括操纵控制台、电缆绞车、吊放设备、供电系统等)和水下设备(包括中继器和潜水器本体)组成。潜水器本体在水下靠推进器运动,本体上装有观测设备(摄像机、照相机、照明灯等)和作业设备(机械手、切割器、清洗器等)。潜水器的 水下运动和作业,是由操作员在水面母舰上控制和监视,电缆向本体提供动力和交换信息,中继器可减少电缆对本体运动的干扰。由于人们通过电缆对ROV进行遥控操作,电缆对ROV像“脐带”对于胎儿一样至关重要,但是由于细长的电缆悬在海中成为ROV最脆弱的部分,大大限制了机器人的活动范围和工作效率。 无缆水下机器人(AUV)又称自治水下机器人、智能水下机器人,是将人工智能、探测识别、信息融合、智能控制、系统集成等多方面的技术集中应用于同一水下载体上,在没有人工实时控制的情况下,自主决策、控制完成复杂海洋环境中的预定任务使命的机器人。是从简单的遥控式向监控式发展,即由母舰计算机和潜水器本体计算机实行递阶控制,它能对观测信息进行加工,建立环境和内部状态模型。操作人员通过人机交互系统以面向过程的抽象符号或语言下达命令,并接受经计算机加工处理的信息,对潜水器的运行和动作过程进行

水下机器人1

水下机器人 一、摘要 摘要:无人遥控潜水器,也称水下机器人。一种工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称潜水器。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。本文从过去、现在、未来三个时间段介绍了水下机器人,并且就其中的关键技术也简要做了介绍,全方面的认识了水下机器人。 关键字:水下机器人、潜水器、海洋 Abstract :No one remote control submersibles, also called the underwater robot. A kind of work in the limit of the underwater robot homework, can submerge instead of people finish some operating, and calls the scuba machine. Underwater environments are dangerous, the person's diving depth is limited, so underwater robot has become an important tool development of ocean. This article from the past, present, and future three time underwater robot is introduced, and the key technology is briefly introduced, all aspects of the understanding of the underwater obot. Key words: underwater robot、scuba machine、ocean 二、引言 海洋这一广阔的水域,蕴藏着丰富的矿产资源、海洋生物资源和能源,是人类社会可持续发展的重要财富。研究和合理开发海洋,是对人类的经济和社会发展具有重要的意义。随着科学技术的发展,人类已经进入了开发和利用海洋的时代。在各种海洋技术中,作为用在一般潜水技术不可能到达的深度进行综合考察和研究并能完成多种作业的水下机器人,使海洋开发进入了新时代。 从20世纪30年代,美国研制出了第一台现代意义上的潜水器开始,无人遥控潜水器,也称水下机器人,开始进入人类的发展史,虽然只有短短的几十年,但其却发挥了极大的作用,为人类在海洋等水域的探索开发提供了有力的支持。由于水下机器人目前多用于海洋,故也可称为海洋机器人。而且水下作业对于人来说是一项危险作业,特别是在深海作业更加的危险,在10000米深的深海中,其压力是地面压力的1000倍,那里是迄今为止人类难以到达的地方。海底,特别是深海海底对人类还是一个未知世界。水下机器人主要用于海洋开发、打捞、扫雷、侦察、援潜、救生等。 而在近几十年,水下机器人的发展是非常迅速的。在信息技术的支持下,其发展趋势向着以下几个方面发展:一是水深普遍在6000米;二是操纵控制系统多采用大容量计算机,实

工业机器人操作编程职业技能等级标准

工业机器人操作编程职业技能等级标准

目录 前言 (3) 1范围 (4) 2规范性引用文件 (4) 3术语和定义 (4) 4面向工作岗位(群) (5) 5面向院校专业领域 (5) 6职业技能等级标准 (6) 参考文献 (8)

前言 本标准按照GB/T 1.1-2009给出的规则起草。 本标准起草单位:由北京赛育达科教有限责任公司主持,联合机械工业教育发展中心、机械行业工业机器人与智能装备职业教育集团、苏州大学、常州机电职业技术学院、江苏汇博机器人技术股份有限公司、奇瑞新能源汽车技术有限公司、埃夫特智能装备股份有限公司、上海ABB工程有限公司等单位共同制订。 本标准主要起草人:孙立宁王志强蒋庆斌禹鑫燚陈小艳叶晖肖永强等声明:本标准的知识产权归属于北京赛育达科教有限责任公司,未经北京赛育达科教有限责任公司同意,不得印刷、销售。

