光催化技术

光催化技术
光催化技术

TiO2光催化反应器简介

摘要:国内外有关光催化反应器的研究已开展多年,但在我国此类反应器主要处于基础和应用基础方面。本文简单介绍了光催化反应器的反应原理、分类及其走向工业应用中存在的一些制约因素,并对此问题的解决提出了几点建议。

关键词:光催化反应原理分类建议

Abstract: the research about photocatalytic reactor has been conducted for many years, but in china, it`s study mainly remain in the field of basic and basic application. This paper provides a brief introduction of the reaction principle, categories and the defects which limited the photocatalytic reactor from industry application. And then, to solve this problem, some suggestion has been pointed out.

Key words: photocatalytic principle of reaction category suggestion

1、光催化技术的前沿性

科学技术的飞速发展给人类提供了丰富的物质财富。20世纪初随着第二次科技革命的爆发,现代工业迅速崛起,为满足人类日益增长的物质需求,化工产业的发展蒸蒸日上。毫不夸张的说,现如今人类的生活处处皆化工,小到人们的日常生活,大到航天工程的实施,化工产业已成为当今人类社会进步

的重要支撑。然而发展是人类开发

利用自然的过程,所以不可避免的

带来了环境的污染问题。特别是我

国这样的制造业大国,生产过程中

大量废弃物的排放已使严重的环境

污染和生态破坏有目共睹。至今,

环境问题正危及着我国国民的生存

安全,因此节能减排、环境友好型的环保理念已引起各行各业人士的高度重视。面对巨大的工业需求,如何能将污染降到最低,走可持续发展的成产模式?这对化工行业提出了严峻的考验。既然污染是不可避免的,那就要在污染物的处理方面着手,彻底、高效、清洁地根治环境污染,传统的处理方法并不能彻底地降解污染物,也容易造成次生污染,并且能耗高、适用范围窄[1],大多数处理方法仅针对于特定的污染燃物范有效。近些年以来,为攻克此领域面临的各种难题,光催化技术应运而生。光催化技术是一种集高效节能、操作简便、反应条件温和等多项优势于一身的污染物治理技术。从生态学上讲,光催化技术实现了将大量有机污染物降解为CO2和H2O,继而被植物体利用,完成了物质的循环,如图1所示[2]。所以光催化技术正是当前时代所急需的一项高新技术。

2、光催化技术原理

光催化技术是一种利用新型的复合纳米高科技功能材料的技术。现今的光催化剂以TiO2为主,当紫外线光源在反应器内部持续照射时,依据半导体的特性,其价带上的电子吸收光子能量后跃迁到导带上,电子—空穴对可将吸附在催化剂表面的羟基或水还原为(HO?)[3],同时将氧分子还原为超氧阴离子(?O2-),它也可以与水中无机离子或部分有机物反应生成(OH?),羟基自由基具有较高的氧化还原电位,能无选择地将水中难降解的污染物氧化为水、二氧化碳等无机小分子。[4-7]

3、光催化反应器的分类

同常规反应器一样,在使用过程中,为满足不同的反应需求,依据实际使用条件设计出了多种多样的反应器。目前按照不同的标准,光催化反应器有多种形式的分类[8-10],一般的分类依据包括催化剂的存在形式、光源的照射方式和反应器的结构形状。而大多数情况下,按催化剂的存在形式将其分为悬浮式和负载型催化反应器。

(1)悬浮式光催化反应器

对悬浮式光催化反应器而言,TiO2颗粒以悬浮态分散在处理液中,从而使得催化剂颗粒与液相中的物料充分接触,可以随着无料的流动而翻滚,产生极好的传质效果。因此类反应器具有速率高、结构简单、操作方便的优势,至今关于此种反应器的研究仍在开展。

李洪辉,郝晓刚[11]等人设计出了新型迷宫式鼓泡光催化反应器,其结构如图1所示。此反应器以30~40目活性炭为载体,采用溶胶—凝胶法制备了负载型TiO2薄膜颗粒光催化剂,并对含甲基橙废水进行了光催化降解。由图可知,反应器整体为长方体结构,内部设置若干块平行的垂直折流板,由此形成了反应区内的迷宫式通道。液体从反应器上方流入分布板上方,且入口所在的壁面与折流板平行。废水在迷宫式反应区内沿折流板间隙流动从而上升的气泡呈错流式接触,附着于载体上的TiO2催化剂在气液混合物中以悬浮态分散,形成了非均相反应体系。气、液、固三相流动充分保证了光催化剂颗粒在反应区的均匀分布,提高了反应体系的催化剂比表面积,增加了液相的停留时间,很好地利用了光能,有较好的传质推动力。

