模式识别特征提取

模式识别特征提取
模式识别特征提取

特征提取

SIFT算法提取步骤

SIFT算法提取特征点的主要步骤:

(1)检测尺度空间极值点

检测尺度空间极值的目的是确定特征点位置和所在尺度组。即先使用高斯过滤器对原始图像进行若干次连续滤波建立第一个尺度组,再把图形减小到原来的一半,进行同样的高斯滤波形成第二个尺度组。之后,重复操作直到图像小于某一个给定阀值为止。接下来对每个尺度组中的高斯图像进行差分,形成高斯差分尺度组(DoG尺度图像)。

图3-1 尺度空间的构造

在上面建立的DoG尺度空间金字塔中,为了检测到DoG空间的最大值和最小值,DoG尺度空间中中间层(最底层和最顶层除外)的每个像素点需要跟同一层的相邻8个像素点以及它上一层和下一层的9个相邻像素点总共26个相邻像素点进行比较,以确保在尺度空间和二维图像空间都检测到局部极值,如图3-2所示

图3-2 DoG空间局部极值检测

在图3-2中,标记为叉号的像素若比相邻26个像素的DoG值都大或都小,则该点将作为一个局部极值点。被检测工件的高斯滤波图像如图3-3所示。

图3-3 原始图像和部分高斯滤波图像

(2)精确定位极值点

由于DoG值对噪声和边缘较敏感,因此,在上面DoG尺度空间中检测到局部极值点还要经过进一步的检验才能精确定位为特征点。一般通过二阶Taylor 展开式计算极值点的偏移量,获得亚像素定位精度,同时通过阈值设置剔除差异小的点。最终保留下来的点称为特征点,特征点的检测是在尺度空间中进行的,特征点保持为尺度不变量。各层图像特征点如图3-4所示。

图3-4 各层图像的特征点

(3)为每个关键点指定方向参数

σ—尺度空间坐标

O —组(octave)数

S —组内层数

在上述尺度空间中,O 和S ,σ的关系如下:

()[][]2,...,0,1,...,02

,0+∈-∈=+S s O o s o S s o σσ (3-10)

其中0σ是基准层尺度,o 为组octave 的索引,s 为组内层的索引。关键点的尺度坐标σ就是按关键点所在的组和组内的层,利用公式(3-10)计算而来。

在最开始建立高斯金字塔时,要预先模糊输入图像来作为第0个组的第0层的图像,这时相当于丢弃了最高的空域的采样率。因此通常的做法是先将图像的尺度扩大一倍来生成第-1组。我们假定初始的输入图像为了抗击混淆现象,已经对其进行5.01=-σ的高斯模糊,如果输入图像的尺寸用双线性插值扩大一倍,那么相当于0.11=-σ。

取式(3-9)中的k 为组内总层数的倒数,即:

s k 1

2= (3-11)

在构建高斯金字塔时,组内每层的尺度坐标按如下公式计算:

()()()2012

0σσσ--=s s k k s (3-12)

其中0σ初始尺度,lowe 取6.10=σ,3=S 为组内的层索引,不同组相同层的组内尺度坐标()s σ相同。组内下一层图像是由前一层图像按()s σ进行高斯模糊所得。式(3-12)用于一次生成组内不同尺度的高斯图像,而在计算组内某一层图像的尺度时,直接使用如下公式进行计算:

()[]2,...,02_0+∈=S s s oct S s

σσ (3-13)

该组内尺度在方向分配和特征描述时确定采样窗口的大小。

由上,式(3-9)可记为:

()()()()()()()y x I s y x G s y x G y x D ,,,1,,,,*-+=σσσ

()()()()s y x L s y x L σσ,,1,,-+= (3-14)

(4)生成SIFT 特征描述符

首先将坐标轴旋转为特征点的方向,以确保旋转不变性。接下来以特征点为中心取8×8的窗口(特征点所在的行和列不取)。在图3-3左边,中央黑点为当前特征点的位置,每个小格代表特征点邻域所在尺度空间的一个像素,箭头方向代