1范围 本标准规定了工业机器人操作编程职业技能的等级,阐明了相关企业岗位工作规范及其职业技能要求。 本标准适用于工业机器人操作编程职业技能等级培训与考核,工业机器人技术应用领域相关岗位从业人员的培训和职业院校教师专业培训。 2规范性引用文件 下列文件对于本文件的使用是必不可少的,凡是注日期的版本适用于本文件;凡是未注日期的引用文件,其最新版本适用于本文件。 《工业机器人安全实施规范》GB/T20867-2007 《工业机器人坐标系和运动命名原则》GB 16977-1997 《工业机器人性能试验实施规范》GB 20868-2007-T 国家、行业、企业有关标准 3术语和定义 国家、行业标准界定的以及下列术语的定义适用于本文件。 3.1机器人本体(Manipulater) 也称操作机,其结构通常是由一系列固定的及相互铰接或相对滑动的构件所组成。它通常有几个自由度,用以抓取或移动物体(工具或工件)。 3.2末端操作器(End Effector) 为使机器人完成其任务而专门设计并安装于机器人腕部末端,直接执行工作要求的装置。如焊枪、焊钳、切割枪、夹持器等。 3.3工作空间(Working Space) 工业机器人执行任务时,其手腕参考点所能掠过的空间。 3.4 轴数(Controlled Axes)

基于 PLC 的机器人电气控制系统的设计

基于 PLC 的机器人电气控制系统的设计 发表时间:2018-04-02T11:55:00.723Z 来源:《红地产》2017年7月作者:侯跃云 [导读] PLC 是专为工作环境条件较恶劣的工业应用而设计的,其可以控制各种自动化应用。 1 PLC 技术概述 1.1 PLC 技术的结构可编程逻辑控制器,其实质是一种专门用在工业控制领域的计算机,它的主要结构基本与微型计算机基本相同,PLC 技术的结构为:电源,PLC 的电源对整个系统的正常工作起着非常重要的作用。假如没有可靠、良好的电源为其供电,PLC 是无法工作的,因此制造商是非常重视对可编程逻辑控制器的电源的设计制作;中央处理单元 (CPU),中央处理单元 (CPU) 是 PLC 的控制中心,主要是以扫描的方式收发现场各输入设备的状态和数据,然后分别存入 I/O 映象区,再读取程序进而控制相应设备;存储器,主要分 为存放系统软件的系统程序存储器和存放应用软件的用户程序存储器;输入输出接口电路,输入接口电路用于连接 PLC 与现场控制的接口界面,输出接口电路集成了选通电路、数据寄存器和中断请求电路;功能模块,如计数、定位等;通信模块。 1.2 PLC 技术优势 PLC 技术在维护机械运转和数字化运算方面具有一定的优势,能结合传统继电技术,确保互联网和自动化结构符合常规性技术标准。技术本身具有一定的价值优势,能在推动工业进程的基础上,维护工业生产的精简效果。PLC 作为现代化工业中较为重要的项目结构和管理器件,整体管控结构的实效性价值十分关键,能在优化整体机械工程与自动化项目效率的同时,确保相关技术结构的优势得以发挥出来。 首先,PLC 技术操作性较高,多数 PLC 技术能有效支持相应的程序进行语言的互译管理,确保用户能有效掌握相关语言结构和模式,进一步提升应用效率。并且,结合自动翻译功能的 PLC 技术也能为用户后续操作提供较为有效的保障。需要注意的是,正是由于互译优势,在实现 PLC 技术编程的同时,也能减少外部处理的难度,集中简化了系统的整体结构问题,优化改善工作效率。提升了 PLC 技术实用价值的过程中,借助统一国际标准通信协议,能为差异化厂家进行 PLC 技术互换提供坚实的保障,促进实践水平和处理效果的维护程度。在整合调试操作水平的同时,也为提升 PLC 产品通信开放度提供了保障。 其次,PLC 技术设备体积小且能耗较少,在 PLC 技术装置结构中,由于集成电子线路的应用价值和整体处理水平,能在安装管理工作发挥实际水平的同时,确保相关处理结构和应用体系最优化,尺寸在 10 厘米以下时,PLC 技术设备中重量会在 150g 以下,确保消耗功率的维护程度贴合实际。 最后,PLC 技术抗干扰能力较强,在实际管理机制和整合措施统筹升级的基础好上,要对相关工艺流程的运行结构予以分析。因此,结合 PLC 技术的界面管理水平对现场总线体系和 PLC 技术界面处理进行统筹整合,维护通信保障体系的实效性,也为后续工作中电磁、电路以及可靠性处理工作顺利完成提供保障。 2 基于 PLC 的机器人电气控制系统的设计要点 2.1 总体结构及流程设计系统的控制要求是实现方形和圆形玻璃的定尺寸打磨,即要求驱动流水线横向运动的电动机 M1 在达到设置尺寸后停止运动,光电编码器与横向运动电动机 M1 同轴连接,电动机的水平驱动位移与光电编码器的脉冲数输出成比例关系,光电编码器的输出与 S7-200CPU 的高速计数器输入相连接,利用高速计数器实时计算光电编码器输出脉冲数,通过计算即可测量出横向运动的长度。组态实现长度宽度尺寸的设置和显示功能,人机界面将设置的相关参数传递给 S7-200CPU 的寄存器,执行用户程序计算当前横向移动距离和设置值的关系,打磨机构根据限制尺寸实现打磨,待打磨完成后,电动机 M3 驱动打磨机构实现纵向位移,光电编码器测量纵向位移的尺寸,当设置尺寸和测量尺寸相等时,垂直电动机 M2 驱动打磨机构垂直位移,行程开关限制垂直电动机行程位置,打磨机构垂直运动达到设置行程后,完成一次完整的控制任务,控制系统再次驱动电机进行流水线横向运动。实现以上控制任务,控制系统应包括三大部分:主电路、控制部分和显示部分。因此可以设计出控制系统的结构流程图。系统结构流程图如图 1 所示。 图 1 系统结构流程图 2.2 电源电路设计在最机器人进行电气系统设计时,在设计的时候应考虑:安全性、经济性、可行性、外观及维修的方便性等。电源电路是指全机器人的动力电路以及控制电路,主要包括:控制电路、电源电路、PLC 电源的开关电路以及动力电源转换回路。控制系统主电源由空气开关控制,PLC 电源通断由启动按钮和继电器控制。电源锁旋钮与启动按钮串联,当电源锁旋钮和启动按钮闭合,继电器的线圈得电,常开触点闭合,与启动按钮构成起一保一停控制回路,PLC 得电后开始循环扫描。 2.3 控制系统主程序设计 针对相应的控制要求,设计的 PLC 控制系统,通过组态人机界面完成对玻璃长、宽等参数的设置,利用 S7-200 系列 PLC 对台车电机、升降电机、进刀电机的运动控制。为实现系统控制要求,完成控制任务,系统需要加入定时安全报警程序,即每一个动作启动时同时启动定时器,根据每个动作完成的时间设置定时器的定时时间,如果系统出现故障,定时时间到而未完成相应动作,停止后续动作,触发报警动作。 控制系统主要是为了完成玻璃定长定宽的打磨,主程序是控制电动机的设置长度和设置宽度的定尺寸打磨运动,主要完成下降、定宽、横向进给、定长打磨和上升运动。在常用的梯形图设计方法中有经验设计法和顺序功能图设计方法,在此次主程序设计中采用顺序功