图2.迷宫流鼓泡光催化反应器图3.全天候太阳能固定膜光催化反应器

悬浮式光催化反应器虽然降解效率高,但由于该类反应器以纯TiO2或负载型TiO2颗粒粉末为光催化剂,形成悬浮液,就导致了光催化剂难以回收利用的问题。在大规模的工业生产中,若催化剂得不到循环利用,必然会使成本过大,因此,悬浮式反应器存在不易工业放大的缺陷。

(2)负载型光催化反应器

目前,在各种负载型光催化反应器中,催化剂的负载面多以反应器内壁、紫外灯管外壁、玻璃管内外壁或光导纤维管壁等为主,形成催化剂薄膜。一般根据载体材料和催化剂TiO2在载体上的不同形式,此种光反应器又可分为镀膜式和填充床式。废水流过反应区时在催化剂表面发生反应,从而有效地弥补了悬浮式反应器中催化剂难分离的不足,以此更容易实现大规模的工业应用[12]。

林少华等[13]设计了一种实用性太阳能固定膜光催化反应器并研究了此反应器对自来水的处理效果,装置结构如图3所示。太阳紫外辐射在低聚光度抛物型槽内,然后被反射到由双层同心圆构成的光催化膜组件,固定式催化剂TiO2通过溶胶-凝胶法附着于具有高比表面积的玻璃纤维网上,分内外两层设置。以自来水为研究对象,实验结果表明,在不同的光源条件下,实用型固定膜光催化反应器对三氯甲烷均具有良好的处理效果,特别是在太阳光下取得的良好处理效果对推动光催化技术的应用具有重大意义。同时,该反应器还带有光电源,在阴雨天气下补充光照。

4、研制高效光催化反应器的技术瓶颈及几点建议

目前光催化反应器的设计中存在的缺陷主要包括:光源利用效率低;催化剂与反应液的接触时间短、接触面积小;光照强度分布不均等。针对这些限制因素,今后需改进的方面主要有:光照是首要因素,因为光源照射直接影响到活化催化剂的数量,从而决定了反映其处理反应液的能力。所以,要尽量增加催化剂表面光生成电子-空穴的数量,提高光的利用率,减小能源浪费;为实现光催化反应器的工业应用,要改进反应器使其达到能对污染物料液进行批量处理的目标,保持反应器内部在动态的流动状态下运作;另外,要尽可能提高催化剂与物料的接触时间,增大接触面积;反应液中接受的光照尽可能的保持均匀。

参考文献:

[1]郭飞,赵修建,殷官超.国内外光催化反应器的发展情况[J].建材世界,2011,32(1):65-69.

[2]桥本和仁,藤岛昭著,邱建荣,等.图解光催化技术大全[M].北京:科学出版社,2007.

[3]李冬冬,佘江波,王丽莉,等.二氧化钛负载光纤型光催化反应器的研究进展[J].中国光学,2013,6(4):513-520.

[4]常文贵,张胜义.高级氧化技术中羟基自由基产生的机理[J].安庆师范学院学报,2004,10(4):24-26.

[5]方艳芬,黄应平,陈和春,等.二氧化钛光催化体系中的羟基自由基的测定[R].分析化学研究报告,2006(34):83-86.

[6]张昊,任发政.羟基和超氧自由基的检测研究进展[J].光谱学与光谱分析,2009,29(4):1093-1099.

[7]邓淑芳,白敏冬,白希尧,等.羟基自由基特性及其化学反应[J].大连海事大学学报,2004,30(3):62-64.

[8]耿启金,郭庆杰,曹长青,王林同.多相光催化反应器的研究进展[J].化工进展,2008,27(1):68-72.

[9]王灵,纪荣平.纳米TiO2光催化反应器在污水处理中的研究进展[J].新疆环境保护,2008,30(4): 29-36.

[10]李洪辉,郝晓刚,张富国,等.迷宫流鼓泡光催化反应器结构对甲基橙降解性能的影响[J].太原理工大学学报,2008,39(3):226-229.

[11]杨学灵,徐悦华.实用型TiO2光催化反应器的研究[J].应用化工,2009,38(1):124-127.

[12]李小红,郑旭煦,候苛山.负载型二氧化钛光催化剂的研究进展[J].重庆工商大学学报,2009,26(2):105-106.

[13]林少华,李杰瑞,孙芹菊,等.太阳能固定膜光催化反应器饮用水处理效果[J].水处理技术,2008,34(10):64-66.