表该像素的梯度方向,箭头长度代表梯度模值,图中圈内代表高斯加权的范围(越靠近特征点的像素,梯度方向信息贡献越大)。然后在每4×4的图像小块上计算8个方向的梯度方向直方图,绘制每个梯度方向的累加值,形成一个种子点,如图3-5右边图所示。此图中一个特征点由2×2共4个种子点组成,每个种子点有8个方向向量信息,可产生2×2×8共32个数据,形成32维的SIFT特征向量,即特征点描述器,所需的图像数据块为8×8。这种邻域方向性信息联合的思想增强了算法抗噪声的能力,同时对于含有定位误差的特征匹配也提供了较好的容错性。实际计算过程中,为了增强匹配的稳健性,建议对每个特征点使用4×4共16个种子点来描述,每个种子点有8个方向向量信息,这样对于一个特征点就可以产生4×4×8共128个数据,最终形成128维的SIFT特征向量,所需的图像数据块为16×16。此时SIFF特征向量已经去除了尺度变化、旋转等几何变形因素的影响,再继续将特征向量的长度归一化,则可以进一步去除,光照变化的影响。

图3-5 像梯度(左)及特征点描述器(右)

原始SIFT特征提取结果如图3-6所示。其中加号表示特征点位置,方框表示尺度大小,不同颜色表示采样频率不同。

图3-6 SIFT特征提取结果

特征选择与特征提取

模式类别的可分性判据 在讨论特征选择和特征压缩之前,我们先要确定一个选择和提取的原则。对一个原始特征来说,特征选择的方案很多,从N 维特征种 选择出M 个特征共有()!!! M N N C M N M = -中选法,其中哪一种方案最佳, 则需要有一个原则来进行指导。同样,特征的压缩实际上是要找到M 个N 元函数,N 元函数的数量是不可数的,这也要有一个原则来指导找出M 个最佳的N 元函数。 我们进行特征选择和特征提取的最终目的还是要进行识别,因此应该是以对识别最有利原则,这样的原则我们称为是类别的可分性判据。用这样的可分性判据可以度量当前特征维数下类别样本的可分性。可分性越大,对识别越有利,可分性越小,对识别越不利。 人们对的特征的可分性判据研究很多,然而到目前为止还没有取得一个完全满意的结果,没有哪一个判据能够完全度量出类别的可分性。下面介绍几种常用的判据,我们需要根据实际问题,从中选择出一种。 一般来说,我们希望可分性判据满足以下几个条件: 1. 与识别的错误率由直接的联系,当判据取最大值时,识别的错误率最小; 2. 当特征独立时有可加性,即: ()()121 ,,,N ij N ij k k J x x x J x ==∑

ij J 是第i 类和第j 类的可分性判据,ij J 越大,两类的可分程度 越大,()12,,,N x x x 为N 维特征; 3. 应具有某种距离的特点: 0ij J >,当i j ≠时; 0 ij J =,当i j =时; ij ji J J =; 4. 单调性,加入新的特征后,判据不减小: ()()12121,,,,,,,ij N ij N N J x x x J x x x x +≤ 。 但是遗憾的是现在所经常使用的各种判据很难满足上述全部条件,只能满足一个或几个条件。 基于矩阵形式的可分性判据 1. 类内散度矩阵 设有M 个类别,1,,M ΩΩ ,i Ω类样本集()()(){}12,,,i i i i N X X X ,i Ω类 的散度矩阵定义为: () ()() ( )()() ( ) 1 1i N T i i i i i w k k k i S N == --∑X m X m 总的类内散度矩阵为: ()() ()() () ()() () () 1 1 1 1 i N M M T i i i i i w i w i k k i i k i S P S P N ==== Ω= Ω--∑∑∑X m X m 2. 类间散度矩阵 第i 个类别和第j 个类别之间的散度矩阵定义为: () () () ( )() () ( ) T ij i j i j B S =--m m m m 总的类间散度矩阵可以定义为:

模式识别第二章-2.K-均值分类算法

模式识别第二章 2. K-均值分类算法 1. 实验原理和步骤 以初始化聚类中心为1x 和10x 为例。 第一次迭代: 第一步:取K=2,并选T x z )00()1(11==,T x z )67()1(102==。 第二步:因)1()1(2111z x z x -<-,故)1(11S x ∈ 因)1()1(2212z x z x -<-,故)1(12S x ∈ 因)1()1(2313z x z x -<-,故)1(13S x ∈ …… 得到:},,,,,,,{)1(876543211x x x x x x x x S = },,,,,,,,,,,{)1(201918171615141312111092x x x x x x x x x x x x S =。 第三步:计算新的聚类中心: ??? ? ??=+??++==∑∈125.1250.1)(811)2(821)1(111x x x x N z S x ???? ??=+??++==∑∈333.7663.7)(1211)2(20109)1(2 22x x x x N z S x (1N 和2N 分别为属于第一类和第二类的样本的数目)。 第四步:因)2()1(z z ≠,返回第二步。 第二次迭代(步骤同上): 第二次迭代得到的???? ??=125.1250.1)3(1z ,??? ? ??=333.7663.7)3(2z ,)3()2(z z ≠,结束迭代,得到的最终聚类中心为:???? ??=125.1250.11z ,??? ? ??=333.7663.72z 。 2. 实验结果截图 (1)初始化聚类中心为1x 和10x 时:

什么是模式识别

什么是模式识别 1 模式识别的概念 模式识别[8]是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和识别。广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声音和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分析、化学模式识别等等。计算机模式识别实现了部分脑力劳动自动化。 模式识别--对表征事物或现象的各种形式的(数值的,文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。 模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、文字、符号、三位物体和景物以及各种可以用物理的、化学的、生物的传感器对对象进行测量的具体模式进行分类和辨识。 模式识别问题指的是对一系列过程或事件的分类与描述,具有某些相类似的性质的过程或事件就分为一类。模式识别问题一般可以应用以下4种方法进行分析处理。 统计模式识别方法:统计模式识别方法是受数学中的决策理论的启发而产生的一种识别方法,它一般假定被识别的对象或经过特征提取向量是符合一定分布规律的随机变量。其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征向量,不同的特征向量,或者说不同类别的对象都对应于空间中的一点。在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征的对象的目的。统计模式识别中个应用的统计决策分类理论相对比较成熟,研究的重点是特征提取。 人工神经网络模式识别:人工神经网络的研究起源于对生物神经系统的研究。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。 句法结构模式识别:句法结构模式识别着眼于对待识别对象的结构特征的描述。 在上述4种算法中,统计模式识别是最经典的分类识别方法,在图像模式识别中有着非常广泛的应用。 2 模式识别研究方向 模式识别研究主要集中在两方面,即研究生物体(包括人)是如何感知对象的,属于认知科学的范畴,以及在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作着近几十年来的努力,已经取得了系统的研究成果。 一个计算机模式识别系统基本上事有三部分组成的[11],即数据采集、数据处理和分类决策或模型匹配。任何一种模式识别方法都首先要通过各种传感器把被研究对象的各种物理变量转换为计算机可以接受的数值或符号(串)集合。习惯上,称这种数值或符号(串)所组成的空间为模式空间。为了从这些数字或符号(串)中抽取出对识别有效的信息,必须对它进行处理,其中包括消除噪声,排除不相干的信号以及与对象的性质和采用的识别方法密切相关的特征的计算(如表征物体的形状、周长、面积等等)以及必要的变换(如为得到信号功率谱所进行的快速傅里叶变换)等。然后通过特征选择和提取或基元选择形成模式的特

模式识别研究进展-刘成林and谭铁牛

模式识别研究进展 刘成林,谭铁牛 中国科学院自动化研究所 模式识别国家重点实验室 北京中关村东路95号 摘要 自20世纪60年代以来,模式识别的理论与方法研究及在工程中的实际应用取得了很大的进展。本文先简要回顾模式识别领域的发展历史和主要方法的演变,然后围绕模式分类这个模式识别的核心问题,就概率密度估计、特征选择和变换、分类器设计几个方面介绍近年来理论和方法研究的主要进展,最后简要分析将来的发展趋势。 1. 前言 模式识别(Pattern Recognition)是对感知信号(图像、视频、声音等)进行分析,对其中的物体对象或行为进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统,是人和动物获取外部环境知识,并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器实现模式识别过程,是人工智能领域的一个重要分支。早期的模式识别研究是与人工智能和机器学习密不可分的,如Rosenblatt的感知机[1]和Nilsson的学习机[2]就与这三个领域密切相关。后来,由于人工智能更关心符号信息和知识的推理,而模式识别更关心感知信息的处理,二者逐渐分离形成了不同的研究领域。介于模式识别和人工智能之间的机器学习在20世纪80年代以前也偏重于符号学习,后来人工神经网络重新受到重视,统计学习逐渐成为主流,与模式识别中的学习问题渐趋重合,重新拉近了模式识别与人工智能的距离。模式识别与机器学习的方法也被广泛用于感知信号以外的数据分析问题(如文本分析、商业数据分析、基因表达数据分析等),形成了数据挖掘领域。 模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化(如使每一类样本的表达误差最小或使不同类别样本的分类误差最小)的过程,也就是一个机器学习过程。由于模式识别的对象是存在于感知信号中的物体和现象,它研究的内容还包括信号/图像/视频的处理、分割、形状和运动分析等,以及面向应用(如文字识别、语音识别、生物认证、医学图像分析、遥感图像分析等)的方法和系统研究。 本文简要回顾模式识别领域的发展历史和主要方法的演变,介绍模式识别理论方法研究的最新进展并分析未来的发展趋势。由于Jain等人的综述[3]已经全面介绍了2000年以前模式分类方面的进展,本文侧重于2000年以后的研究进展。