工业机器人控制系统

更多论文请加QQ 1634189238 492186520 第一章绪论 1.1 工业机器人的发展及分类 1.1.1 工业机器人的发展 工业机器人的发展通常可规划分为三代: 第一代工业机器人:通常是指目前国际上商品化与使用化的“可编程的工业机器人”,又称“示教再现工业机器人”,即为了让工业机器人完成某项作业,首先由操作者将完成该作业所需要的各种知识(如运动轨迹、作业条件、作业顺序和作业时间等),通过直接或间接手段,对工业机器人进行“示教”,工业机器人将这些知识记忆下来后,即可根据“再现”指令,在一定精度范围内,忠实的重复再现各种被示教的动作。1962年美国万能自动化公司的第一台Unimate工业机器人在美国通用汽车公司投入使用,标志着第一代工业机器人的诞生。 第二代工业机器人:通常是指具有某种智能(如触觉、力觉、视觉等)功能的“智能机器人”。即有传感器得到触觉、力觉和视觉等信息计算机处理后,控制机器人的操作机完成相应的适当操作。1982年美国通用汽车在装配线上为工业机器人装备了视觉系统,从而宣布了新一代智能工业机器人的问世。 第三代工业机器人:即所谓的“只治式工业机器人”。它不仅具有感知功能,而且还有一定的决策及规划能力。第一代工业机器人目前仍处在实验室研究阶段。工业机器人经历了诞生---成长---成熟期后,已成为制造业中不可缺少的核心装备,世界上有约75万台工业机器人正与工人朋友并肩战斗在个条生产线上,特种机器人作为机器人家族的后起之秀,由于其用途广泛而大有后来居上之势,仿人机器人、农业机器人、服务机器人、水下机器人、医疗机器人、军用机器人、娱乐机器人等各种用途发特种机器人纷纷面世,而且正以飞快的速度向实用化迈进。 我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前已基本掌握了机器人的操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术、生产了部分机器人的关键元器件,开发出喷漆、焊弧、点焊、装配、搬运等机器人;其中有130多台配套喷漆机器人在二十与家企业的近30条自动喷漆生产线上获得规模应用,弧焊机器人已应用在汽车制造厂的焊装线上。 但总的来看,我国的工业机器人技术及其工程应用水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国已安装的国产工业机器人约200台,约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模化设计,积极推进产业化进程。 1.1.2 工业机器人的分类 工业机器人按不同的方法可分下述类型 工业机器人按操作机坐标形式分以下几类:(坐标形式是指操作机的手臂在运动时所取的参考坐标系的形式。)