光氧催化使用说明书(1)

光氧催化有机废气净化器 使 用 说 明 书

一、产品概述 本产品采用高能高臭氧UV紫外线光束、氧化反应催化板、高能离子发生器的工艺来降解恶臭气体(有机废气),改变恶臭气体如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子链结构,使有机或无机高分子恶臭化合物分子链,通过高能紫外线光束照射、催化剂的氧化反应、正氧离子的氧化反应,降解转变成低分子化合物,如CO2、H2O等。 二、产品用途 本系列有机废气净化器产品主要适用于:各类工业喷涂、印刷、印花、丝印挥发性有机废气;各类恶臭气体的除臭净化处理。 各种工厂、废水处理站、医院、垃圾中转站等场所的有机废气除臭、杀菌的净化处理; 三、工作原理 1、利用高能高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧。UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对恶臭气体及其它刺激性异味有立竿见影的清除效果。恶臭气体利用排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束及臭氧对恶臭气体进行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外。 2、催化板(二氧化钛)在受到紫外线光照射时生成化学活泼性很强的超氧化物阴离子自由基和氢氧自由基,攻击有机物,达到降解有机物的作用。二氧化钛属于非溶出型材料,在彻底分解有机污染物和杀灭菌的同时,自身不分解、不溶出,光催化作用持久,并具有持久的杀菌、降解污染物效果。

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

光电子技术发展态势及应用

光电子技术发展态势及应用 姓名:刘鹏学号:200910711234 摘要:当今社会正在从工业化社会向信息化社会过渡,在这个社会大变革时期,光电子技术迅速发展,不断渗透到国民经济的各个方面,成为信息社会的支柱之一。本文讨论了光电子的发展历程以及光电子在不同时期的重要发明与应用,同时对光电子技术今后的发展态势做了展望。 引言:光电子技术又名信息光电子技术,是继微电子技术之后近30年来迅猛发展的综合性高新技术。20世纪60年代激光问世以来应用于光纤通信、激光、LED.等诸多领域,经历十多年的初期探索,随着半导体光电子器件和硅基光导纤维两大基础元件在原理和制造工艺上的突破,光子技术与电子技术开始结合并形成了具有强大生命力的信息光电子技术和产业。 关键词:光电子技术发展历程应用展望 一、光电子技术的概念 光电子技术是光子技术与电子技术相结合而形成的一门技术【1】。激光器的发明,解决了光频载波的产生问题,从此电子技术的各种基本概念几乎都移植到了光频段。电子学与光学之间的鸿沟在概念上消失了,产生了光频段的电子技术,习惯上简称为光电子技术。从电子学频段扩展的意义上讲,光电子技术就是电子技术在光波段的开拓和发展;从光学发展的角度讲,光电子技术发展需求的牵引,大大促进了相干光学技术的信息化进步。所以,光电子技术也是光电子技术与光学技术相结合的产物。 二、光电子技术的发展历程 最早出现的光电子器件是光电探测器,而光电探测器的基础是光电效应的发现和研究。1888年,德国H.R.赫兹观察到紫外线照射到金属上时,能使金属发射带电粒子,当时无法解释。1890年,P.勒纳通过对带电粒子的电荷质量比的测定,证明它们是电子,由此弄清了光电效应的实质【2】。1900年,德国物理学家普朗克在黑体辐射研究中引入能量量子,提出了著名的描述黑体辐射现象的普朗克公式,为量子论坚定了基础。1929年,L.R.科勒制成银氧铯光电阴极,出现了光电管。1939年,前苏联V.K.兹沃雷金制成实用的光电倍增管。20世纪30年代末,硫化铅(PbS)红外探测器问世,它可探测到3μm辐射。40年代出现用半导体材料制成的温差电型红外探测器和测辐射热计。50年代中期,可见光波段的硫化镉(CdS)、硒化镉(CdSe)、光敏电阻和短波红外硫化铅光电探测器投入使用。1958年,英国劳森等发明碲镉汞(HgCdTe)红外探测器。在军事需求牵引和半导体工艺等技术发展的推动下,红外探测器自60年代以来迅速发展。 尽管光电子技术历史可追溯到19世纪70年代,但那时期到1960年,光学和电子学仍然是两门独立的学科,因而只能算作光电子学与光电子技术的孕育期,20世纪60年代激光问世开创了光电子技术的新纪元。 激光器是光波短的相干辐射源。它的理论基础是爱恩斯坦在1916年奠定的。当时,爱恩斯坦提出光的发射与吸收可以经过受激吸收,受激辐射和自发辐射三种基本过程的假设。但是,直到1954年,美国C.H.汤斯才根据这个假设,以制

光催化原理、应用

广州和风环境技术有限公司 https://www.360docs.net/doc/3713989723.html,/ 光催化原理、应用及常见问题 更多有关废气处理核心技术,请百度:和风环境技术。接下来和风带领大家认识一下。 随着全球工业化进程的加速,环境污染问题日益严重,环境治理已受到世界各国的广泛重视,其中政府在环境治理方面投入了巨大的人力、物力和财力对环境净化材料和环境净化技术的研究和产业化提供支持,其中,光催化材料和光催化技术占有重要的地位。TiO2是一种常用的光催化材料,具有活性高、稳定性好,几乎可以无选择地将有机物进行氧化,不产生二次污染,对人体无害,价格便宜等诸多优点,成为最受重视和具有广阔应用前景的光催化材料。 光催化材料在紫外光或太阳光的作用下,激发价带上的电子(e-)跃迁到导带,在价带上产生相应的空穴(h+),光生空穴与光催化材料表面的水反应,生成羟基自由基,而光生电子与光催化剂表面的氧反应,生成超氧负离子。羟基自由基和超氧负离子具有较强的氧化还原电位,可将挥发性有机物氧化分解成无害的CO2和H2O,达到净化空气、分解挥发性有机物的目的。二氧化钛光催化材料在光照下能一直持续释放自由基,对挥发性有机物进行氧化分解,而自己不发生变化,具有长期活性。