人工智能与模式识别

人工智能与模式识别 摘要:信息技术的飞速发展使得人工智能的应用围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;数字识别;人脸识别中图分类号; Abstract: The rapid development of information technology makes the application of artificial intelligence become more and more widely. Pattern recognition, as one of the important aspects, has always been an important direction of artificial intelligence research. In the introduction of artificial intelligence and pattern recognition related knowledge at the same time, artificial intelligence in pattern recognition applications were discussed.Pattern recognition is a basic human intelligence, the emergence of the 20th century, 40 years of computer and the rise of artificial intelligence in the 1950s, pattern recognition technology has made great progress. Pattern recognition and statistics, psychology,

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.360docs.net/doc/368199295.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

黄庆明 模式识别与机器学习 第三章 作业

·在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 应该是252142 6 *74132 7=+=+ =++C 其中加一是分别3类 和 7类 ·一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 (1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。 (2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。 ·两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 如果线性可分,则4个 建立二次的多项式判别函数,则102 5 C 个 ·(1)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T } ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T } 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x ①=(0 0 0 1)T , x ②=(1 0 0 1)T , x ③=(1 0 1 1)T , x ④=(1 1 0 1)T x ⑤=(0 0 -1 -1)T , x ⑥=(0 -1 -1 -1)T , x ⑦=(0 -1 0 -1)T , x ⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0) T 因w T (1) x ① =(0 0 0 0)(0 0 0 1) T =0 ≯0,故w(2)=w(1)+ x ① =(0 0 0 1) 因w T (2) x ② =(0 0 0 1)(1 0 0 1) T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T (3)x ③=(0 0 0 1)(1 0 1 1)T =1>0,故w(4)=w(3) =(0 0 0 1)T 因w T (4)x ④=(0 0 0 1)(1 1 0 1)T =1>0,故w(5)=w(4)=(0 0 0 1)T 因w T (5)x ⑤=(0 0 0 1)(0 0 -1 -1)T =-1≯0,故w(6)=w(5)+ x ⑤=(0 0 -1 0)T 因w T (6)x ⑥=(0 0 -1 0)(0 -1 -1 -1)T =1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T (7)x ⑦=(0 0 -1 0)(0 -1 0 -1)T =0≯0,故w(8)=w(7)+ x ⑦=(0 -1 -1 -1)T 因w T (8)x ⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T =3>0,故w(9)=w(8) =(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T (9)x ①=(0 -1 -1 -1)(0 0 0 1)T =-1≯0,故w(10)=w(9)+ x ① =(0 -1 -1 0)T

模式识别期末试题

一、填空与选择填空(本题答案写在此试卷上,30分) 1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择 和模式分类。 2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。 3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。 (1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法 4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。 (1)距离测度(2)模糊测度(3)相似测度(4)匹配测度 5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。 (1)(2) (3) (4) 6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。 (1)二维空间(2)一维空间(3)N-1维空间 7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。 (1)感知器算法(2)H-K算法(3)积累位势函数法 8、下列四元组中满足文法定义的有(1)(2)(4)。 (1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A) (2)({A}, {0, 1}, {A→0, A→ 0A}, A) (3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S) (4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A) 9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的 类别数目))。 10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。 (1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性 11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的 正(负)半空间中;绝对值正比于样本点到判别界面的距离。)。 12、感知器算法1。 (1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