机器人控制技术论文

摘要 为使机器人完成各种任务和动作所执行的各种控制手段。作为计算机系统中的关键技术,计算机控制技术包括范围十分广泛,从机器人智能、任务描述到运动控制和伺服控制等技术。既包括实现控制所需的各种硬件系统,又包括各种软件系统。最早的机器人采用顺序控制方式,随着计算机的发展,机器人采用计算机系统来综合实现机电装置的功能,并采用示教再现的控制方式。随着信息技术和控制技术的发展,以及机器人应用范围的扩大,机器人控制技术正朝着智能化的方向发展,出现了离线编程、任务级语言、多传感器信息融合、智能行为控制等新技术。多种技术的发展将促进智能机器人的实现。 当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。 PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti 和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。 关键词:机器人,机器人控制,PID,自动控制

目录 摘要.......................................................... I 第1章绪论................................................ - 1 - 1.1机器人控制系统 (1) 1.2机器人控制的关键技术 (1) 第2章机器人PID控制...................................... - 2 - 2.1PID控制器的组成 (2) 2.2PID控制器的研究现状 (2) 2.3PID控制器的不足 (3) 第3章 PID控制的原理和特点 ................................ - 4 - 3.1PID控制的原理 (4) 3.2PID控制的特点 (5) 第4章 PID控制器的参数整定 ................................ - 5 -后记...................................................... - 6 -

基于开源软件Ardusub的水下机器人ROV控制系统

基于开源软件Ardusub的水下机器人ROV控制系统 摘要:随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作 业中发挥着越来越重要的作用。ROV作为水下作业的重要工具,对运动控制算法 要求较高,采用开源软件ArduSub,结合一种模糊串级PID控制算法实现ROV控 制系统的设计,重点对ArduSub的特点、适应配置及PID控制算法原理,包含运 动和姿态方面进行了阐述,能够良好实现ROV的水下控制。 1引言 随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作业中 发挥着越来越重要的作用。其中ROV续航持久,成本相对较低,逐渐成为水下作 业的重要工具。ROV工作于水下环境,具有非线性、易受环境影响等特点,对运 动控制算法要求较高,同时要求整个控制系统要有较好的实时性和可靠性。 2开源软件ArduSub简介 ArduSub水下机器人的控制器是一个完整的开源解决方案,提供远程操作控 制(通过智能潜水模式)和全自动的执行任务。作为DroneCode软件平台的一部分,它能够无缝地使用地面控制站的软件,可以监控车辆遥测和执行强大的任务规划 活动。它还受益于DroneCode平台的其他部分,包括模拟器,日志分析工具,为 车辆管理和控制和更高层次的api。 其主要特点在于以下几个方面: 反馈控制和稳定性:ArduSub控制器基于多旋翼自动驾驶系统,具有精确的 反馈控制,可主动维持方向。 深度保持:使用基于压力的深度传感器,ArduSub控制器可以将深度保持在 几厘米内。 航向保持:默认情况下,ArduSub在未命令转动时自动保持其航向。 相机倾斜:通过操纵杆或游戏手柄控制器与伺服或万向节电机进行相机倾斜 控制。 灯光控制:通过操纵杆或游戏手柄控制器控制海底照明。 无需编程:ArduSub控制器适用于各种ROV配置,无需任何自定义编程。大 多数参数可以通过地面控制站轻松更改。 兼容性好:ArduSub兼容许多不同的ROV框架,支持PWM输出。 由于以上特征,使得ArduSub成为一款可以很好适用于水下机器人RPV控制 系统的开源软件。 ArduSub兼容基于串行和以太网的通信接口。使用的硬件自动驾驶仪必须支 持选择的选项。Pixhawk仅支持串行连接,但可以通过配套计算机连接到以太网。其他autopilots原生支持以太网。ArduSub软件主要用于通过ArduSub进行接口,ArduSub是一种开源的跨平台用户界面,适用于所有类型的无人机。该接口通过 系绳连接到ArduSub控制器并显示车辆状态信息,并允许更新参数和设置。最重 要的是,QGC与用于指挥车辆的操纵杆或游戏手柄控制器连接。 ArduSub包含一个高级的电机库,支持多个框架,例如具有6自由度推进器 定位的BlueROV配置(图1所示)、带有并排垂直推进器的矢量ROV(图2所示)、采用单垂直推进器的ROV(图3所示)等等。 在传感器和执行器方面,除了标准的板载传感器(IMU,指南针),ArduSub