广州和风环境技术有限公司 https://www.360docs.net/doc/3713989723.html,/ 1、光催化反应原理 羟基自由基和超氧负离子是除氟之外,最强的氧化剂,但是氟对人体和环境有着巨大的危害,在很多场合不再使用。 2、常温催化材料 光催化材料是一种常温催化材料,可在室温及稍高温度下进行反应(通常低于65℃)。提高光催化材料性能的途径有三个:一个是降低纳米催化材料粒子的粒径,目的在于提高光催化材料的比表面积;二是通过金属掺杂、过渡金属掺杂和非金属离子掺杂改变半导体催化剂的性质来提高光催化性能;三是通过表面修饰和敏化,改变半导体催化剂的表面的形貌和结构,而引起表面性能的优化。 3、光催化材料应用中的影响因素 湿度的影响:光催化反应中,羟基自由基来源于水,所以必须保持有一定的湿度才能持续产生羟基自由基;在闭环的光催化反应中,已经证实随着水的不断消耗,光催化性能在不断的下降。 氧分量的影响:光催化反应中,超氧负离子来源于氧,所以在21%含量的

毕业论文(设计)--4s店废气处理项目设计方案uv光氧催化废气处理技术(简单.高效.经济.)

废气处理项目设计方案设计部档案编号:2016.407 喷漆废气处理项目 设 计 方 案 UV光氧催化废气处理技术(简单.高效.经济.) 2016年4月7号 中国盐城

公司简介 xxxx环境工程有限公司是一家集科研、设计、生产、维护和销售于一体的综合性高新技术环保设备生产厂家,解决方案涵盖:VOC有机废气处理、喷漆废气处理、焊烟处理、油雾处理、油烟处理和粉尘处理等,主要产品有:低温等离子废气处理设备、UV光氧催化氧化设备、活性炭吸附设备、活性碳吸附脱附催化燃烧、催化燃烧、焊接烟尘净化器、工业废气净化设备、油烟净化器等xxxx自创立以来,以独特的技术、先进的工艺,严谨的态度和不断创新的理念,坚持深入客户现场,不断了解客户的工况和需求,在工业喷涂车间、4S店、机械加工、装备制造、汽车制造、电子电气、食品加工、餐饮、家具制造、化工、造纸、印刷等领域的废气/粉尘治理方面积累丰富的理论和实践经验。坚持专业化、国际化发展的xxxx,以发展名族环保事业为己任,为了让二十一世纪的天空更加蔚蓝,我们将不断超越与完善 公司自创业以来,始终坚持以:“以人为本、利益均占、合作共赢”为经营宗旨,以“简单、速度、团队、超越”为企业灵魂,在日趋激烈的市场竞争中,不断吸取国外先进技术,秉着自身强大的技术研发力量,卓越的产品性能,颇具竞争力的价格,全方位的优质服务,制造客户最满意的各类设备,并根据用户需求设计与制造各类环保设备,您的满意是我们持之以恒的奋斗目标。公司销售经理徐中山先生恭候阁下的光临

xxxx环境文化: 愿景:致力于改善大气质量,美化人们的生活 目标:成为中国最优世界领先的环保设备制造商、服务商 核心价值观:合作专注诚信简单超越利益均沾 核心竞争力:高效的团队管理与协作能力; 用人理念:德能勤敏 质量理念:以市场为导向、以诚信为基础、实施全员闭环质量管理; 营销理念:以实现顾客价值为核心,以贴心服务为灵魂;与客户形成战略联盟;市场理念:为顾客提供技术适度领先高性价比的产品 管理理念:尊重人格,崇尚狼性,注重绩效