模式识别——用身高和或体重数据进行性别分类

用身高和/或体重数据进行性别分类 1、【实验目的】 (1)掌握最小错误率Bayes 分类器的决策规则 (2)掌握Parzen 窗法 (3)掌握Fisher 线性判别方法 (4)熟练运用matlab 的相关知识。 2、【实验原理】 (1)、最小错误率Bayes 分类器的决策规则 如果在特征空间中观察到某一个(随机)向量x = ( x 1 , x 2 ,…, x d )T ,已知类别状态的先验概率为:()i P w 和类别的条件概率密度为(|)1,2,3...i P x w i c =,根据Bayes 公式得到状态的后验概率 有:1 (|)() (|)(|)() i i i c j j j p P P p P ωωωωω== ∑x x x 基本决策规则:如果1,...,(|)max (|)i j j c P P ωω==x x ,则i ω∈x ,将 x 归属后验概率最大的类 别 。 (2)、掌握Parzen 窗法 对于被估计点X : 其估计概率密度的基本公式(x)N k N N N p V =,设区域 R N 是以 h N 为棱长的 d 维超立方体, 则立方体的体积为d N N V h =; 选择一个窗函数(u)?,落入该立方体的样本数为x x 1 ( )i N N N h i k ?-== ∑,点 x 的概率密度:

x x 11 1(x)( )N i N N k N N N V h i N p V N ?-== =∑ 其中核函数:x x 1i K(x,x )( )i N N V h ?-= ,满足的条件:i (1) K(x,x )0≥;i (2) K(x,x )dx 1=?。 (3)、Fisher 线性判别方法 Fisher 线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。 Fisher 线性判别分析,就是通过给定的训练数据,确定投影方向W 和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。 线性判别函数的一般形式可表示成 0)(w X W X g T += ,其中????? ??=d x x X 1 ? ????? ? ??=d w w w W 21 根据Fisher 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W 的函数为: 2 2 2122 1~~)~~()(S S m m W J F +-= )(211 *m m S W W -=- 上面的公式是使用Fisher 准则求最佳法线向量的解,该式比较重要。另外,该式这种 形式的运算,我们称为线性变换,其中21m m -式一个向量,1-W S 是W S 的逆矩阵,如21m m -是d 维,W S 和1-W S 都是d ×d 维,得到的* W 也是一个d 维的向量。 向量* W 就是使Fisher 准则函数)(W J F 达极大值的解,也就是按Fisher 准则将d 维X 空间投影到一维Y 空间的最佳投影方向,该向量* W 的各分量值是对原d 维特征向量求加权和的权值。

模式识别特征提取

特征提取 SIFT算法提取步骤 SIFT算法提取特征点的主要步骤: (1)检测尺度空间极值点 检测尺度空间极值的目的是确定特征点位置和所在尺度组。即先使用高斯过滤器对原始图像进行若干次连续滤波建立第一个尺度组,再把图形减小到原来的一半,进行同样的高斯滤波形成第二个尺度组。之后,重复操作直到图像小于某一个给定阀值为止。接下来对每个尺度组中的高斯图像进行差分,形成高斯差分尺度组(DoG尺度图像)。

图3-1 尺度空间的构造 在上面建立的DoG尺度空间金字塔中,为了检测到DoG空间的最大值和最小值,DoG尺度空间中中间层(最底层和最顶层除外)的每个像素点需要跟同一层的相邻8个像素点以及它上一层和下一层的9个相邻像素点总共26个相邻像素点进行比较,以确保在尺度空间和二维图像空间都检测到局部极值,如图3-2所示 图3-2 DoG空间局部极值检测 在图3-2中,标记为叉号的像素若比相邻26个像素的DoG值都大或都小,则该点将作为一个局部极值点。被检测工件的高斯滤波图像如图3-3所示。

图3-3 原始图像和部分高斯滤波图像 (2)精确定位极值点 由于DoG值对噪声和边缘较敏感,因此,在上面DoG尺度空间中检测到局部极值点还要经过进一步的检验才能精确定位为特征点。一般通过二阶Taylor 展开式计算极值点的偏移量,获得亚像素定位精度,同时通过阈值设置剔除差异小的点。最终保留下来的点称为特征点,特征点的检测是在尺度空间中进行的,特征点保持为尺度不变量。各层图像特征点如图3-4所示。