工业机器人安装与调试课程标准

工业机器人安装与调试课程标准 一、课程基本信息 课程代码适用专业机电一体化 总学时45 总学分 大纲制定时间2016年9月第几次修订 1 大纲修订人大纲审核人 先修课程:机械设计基础、电气控制与PLC、机电设备故障诊断与维修 后续课程:工业机器人现场编程、自动化工业生产的安装与调试 课程类型:专业必修课 二、课程性质 工业机器人的安装与调试是为了满足工业机器人行业要培养工业机器人装配调试、操作维修、设备维护管理专业人才需要而开设的一门专业方向课程,是机电一体化专业课程体系中的一门重要专业核心课程。通过本课程的学习,学生能够了解工业机器人安装与调试的一般流程方法,能够独立完成工业机器人的安装、调试、运行、维护、维修等工作。为学生后续学习和今后从事工业机器人技术领域的工作打下坚实的基础。《工业机器人安装与调试》课程在专业的课程体系中处于非常重要的地位,该课的先导课程为《机械设计基础》、《电气控制与PLC》和《机电设备故障诊断与维修》,经过这三门课程的学习,学生已具备机械部件拆装、机电设备电器控制、电子产品焊装调试、软件编程和机械图和电器原理图的识读能力。已基本具备学习本课程的知识、技能基础。《工业机器人安装与调试》后续课程为《工业机器人现场编程》、《自动化工业生产的安装与调试》,进一步学习工业机器人理论知识和实践技能。 三、课程的基本理念 以典型案例为载体,设计课程结构;以双证书标准和职业岗位能力要求为基础,改革课程内容;以职业素质培养为主线,提升学生职业能力。 四、课程设计

该课程是依据“机电一体化专业工作任务与职业能力分析表”中的职业岗位工作项目设置的。其总体设计思路是为以工作任务为中心组织课程内容,让学生在完成具体项目的过程中构建相关理论知识,发展职业能力。课程内容突出对学生职业能力的训练,并融合了相关职业资格证书对知识、技能和态度的要求。 通过对课程内容高度归纳,概括了工业机器人系统构成、机器手动操作、机器人编程控制、机器人参数设定及程序管理等,容的组织是由易到难,由浅入深,由基本理论知识到提高知识与技能训练。学生通过学习,基本掌握本课程的核心知识与技能,初步具备工业机器人现场编程能力以及有关的创新创业技能。 五、课程的目标 (一)总目标 通过本门学习领域课程工作任务的完成,使学生了解工业机器人的分类、特点、组成、工作原理等基本理论和技术,掌握工业机器人的安装与调试的一般方法与流程,具备工业机器人的安装、调试、故障检测与维修,设备管理等解决实际问题的基本技能,使学生达到理论联系实际、活学活用的基本目标,提高其实际应用技能,并使学生养成善于观察、独立思考的习惯,同时通过教学过程中的案例分析强化学生的职业道德意识和职业素质养成意识以及创新思维的能力。 (二)具体目标: 1、知识: (1)能完成相关资料的检索; (2)能概述工业机人的结构组成和工作原理。 (3)能够正确阅读工业机器人部件装配图、零件图和技术文件,进行机械部件配; (4)能够正确阅读工业机器人的电气原理图、电气安装图,完成电气装配; 2、能力 掌握工业机器人的模块化组装、调试、控制与维护的基本方法,能学会用工业机器人的编程语言,编写较简单的调试程序。 (1)掌握编写适用于不同工作任务的工业机器人调试程序; (2)能够使用工业机器人安装与调试常用的机械工具,电子工具和相关仪器仪表; (3)能够及时详细地记录工业机器人安装与调试过程的工作日记、总结工作经验已供日后的使用。