浅谈纳米材料光催化技术研究现状

龙源期刊网 https://www.360docs.net/doc/3713989723.html, 浅谈纳米材料光催化技术研究现状 作者:林雪牛文成 来源:《神州》2012年第29期 摘要:近年来,人们对半导体纳米光学材料的研究越来越广泛。从1972年Fujishima和Honda利用TiO2电极实验发现光解水现象开始,人们逐步开始对半导体材料进行研究。本文就纳米材料光催化技术研究现状和发展前景进行了简要介绍。 关键词:纳米材料,光催化 一、纳米材料的分类 人类对材料科学的探索与研究已有上千年的历史了,但是纳米材料作为新型材料的一种,其从发展到现在也不过二三十年的时间。1984年,德国著名学者通过现代技术将一个6nm的铁晶体压制成纳米块,并详细的分析了其内部结构的改变而引起的性能差异。发现从强度和硬度上都较普通钢铁强很多倍,并且在低温下失去传导能力,随着自身晶粒尺寸的减小,材料的熔点也会随之降低。1990年,纳米科技大会在美国第一次胜利举办,《纳米技术杂志》的正 式创刊标志着纳米科技从此正式开山立派。而我国的纳米领域的研究基本与国际发展同步,目前已具备开展纳米科技的研究条件,国家重点研究机构对相关高科技的研究步伐不断加快,部分领域已经与国际先进水平持平,这些都为实现跨越式发展提供了可能。近年来,我国通过结合国家战略需求,对纳米技术在能源、环境、资源和污水处理等领域开展深入研究,纳米材料净化机、助燃剂、固硫剂和降解剂等新型产品相继研究成功。 人们对于一门新学科——纳米材料学的研究已经有一定的进展。通常纳米材料以三种方式分类:按结构分类、按化学组分分类和按应用分类: 1、按结构分,我们通常将其分为四类:第一类是具有原子簇与原子束结构的零维纳米材料;第二类是具有纤维结构的一维纳米材料;第三类是具有层状结构的二维纳米材料;第四类是晶粒尺寸至少在一个方向上在纳米量级的单位纳米材料。 2、按化学组分,通常又有两种分类方式,一种是按材料的化学性质分类,另一种是按材料的物理性质分类。按材料化学性质,我们通常将其分为纳米金属材料,纳米晶体材料,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料;按材料物理性质,我们可将纳米材料分为纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁电体材料,纳米超导材料和纳米热电材料等等。 3、按应用,我们可将其分为纳米电子材料、纳米光催化材料、纳米生物医学材料、纳米光敏材料、纳米储能材料等等。 二、纳米光催化技术的研究现状

光电信息技术新进展及感想

光电信息技术新进展及感想 20世纪后期是现代光学和光电技术取得辉煌成就的时代。电子学与光学的结合,产生和建立了光电信息学科,在高新技术领域里的发展势头迅猛,使人类进入了信息时代。“20世纪是电子的世纪,21世纪是光子的世纪”;“光电信息是朝阳产业” ;通过《光电世界》课上老师的讲解,我们了解了许多光电信息技术的内容。如沈京玲讲的:太赫兹科学与技术,何敬锁老师讲的:信息传递的载体----电和光,张岩老师讲的:光学信息处理,苏波老师讲的:太阳能光伏电池、LED应用技术,崔海林讲的:微电子技术、通信网技术。这些内容让我对光电信息技术的领域有了大致的了解,并且在老师的精彩的讲说下激发了我对于世界的兴趣。 光电 在众多光电信息技术中,我对光电子技术这一领域是十分感兴趣的,并且我也十分看好这一领域的发展前景。 光电子技术是指激光在电子信息技术中的应用而形成的技术。光电子技术确切称为信息光电子技术。20世纪60年代激光问世以来,最初应用于激光测距等少数应用,到70年代,由于有了室温下连续工作的半导体激光器和传输损耗很低的光纤,光电子技术才迅速发展起来。 在上网的查找中,我了解到世界光电子产业的总体发展情况,其结果更是让每个人欣慰。正是由于上世纪60年代激光技术的产生,极大地推动了光电子技术的发展。并由此形成规模宏大、内容丰富的光电子产业。近十余年来,光电子相关技术突飞猛进,产品种类也不断推陈出新,其应用更是无远弗届,层面扩及通讯、信息、生化、医疗、工业、能源、民生等领域。展望未来,在轻量化、便携性、低耗能、高效益、整合强的特性下,光电子产业将更深入各领域应用范围,是影响未来社会发展的战略性产业之一。 此外,随着信息化的发展,大型信息化工程的建设,及其带动起来的覆盖世界的在政府部门、企业和家庭的应用,使光电子市场连年保持12.8%以上的高速增长。从1996年至1999年四年间平均增长50%,成为世界光电子迅速发展的阶段。从光电子产业世界市场情况可以看出,光电子市场在几年来是一直保持着强劲的增长势头,其中世界通信行业的发展将光通讯市场推到了前所未有的高度。而光电子技术其他方面的应用也在迅速增长,它对全面提高整个经济层次和运作效率,促进经济各环节的协调整合,发挥着越来越重要的作用。 看一下这两个世纪的产业技术。二十世纪的主导产业是微电子技术,而二十一世纪的主导产业就将是光电子技术。光电子技术不仅能够推动世界光纤通信技术的革命和医疗及生命科学的进步,而且还能更有效地应用于国防建设和探索诸多新的科学前沿领域。它将以我们今天完全无法想象的方式改变我们的生活。而21世纪,我们将进入信息时代,光电子技术及其产业必将有高速的发展;第一,光电子器件在军事和民用方面将得到更大的发展和广泛应用;第二,互联网的发展要求建立更完善的以光纤联接的数字综合服务网络;第三,要进行高度并行运算和自由空间中不受串扰的互连能力的光子计算机的研发必需大力发展光电子技术。在21 世纪的知识经济时代,光电子技术和产业的发展必将对人类产生深远的影响。 在规模宏大、内容丰富的光电子领域,近年来其产业发展呈现出四大热点,即光通信与光网络的创新不断,光存储与光显示的潜力无穷,固态照明未来发展顺畅,多晶硅材料供不应求。