图3-4 各层图像的特征点 (3)为每个关键点指定方向参数 σ—尺度空间坐标 O —组(octave)数 S —组内层数 在上述尺度空间中,O 和S ,σ的关系如下: ()[][]2,...,0,1,...,02 ,0+∈-∈=+S s O o s o S s o σσ (3-10)

模式识别与机器学习期末考查试题及参考答案

模式识别与机器学习期末考查 试卷 研究生姓名:入学年份:导师姓名: 试题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。 答:(1)模式识别是研究用计算机来实现人类的模式识别能力的一门学科,是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。主要集中在两方面,一是研究生物体(包括人)是如何感知客观事物的,二是在给定的任务下,如何用计算机实现识别的理论和方法。机器学习则是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是研究如何使机器通过识别和利用现有知识来获取新知识和新技能。主要体现以下三方面:一是人类学习过程的认知模型;二是通用学习算法;三是构造面向任务的专用学习系统的方法。两者关心的很多共同问题,如:分类、聚类、特征选择、信息融合等,这两个领域的界限越来越模糊。机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。 (2)机器学习和模式识别是分别从计算机科学和工程的角度发展起来的,各自的研究侧重点也不同。模式识别的目标就是分类,为了提高分类器的性能,可能会用到机器学习算法。而机器

学习的目标是通过学习提高系统性能,分类只是其最简单的要 求,其研究更侧重于理论,包括泛化效果、收敛性等。模式识别技术相对比较成熟了,而机器学习中一些方法还没有理论基础,只是实验效果比较好。许多算法他们都在研究,但是研究的目标却不同。如在模式识别中研究所关心的就是其对人类效果的提高,偏工程。而在机器学习中则更侧重于其性能上的理论证明。 试题2:列出在模式识别与机器学习中的常用算法及其优缺点。答:(1) K近邻法 算法作为一种非参数的分类算法,它已经广泛应用于分类、回归和模式识别等。在应用算法解决问题的时候,要注意的两个方面是样本权重和特征权重。 优缺点:非常有效,实现简单,分类效果好。样本小时误差难控制,存储所有样本,需要较大存储空间,对于大样本的计算量大。 (2)贝叶斯决策法 贝叶斯决策法是以期望值为标准的分析法,是决策者在处理风险型问题时常常使用的方法。 优缺点:由于在生活当中许多自然现象和生产问题都是难以完全准确预测的,因此决策者在采取相应的决策时总会带有一定的风险。贝叶斯决策法就是将各因素发生某种变动引起结果变动的概率凭统计资料或凭经验主观地假设,然后进一步对期望值进行分析,由于此概率并不能证实其客观性,故往往是主观的和人为的

图像模式识别的方法介绍

2.1图像模式识别的方法 图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。 从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。 2.1.1句法模式识别 对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干

较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。 句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。 2.1.2统计模式识别 统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。 统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

1模式识别与机器学习思考题及参考答案

模式识别与机器学习期末考查 思考题 1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。 机器学习是研究让机器(计算机)从经验和数据获得知识或提高自身能力的科学。 机器学习和模式识别是分别从计算机科学和工程的角度发展起来的。然而近年来,由于它们关心的很多共同问题(分类、聚类、特征选择、信息融合等),这两个领域的界限越来越模糊。机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析、(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。近年来,机器学习和模式识别的研究吸引了越来越多的研究者,理论和方法的进步促进了工程应用中识别性能的明显提高。 机器学习:要使计算机具有知识一般有两种方法;一种是由知识工程师将有关的知识归纳、整理,并且表示为计算机可以接受、处理的方式输入计算机。另一种是使计算机本身有获得知识的能力,它可以学习人类已有的知识,并且在实践过程中不总结、完善,这种方式称为机器学习。机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维的过程;和机器学习的方法;以及建立针对具体任务的学习系统。机器学习的研究是在信息科学、脑科学、神经心理学、逻辑学、模糊数学等多种学科基础上的。依赖于这些学科而共同发展。目前已经取得很大的进展,但还没有能完全解决问题。 模式识别:模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别。如识别物体、地形、图像、字体(如签字)等。在日常生活各方面以及军事上都有广大的用途。近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。特别神经网络方法在模式识别中取得较大进展。理解自然语言计算机如能“听懂”人的语言(如汉语、英语等),便可以直接用口语操作计算机,这将给人们带来极大的便利。计算机理解自然语言的研究有以下三个目标:一是计算机能正确理解人类的自然语言输入的信息,并能正确答复(或响应)输入的信息。二是计算机对输入的信息能产生相应的摘要,而且复述输入的内容。三是计算机能把输入的自然语言翻译成要求的另一种语言,如将汉语译成英语或将英语译成汉语等。目前,研究计算机进行文字或语言的自动翻译,人们作了大量的尝试,还没有找到最佳的方法,有待于更进一步深入探索。 机器学习今后主要的研究方向如下: 1)人类学习机制的研究;