机器人与自动化技术

机器人与自动化技术 “机器人、无处不在的屏幕、语音交互,这些都将改变我们看待‘电脑’的方式。一旦看、听、阅读能力得到提升,你就可以以新的方式进行交互。”----比尔?盖茨在某电视节目中,预测未来科技领域的下一件大事时表示:机器人与自动化技术将成为未来发展的一大趋势,可以改变世界! 工业机器人的应用,正从汽车工业向一般工业延伸,除了金属加工、食品饮料、塑料橡胶、3C、医药等行业,机器人在风能、太阳能、交通运输、建筑材料、物流甚至废品处理等行业都可以大有作为。 当然,即将“改变世界”的机器人不仅仅具有代替人工的价值,在很多人类无法实现的领域也将出现机器人的身影。譬如,派送采矿机器人到月球和小行星上采挖稀土矿,将有望成为现实。 而更令比尔?盖茨寄予厚望的是机器人将像“电脑”一样改变人类的生活。 日本早稻田大学研究人员推出一种新型仿人型家务机器人。它集安全性、可靠性和灵巧性于一身,还具有仿人脸的外观。在工作时,它将一名男子抱下床,与他聊天并为他准备早餐。由于拥有和成年女性大小相当的灵巧双臂、双手,这种机器人能够用夹子将面包从面包机中取出,而丝毫不弄碎它。 英国阿伯丁大学启动了一项新的研究计划,在3年内研发出允许机器人与人类进行交谈,甚至讨论具体决定的系统……。 作为先进制造业中不可替代的重要装备,工业机器人已经成为衡量一个国家制造水平和科技水平的重要标志。 在机器人市场中,目前80%的市场份额仍由跨国公司占有,其中瑞典ABB、日本发那科FANUC、日本安川yaskawa和德国库卡KUKA四大企业则是市场第一梯队的“四大金刚”。其它有瑞士史陶比尔Staubli、德国克鲁斯CLOOS、德国百格拉、德国徕斯、德国斯图加特航空航天自动化集团(STUAA)、意太利瀚博士hanbs、意大利柯马COMAU、英国Auto Tech Robotics等。 目前国内生产机器人的企业主要有:中科院沈阳新松机器人自动化股份有限公司、芜湖埃夫特智能装备有限公司、上海新时达机器人有限公司、安川首钢机器人有限公司、哈工大海 尔机器人有限公司、南京埃斯顿机器人工程有限公司、广州数控设备有限公司、上海沃迪自动化装备股份有限公司等。 2015年,中国机器人市场需求预计将达35000台,占全球比重16.9%,成为全球规模最大的市场。 一、机器人的系统构成 由3大部分6个子系统组成。 3大部分是:机械部分、传感部分、控制部分。 6个子系统是:驱动系统、机械结构系统、感受系统、机器人-环境交互系统、人-机交互系统、控制系统。

AUV水下机器人运动控制系统设计(李思乐)

中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目:AUV水下机器人运动控制系统研究报告 课程名称:运动控制技术 姓名:李思乐 学号:21100933077 院系:工程学院机电工程系 专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。 关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1 所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2 机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV

-机械手电气控制系统设计.doc

机械手电气控制系统设计

目录 一、机械手设计任务书 (1) 1机械手结构、动作与控制要求 (1) 2设计任务 (1) 二、电器控制部分 (2) 1.电器元件目录表 (2) 2.机械手主电路接线图 (3) 3.继电器控制电路 (4) 4.接线图 (4) 5.电器板元件布置图 (5) 6.控制面板 (5) 三、PLC控制部分 (6) 1.PLC的选型 (6) 2.PLC I/O图 (6) 3.状态转移图 (7) 4.梯形图 (7) 5.指令表 (10) 四、参考文献 (14) 一、机械手设计任务书 1机械手结构、动作与控制要求

机械手在专用机床及自动生产线上应用十分广泛,主要用于搬动或装卸零件的重复动作,以实现生产的自动化。本设计中的机械手采用关节式结构。各动作由液压驱动,并由电磁阀控制。动作顺序及各动作时间的间隔采用按时间原则控制的电气控制系统,动作时间需要可调。 以镗孔专用机床加工零件的上料、下料为例,机械手的动作顺序是:由原始位置将以加工好的工件卸下,放回料架,等待料架转过一定角度后,再将未加工零件拿起,送到加工位置,等待镗孔加工结束,再将加工完毕工件放回料架,如此重复循环。 设计要求 1.1加工中上料和下料各动作采用自动循环。 1.2各动作之间应有一定的延时(由时间继电器调定) 1.3机械手各部分应单独动作,以便调整及维修。 1.4液压泵电动机(Y100L2-4.3KW)及各电磁阀运行状态应有指 示。 1.5应有必要的电气保护与联锁环节。 2设计任务: 2.1绘制电气控制原理线路图,选用电器元件,制订元件目录表。 2.2设计并绘制以下工艺图样中的一种: 电器板元件布置图与底板加工零件图;电器板接线图;控制面 板元件布置图、接线图及面板加工图;电气箱及系统总接线图。 2.3编制设计,使用说明书,设计小结,列出设计参数资料目录。

工业机器人控制系统的组成教学内容

工业机器人控制系统 的组成

工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等如奔腾系列CPU以及其他类型CPU。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11、网络接口 1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。 2)Fieldbus接口:支持多种流行的现场总线规格,如Devicenet、ABRemoteI/O、Interbus-s、profibus-DP、M-NET等。

工业机器人控制系统分类 1、程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。 2、自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程是基于操作机的状态和伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。这种系统的结构和参数能随时间和条件自动改变。 3、人工智能系统:事先无法编制运动程序,而是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。 4、点位式:要求机器人准确控制末端执行器的位姿,而与路径无关。 5、轨迹式:要求机器人按示教的轨迹和速度运动。 6、控制总线:国际标准总线控制系统。采用国际标准总线作为控制系统的控制总线,如VME、MULTI-bus、STD-bus、PC-bus。 7、自定义总线控制系统:由生产厂家自行定义使用的总线作为控制系统总线。 8、编程方式:物理设置编程系统。由操作者设置固定的限位开关,实现起动,停车的程序操作,只能用于简单的拾起和放置作业。