光催化氧化技术在水处理中的应用

光催化氧化技术及其在水处理中的应用 摘要:介绍了光催化氧化的机理及光催化氧化反应的主要影响因素,就TiO2固定化制备、改性、光催化氧化在工业废水以及饮用水处理中的应用进行了阐述。 关键词:光催化氧化Ti02光催化剂水处理 1 引言 光催化氧化法是近二十年才出现的水处理技术,1972年,Fu—jishima和Honda报道了在光电池中光辐射Ti02可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。1976年,Carey等在光催化降解水中污染物方面进行了开拓性的工作。光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点[1],在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义。 2 光催化氧化原理 光催化氧化还原以n型半导体为催化剂,如TiO2、ZnO、Fe2O3、SnO2、WO3等。TiO2由于化学性质和光化学性质均十分稳定,且无毒价廉,货源充分,所以光催化氧化还原去除污染物通常以TiO2作为光催化剂。光催化剂氧化还原机理主要是催化剂受光照射,吸收光能,发生电子跃迁,生成“电子—空穴”对,对吸附于表面的污染物,直接进行氧化还原,或氧化表面吸附的羟基OH-,生成强氧化性的羟基自由基(OH)将污染物氧化[2]。当用光照射半导体光催化剂时,如果光子的能量高于半导体的禁带宽度,则半导体的价带电子从价带跃迁到导带,产生光致电子和空穴。水溶液中的OH- 、水分子及有机物均可以充当光致空穴的俘获剂,具体的反应机理[3]如下(以TiO2为例): TiO2 + hν→h+ + eh++ e- →热量 H2O →OH- + H+ h+ + OH-→OH h+ + H2O + O2- →·OH + H+ + O2- h+ + H2O →·OH + H+ e- + O2 →O2- O2- + H+ →HO2· 2 HO2·→O2 + H2O2 H2O2 + O2- →OH + OH- + O2 H2O2 + hν→2 OH Mn+(金属离子) + ne+ →M 3 光催化氧化反应的主要影响因素 3.1催化剂性质及用量 可用于光催化氧化的催化剂大多是金属氧化物或硫化物等半导体材料,如TiO2、ZnO、CeO2、CdS、ZnS等.在众多光催化剂中,Ti02是目前公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光化学腐

光氧催化技术方案书

废气处理方案书项目编号:ZKHB-150926 常州市中康环保设备有限公司

第一部分 解 决 方 案 第一章项目及现场概况 1.项目概况 现场为装配电子元器件产生的有机气体,主要有甲苯,二甲苯等气体第二章设计依据、原则、范围及治理目标2.1设计依据 1)《中华人民共和国环境保护法》;

2)《中华人民共和国大气污染防治法》; 3)GB16297-1996《大气污染物综合排放标准》; 4)业主提供的相关资料和公司的现实情况; 5)《环境空气质量标准》(GB3095-1996); 6)《机械工程设计手册》; 7)《电器工程设计手册》; 8)《环境工程设计手册》; 9)《大气污染控制工程》; 10)《工业企业设计卫生标准》; 11)《通用用电设备设计规范》(GB50057-94); 12)多年来从事该废气治理工程的设计的成功经验。 2.2设计原则 1)根据环保要求,保证该项目对企业周边的空气环境质量影响在允许范围内 为原则; 2)坚持安全、经济、适用,并兼顾美观的精心设计原则; 3)选择工艺先进成熟、系统稳定可靠、管理方便的治理技术; 4)对设备、仪表等选型本着可靠、适用的原则。 2.3设计范围 从烟气进入设备进口及烟气出口整个净化系统的设计、设备的设计制作。 2.4治理目标 1)烟气排放出口符合《大气污染物综合排放标准》(GB16297-1996)的排放 要求,实现达标排放; 2)符合节能减排、清洁生产的原则; 3)废气去除率达到95%以上,且总颗粒物去除率达到90%以上;