(完整版)中科院-模式识别考题总结(详细答案)

1.简述模式的概念及其直观特性,模式识别的分类,有哪几种方法。(6’) 答(1):什么是模式?广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相同或是否相似,都可以称之为模式。 模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。 模式的直观特性:可观察性;可区分性;相似性。 答(2):模式识别的分类: 假说的两种获得方法(模式识别进行学习的两种方法): ●监督学习、概念驱动或归纳假说; ●非监督学习、数据驱动或演绎假说。 模式分类的主要方法: ●数据聚类:用某种相似性度量的方法将原始数据组织成有意义的和有用的各种数据 集。是一种非监督学习的方法,解决方案是数据驱动的。 ●统计分类:基于概率统计模型得到各类别的特征向量的分布,以取得分类的方法。 特征向量分布的获得是基于一个类别已知的训练样本集。是一种监督分类的方法, 分类器是概念驱动的。 ●结构模式识别:该方法通过考虑识别对象的各部分之间的联系来达到识别分类的目 的。(句法模式识别) ●神经网络:由一系列互相联系的、相同的单元(神经元)组成。相互间的联系可以 在不同的神经元之间传递增强或抑制信号。增强或抑制是通过调整神经元相互间联 系的权重系数来(weight)实现。神经网络可以实现监督和非监督学习条件下的分 类。 2.什么是神经网络?有什么主要特点?选择神经网络模式应该考虑什么因素? (8’) 答(1):所谓人工神经网络就是基于模仿生物大脑的结构和功能而构成的一种信息处 理系统(计算机)。由于我们建立的信息处理系统实际上是模仿生理神经网络,因此称它为人工神经网络。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 人工神经网络的两种操作过程:训练学习、正常操作(回忆操作)。 答(2):人工神经网络的特点: ●固有的并行结构和并行处理; ●知识的分布存储; ●有较强的容错性; ●有一定的自适应性; 人工神经网络的局限性: ●人工神经网络不适于高精度的计算; ●人工神经网络不适于做类似顺序计数的工作; ●人工神经网络的学习和训练往往是一个艰难的过程; ●人工神经网络必须克服时间域顺序处理方面的困难; ●硬件限制; ●正确的训练数据的收集。 答(3):选取人工神经网络模型,要基于应用的要求和人工神经网络模型的能力间的 匹配,主要考虑因素包括:

机器学习在模式识别中的算法研究

机器学习在模式识别中的算法研究 摘要:机器学习是计算机开展智能操作的基础,人工智能的发展依靠机器学习 技术,而机器学习、模式识别与当前人工智能的发展密切相关。本文通过概述机 器学习机制,围绕神经网络、遗传算法、支持向量机、K-近邻法等算法研究当前 机器学习在模拟识别中的应用,为今后模拟识别与人工智能开发与研究提供借鉴。关键词:机器学习;模式识别;人工神经网络 前言: 机器学习技术覆盖了人工智能的各个部分,如自动推理、专家系统、模式识别、智能机器人等。模式识别是将计算机的不同事物划分成不同的类别。人工智 能的模式识别可以利用机器学习算法完善分类能效。因此,机器学习与模式识别 密不可分,本文就机器学习在模式识别领域的学习算法中的应用展开研究。 1、机器学习机制与系统设计 在机器学习模型中,环境可以向系统的学习部件中提供信息,学习部件根据 这些信息调整和修改知识库,提升系统内部执行文件的性能。执行文件再将获得 的信息向学习部件反馈,此过程就是机器学习系统结合外部与内部的环境信息自 动获取知识的过程。机器学习系统设计的构建过程应包含两部分:其一,模型的 选择和构建。其二,学习算法的选择与设计。不同种类的模型具有不同的目标函数,涉及到不同的学习机制,算法的复杂性与能力决定着学习系统的效率与学习 能力。此外,训练样本集的特征与大小的问题也与机器学习系统的性能相关。 2、机器学习在模式识别中的应用 2.1 遗传算法 在机器学习中,特征维数是一大难题,每一种模式中的特征反映出的事物本 质权重均不一致。部分对于分类结果并无积极作用,甚至属于冗余,因此选择特 征尤为关键。遗传算法实际上是寻优算法,可以有效的解决特征选择问题。遗传 算法可以筛选出准确反映出原模式相关信息、影响分类的结果、相互关联性较小 的特征。遗传算法实际是利用达尔文的生物进化思想,在运算领域中巧妙生成一 种寻优算法。该算法是1975年由美国Michigan大学的Holland教授提出的,遗 传算法的主要方法如下:首先,将种群中的个体作为对象,进行一系列的变异、 交叉、选择等操作。其次,利用遗传操作促进群体不断的进化,最终产生最优的 个体,最后,结合个体对于环境的适应程度选择最优良的个体,为其创造机会繁 衍后代。遗传算法程序如下:选择合适的编码策略,确定遗传策略和适应度函数。遗传策略包含种群的选择、大小、交叉概率、变异方法、变异概率等遗传参数; 利用编码策略,将特征集变为位串结构;构建初始化群体;计算整个群体的个体 适应度;结合遗传策略,将交叉、选择等作用在群体中,产生下一代群体;判别 群体性能是否到达某一标准,假若不满足将回到遗传策略阶段。 2.2 k-近邻法 k-nearest neighbor(k-近邻法)被广泛运用在无指导、基于实例的学习方法中, 可以实现线性不可分的样本识别,在之前并不了解待分样本的分布函数。当前被 广泛应用的k-近邻法主要是将待分类样本为重点形成超球体,同时扩展超球的半 径一直到球内包含着K个已知模式的样本,判别k个邻近样本属于哪一种。其主 要分类算法如下:设有c个类别,分别是w1,w2,w3,...,wc,i=1,2,3,...,c.测试样本x

模式识别习题及答案

第一章 绪论 1.什么是模式?具体事物所具有的信息。 模式所指的不是事物本身,而是我们从事物中获得的___信息__。 2.模式识别的定义?让计算机来判断事物。 3.模式识别系统主要由哪些部分组成?数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。 第二章 贝叶斯决策理论 1.最小错误率贝叶斯决策过程? 答:已知先验概率,类条件概率。利用贝叶斯公式 得到后验概率。根据后验概率大小进行决策分析。 2.最小错误率贝叶斯分类器设计过程? 答:根据训练数据求出先验概率 类条件概率分布 利用贝叶斯公式得到后验概率 如果输入待测样本X ,计算X 的后验概率根据后验概率大小进行分类决策分析。 3.最小错误率贝叶斯决策规则有哪几种常用的表示形式? 答: 4.贝叶斯决策为什么称为最小错误率贝叶斯决策? 答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了(平均)错误率 最小。Bayes 决策是最优决策:即,能使决策错误率最小。 5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这个概率进行决策。 6.利用乘法法则和全概率公式证明贝叶斯公式 答:∑====m j Aj p Aj B p B p A p A B p B p B A p AB p 1) ()|()() ()|()()|()(所以推出贝叶斯公式 7.朴素贝叶斯方法的条件独立假设是(P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi)) 8.怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布? 答:假设各属性独立,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi) 后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi) 类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方差,最后得到类条件概率分布。 均值:∑==m i xi m x mean 11)( 方差:2)^(11)var(1∑=--=m i x xi m x 9.计算属性Marital Status 的类条件概率分布 给表格计算,婚姻状况几个类别和分类几个就求出多少个类条件概率。 ???∈>=<2 11221_,)(/)(_)|()|()(w w x w p w p w x p w x p x l 则如果∑==21 )()|()()|()|(j j j i i i w P w x P w P w x P x w P 2,1),(=i w P i 2,1),|(=i w x p i ∑==2 1)()|()()|()|(j j j i i i w P w x P w P w x P x w P ∑=== M j j j i i i i i A P A B P A P A B P B P A P A B P B A P 1) ()| ()()|()()()|()|(

相关文档
最新文档