工业机器人技术:电机与电气控制2019期末考试试卷A

电机与电气控制2019期末考试试卷A 1.直流电动机的结构可分为静止部分和可旋转部分,其中静止部分称为 ,可旋转部分称为 。 2.直流电机的定子在电磁方面是 ,在机械方面是整个电机的支撑。 3.主磁极上的线圈是用来产生主磁通的,称为 绕组。 4.直流电机的励磁方式可分为 、 、 和 四类。 5.直流电机的换向不良会产生 或环火,严重时将烧毁 ,导致电机不能正常运行,甚至引起事故。 6.变压器是一种常见的静止电气设备,它是利用 原理,将某一数值的交变电压变换为 的另一数值的交变电压。 7.变压器不但具有 变换和 变换的作用,还具有 变换的作用。 8.某一物理量的实际值与选定的某一同单位的基准值的比值,称为该物理量的 或 。 9 .异步电动机是依靠 的变化,来调整电动机的 ,从而使电动机的 得到相应的改变,以适用于负载变化的需要来实现新的平衡。 10. 是异步电动机的主要特性,它是指电动机的 之间的关系。 11.直流伺服电动机两种控制方式:一种称为 控制,另种称为 控制 12.步进电动机是一种将 信号转换成相应 的电动机。 一、填空题(本题11小题,每空1分,共计30分)

13.低压开关电器主要用作、。 14.熔断器是一种主要用作保护的电器。 15.在三相变压器中,额定电流是指电流。 二、计算题(本题3小题,每题10分,共计30分) 1.一台串励直流电动机UN =220V,IN =40A,nN =2000 r/min,电枢总电阻Ra 等于0.50欧姆,假定磁路不饱和,当Ia =20A时,电动机的转速和电磁转矩是多少? 2.某低压照明变压器U1=380V,I1=0.263A,N1=1010匝,N2=103匝,求二次绕组对应的输出电压U2,输出电流I2。该变压器能否给一个80W且电压相当的低压照明灯供电?

基于PLC的机器人电气控制系统的设计

基于PLC的机器人电气控制系统的设计 摘要:随着电气自动化技术的日益成熟,其已逐步渗透入各行各业,并以机械化、可编程、误差小等优势大大提高了工作效率,促进了相关行业的发展。自20世纪70年代起,相关学者借助着计算机的独特优势研究电气工程技术,使其朝着自动化、智能化的方向发展。如今电气自动控制技术日益完善,改变了相关人员的工作方式,减少资源消耗并提高了工作效率。但随着工业产品及生产设备日新月异,诸多传统电气设备在设计方面存在着不足,我国自动化控制水平一定程度上低于欧美国家,不仅难以满足当今产品的质量需求,更影响了电气设备的正常使用。于是本文根据实际生产情况中对不同运行参数要求存在差异,而选择不同的监控方式并分析其各自存在的优缺点;另外对系统硬件、输入/输出电路进行设计,提出一种妥善的电气自动化设计,并与传统存在的自动控制系统进行对比分析。 关键词:PLC的机器人;电气控制;系统的设计 引言 机器人在专用机床及自动化生产线上应用十分广泛,主要用于搬动或装卸零件的重复动作,以实现生产自动化。本设计中的机器人采用关节式结构,它模拟人手臂的部分动作,按预定的程序、轨迹和要求,实现抓取、搬运和装配,动作由液压驱动,并由电磁阀控制,动作顺序及各动作时间的间隔采用按时间原则控制的电气控制系统。PLC以其可靠性高,抗干扰能力强,编程简单,使用方便可靠等特点,在机械制造业得到了广泛的应用。选用三菱公司的FX2N—32MR可编程序控制器对机器人的电气控制系统进行设计,提高了自动化程度和可靠度,效果良好。 1PLC技术简介 PLC技术是随着微机技术发展而出现的产物,该技术充分利用了微处理器技术的优点,弥补了传统控制技术中的功耗高、可靠性低等缺陷不足。PLC技术由美国科研人员在20世纪60年代提出,技术应用简单,无需进行采用专业的计算机语言进行编程,通过简单的继电器梯形图指令即可实现操作。PLC技术是一种可编程逻辑控制器,将其应用在电气自动化控制系统中,简化了控制程序,降低了自动化控制的能源消耗,提高了自动化控制的灵敏度,经过这些年的发展,PLC技术也越来越成熟,应用的领域也在不断扩大,提高了工业生产中的自动化控制水平,推动了社会经济的发展。 2PLC设计原则 PLC系统作为一个整体的设计,必须要符合有关设计原则,只有这样,才能真正提高设计效率,并有效减少运行错误。也就是说,一个良好的设计效果是很重要的。首先,在实际设计中,必须要尊重安全原则,提升系统可靠性,确保系统的正常运行。其次,在保证系统良好性能的基础上,尊重最低成本原则,提高制造企业的经济效益。 3PLC技术的优势 ①编程方便,操作简单。PLC技术编程采用简单的梯形图、逻辑图等基础编程语言,在程序编译和修改中不需要太过复杂的信息技术知识,为操作人员提供了便利。在程序修改调试中可以随时进行程序增减,容易操控,方便应用。②功能性强,性价比高。随着科技的发展,我国PLC技术也在进一步提高。一台小型的PLC中就可以囊括成百上千个编程元件,麻雀虽小五脏俱全,PLC完全可以实