第三章烟气冶理工艺流程 3.1 工艺选择 1)喷淋吸收塔 5)光电解设备 3.2 设计处理的工艺流程 详细流程描述如下: 工艺说明: 从车间出来的有机气体气体,在集烟管道收集后经过输气管道进入洗涤、除雾、活光电解后,烟气中的绝大部分有害其他被滤除掉(净化率≥95%),然后再由引风机直接抽风排放。 第四章技术参数 烟气量 需要处理的烟气总量约为25000m3/h

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

光电子技术教学大纲教材

理论(含课内实验)课程教学大纲模板 《光电子技术》教学大纲 一、课程基本信息 1、课程名称:光电子技术:全称(英文)Optoelectronics Technology 2、课程代码:B1309064 3、课程管理:数理学院应用物理教研室 4、教学对象:应用物理 5、教学时数:总时数48 学时,其中理论教学32学时,实验实训16 学时。 6、课程学分:3 7、课程性质:专业选修课程 8、课程衔接: (1)先修课程:光学、电磁学、原子物理学、量子力学、模拟电子技术 (2)后续课程: 二、课程简介 光电子技术是由电子技术和光子技术互相渗透、优势结合而产生的,是一门新兴的综合性交叉学科,已经成为现代信息科学的一个极为重要的组成部分,以光电子学为基础的光电信息技术是当前最为活跃的高新技术之一。该课程介绍光电子技术的理论和应用基础,介绍光电子系统中关键器件的原理、结构、应用技术和新的发展。该课程在阐明基本原理的同时,突出应用技术,使学生能够把握光电子技术的总体框架,有兴趣、有信心投入实践和创新活动。 三、教学内容及要求 第一章光电系统的常用光源 (一)教学目标 掌握常用的光源及光度学的基本知识;了解发光二级管的新进展。 (二)教学节次及要求 第一节辐射度学和光度学的基础知识 1、掌握辐射度学和光度学的基础知识; 2、了解辐射度学和光度学之间的关系与联系。 第二节热辐射光源 1、掌握热辐射光源的基本原理; 2、了解黑体辐射器、白炽灯和卤钨灯的原理。 第三节气体放电光源 1、掌握气体放电光源; 2、了解气体放电光源的特点以及各种不同类型的气体放电光源。 第四节激光器 1、掌握激光器的基本原理以及半导体激光器的结构; 2、了解各种不同的激光器的发光机理。

光氧催化废气净化器使用说明书(2).

使用说明书 河南超强环保科技有限公司是一家集科研、设计、生产、维修、和销售集成为一体的高新技术企业,、凭借在环保领域的专业水平和成熟的技术,正在迅速崛起。依靠科技求发展,不断为用户提供满意的高科技产品,是我们始终不变的追求。 在充分引进吸收国外先进技术的基础上,我公司已成功开发出环保净化设备、粉尘处理设备、废气处理设备、等系列产品,并已广泛应用于冶金、化工、焊接、制药、垃圾处理、喷涂等众多领域。以一流的产品质量和精湛的技术服务受到了用户的一致好评。 全体员工奉行“进取求实严谨团结”的方针,不断开拓创新,以技术为核心、视质量为生命、奉用户为上帝,竭诚为您提供性价比最高的环保产品、高质量的废气粉尘工程设计改造及无微不至的售后服务。 本公司拥有专业的设计团队、生产团队,可根据客户要求进行定做。欢迎前来咨询。

目录 1.设备说明 1.1、技术原理 1.2、性能参数 1.3、技术特点 1.4、技术优势 1.5、适用范围 2.操作使用说明 2.1注意事项 3.电气系统维护 4.安全、操作、维护保养注意事项 5.常见故障与排除方法 6.安装说明 1.设备说明 1.1技术原理 本产品利用特制的高能高臭氧UV紫外线光束照射废气,裂解工业废气如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、乙酸丁酯、乙酸乙酯、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子链结构,使有机或无机高分子恶臭化合物分子链,在高能紫外线

光束照射下,降解转变成低分子化合物,如CO2、H2O等。利用高能高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧。UV+O2→O-+O*(活性 氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对工业废气及其它刺激性异味有立竿见影的清除效果。工业废气利用排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束及臭氧对工业废气进行协同分解氧化反应,使工业废气物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外。利用高能UV光束裂解工业废气中细菌的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应,彻底达到净化及杀灭细菌的目的.从净化空气效率考虑,我们选择了-C波段紫外线和臭氧发结合电晕电流较高化装置采用脉冲电晕放吸附技术相结合的原理对有害气体进行消除,其中-C波段紫外线主要用来去除硫化氢、氨、苯、甲苯、二甲苯、甲醛、乙酸乙酯、乙烷、丙酮、尿烷、树脂、等气体的分解和裂变,是有机物变为无机化合物。 净化装置由初滤单元、-C波段紫外线装置,降解收集,臭氧发生器及过滤单元等设备和部件组成。