博士生课程空间机器人关键技术

博士生课程空间机器人关键技术

1空间机器人概述 2数学力学基础 3冗余自由度机器人 4柔性机械臂 5欠驱动机器人 6机器人灵巧手 (一)空间机器人的概述 1.空间机器人在空间技术中的地位 从20世纪50年代,以美国和苏联为首的空间技术大国就在空间技术领域展开了激烈的竞赛。 i 苏联 1957年8月3日,前苏联研制的第一枚洲际弹道导弹SS-6首次发射成功。不久,前苏联火箭总设计师柯罗廖夫从美国新闻界得知美国试图在1957-1958年的国际地球物理年里发射一颗人造地球卫星。于是,他立即将SS-6导弹稍加修改,将弹头换上一个结构简单的卫星,抢先将第一颗人造卫星送上了太空。 接着,在第一颗人造卫星发射后一个月,即11月3日,又用SS-6导弹作航天运输工具,将装有小狗“莱伊卡”的第二颗人造卫星送入太空的圆形地球轨道。 1959年5月,前苏联又将“月球”l号人造卫星送入了月球轨道。 ii 美国 在1958年以前,以“红石”近程导弹和“维金”探空火箭为基础,分别研制成“丘比特”C和“先锋”号等小型运载火箭,用于发射最初的几个有效载荷仅为数千克至十几千克的小卫星。 发展到今天,从地面实验室研究到人造卫星、空间站、载人飞船、航天飞机、行星表面探测器,空间技术大国都投入了大量人力、物力和财力。空间技术对于天文学、气象、通信、医学、农业以及微电子等领域都产

生了很大的效益。不仅如此,空间技术对于未来国家安全更具有重要的意义。在空间技术发展的过程中空间机器人的作用越来越明显。 20世纪60年代前苏联的移动机器人研究所(著名的俄罗斯Rover科技有限公司前身)研制了世界上第一台和第二台月球车Lunohod-1和Lunohod-2。1976年美国发射海盗一号和二号(Rover-1、Rover-2)的登陆舱相继在在火星表面登陆,通过遥操作机械臂进行火星表面土壤取样。 随着空间技术研究的日益深入,人类空间活动的日益频繁,需要进行大量的宇航员的舱外活动(EV A),这对宇航员不仅危险,而且没有大气层的防护,宇宙射线和太空的各种飞行颗粒都会对宇航员造成伤害。建造国际空间站,以及未来的月球和火星基地,工程浩大,只靠宇航员也是非力所能及的。还有空间产业、空间科学实验和探测,这些工作是危险的,但有一定重复性,各航天大国都在研究用空间机器人来代替宇航员的大部分工作。 此外许多空间飞行器长期工作在无人值守的状态,这些飞行器上面各种装置的维护和修理依靠发射飞船,把宇航员送上太空的办法既不经济,也不现实。在未来的空间活动中,许多工作仅靠宇航员的舱外作业是无法完成的,必须借助空间机器人来完成空间作业。 2空间机器人的任务和分类 1)空间建筑与装配。一些大型的安装部件,比如无线电天线,太阳能电池,各个舱段的组装等舱外活动都离不开空间机器人,机器人将承担各种搬运,各构件之间的连接紧固,有毒或危险品的处理等任务。有人预计,在不久将来空间站建造初期,一半以上的工作都将由机器人完成。 2)卫星和其他航天器的维护与修理。随着人类在太空活动的不断发展,人类在太空的资产越来越多,其中人造卫星占了绝大多数。如果这些卫星一旦发生故障,丢弃它们再发射新的卫星就很不经济,必须设法修理后使它们重新发挥作用。但是如果派宇航员去修理,又牵涉到舱外活动的问题,而且由于航天器在太空中,是处于强烈宇宙辐射的环境之下,有时人根本无法执行任务,所以只能依靠空间机器人。挑战者号和哥伦比亚号航天飞机的坠毁引起人们对空间飞行安全的关注,采用空间机械臂修复哈勃太空望远镜似乎是一件很自然的事情。安装上新的科学仪器(包括一台视野宽阔的摄象仪和一台摄谱仪)后,哈勃望远镜的观测能力可增强十倍以上。空

相关文档
最新文档