光催化原理及应用

姓学号:0903032038 合肥学院 化学与材料工程系 固 体 物 理 姓名:杜鑫鑫 班级:09无机非二班 学号:0903032038 课题名称:光催化原理及应用 指导教师:韩成良

光催化原理及应用 引言:目前,全球性环境污染问题受到广泛重视。光催化反应可对污水中的农 药、染料等污染物进行降解,还能够处理多种有害气体;光催化还可应用于贵金属回收、化学合成、卫生保健等方面。光催化反应在化工、能源及环境等领域都有广阔的应用前景。本文论述了主要光催化剂类型及光催化技术的应用研究成果。 关键词:光催化、应用、发展、环境、处理 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。 在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。 例如TiO 2 是一种半导体氧化物,化学稳定性好(耐酸碱和光化学腐蚀), 无毒,廉价,原料来源丰富。 TiO 2 在紫外光激发会产生电子-空穴对,锐钛 型TiO 2 激发需要3.2 eV的能量,对应于380 nm左右的波长。光催化活性高(吸收紫外光性能强;能隙大,光生电子的还原性和和空穴的氧化性强)。因此其广泛应用于水纯化,废水处理,有毒污水控制,空气净化,杀菌消毒等领域。 主要的光催化剂类型: 1.1 金属氧化物或硫化物光催化剂 常见的金属氧化物或硫化物光催化剂有TiO,、ZnO、WO 3、Fe 2 O 3 、ZnS、CdS 和PbS等。其中,CdS的禁带宽度较小,与太阳光谱中的近紫外光段有较好的匹配性,可以很好地利用自然光源,但容易发生光腐蚀,使用寿命有限。TiO,具

光氧催化使用说明书

光氧催化(除臭)有机废气净化器 使 用 说 明 书 永昌 环保 1367 3803 577

一、产品概述 本产品采用高能高臭氧UV紫外线光束、氧化反应催化板、高能离子发生器的工艺来降解恶臭气体(有机废气),改变恶臭气体如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子链结构,使有机或无机高分子恶臭化合物分子链,通过高能紫外线光束照射、催化剂的氧化反应、正氧离子的氧化反应,降解转变成低分子化合物,如CO2、H2O等。 二、产品用途 本系列有机废气净化器产品主要适用于:各类工业喷涂、印刷、印花、丝印挥发性有机废气;各类恶臭气体的除臭净化处理。 各种工厂、废水处理站、医院、垃圾中转站等场所的有机 废气除臭、杀菌的净化处理; 三、工作原理 1、利用高能高臭氧 UV 紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧。UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对恶臭气体及其它刺激性异味有立竿见影的清除效果。恶臭气体利用排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束及臭氧对恶臭气体进行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外。 2、催化板(二氧化钛)在受到紫外线光照射时生成化学活泼性很强的超氧化物阴离子自由基和氢氧自由基,攻击有机物,达到降解有机物的作用。二氧化钛属于非溶出型材料,在彻底分解有机污染物和杀灭菌的同时,自身不分解、不溶出,光催化作用持久,并具有持久的杀菌、降解污染物效果。

纳米光电子器件最新进展及发展趋势

纳米光电子器件最新进展及发展趋势 摘要:纳米光电子技术是一门新兴科技,近年来随着其发展及研究受到越来越多学者和专家的关注,该技术的应用更是成为现代人们关注的热点。文章主要针对纳米光电子器件展开分析,并对其未来发展方向进行了阐述。 标签:纳米光电子器件;发展进展;发展趋势 随着信息产业的不断发展,该行业对于集成电路器件的性能要求越来越严格,这使得工程师们不断探索现有电路器件集成度极限的方法。随着亚微米、深亚微米以及微电子机械系统(MEMS)的不断发展,纳米电子学以及纳米光电子学随之发展起来,并且纳米量子器件作为其产物继承了此类技术的优势。纳米量子器件能够根据其特征分为纳米电子器件以及纳米电子光器件。纳米电子器件由共振隧穿器件、量子点器件以及单电子器件等部件组成;而纳米光电子器件主要是由基于应变自组装的纳米激光器、量子点红外光电探测器等部件组成。 1 纳米光电子器件的进展 在现阶段中已经研制出并在实际生产中能够使用的纳米光电子器件有:纳米激光器、量子点红外光电探测器、InGaAs/GaAs多量子限自电光效应器件、垂直腔面发射激光器、聚光物发光二极管等器件。 1.1 纳米导线激光器 纳米导线激光器能够发射出世界最小的激光,其直径小于人体毛发的千分之一。该激光器除了能够发射紫外激光,还能够发射蓝色-深紫外的激光。研究人员发现,在纯氧化锌晶体中运用取向附生技术能够制造出此类激光器。纳米导线激光器在制造过程中首先需要制造纳米导线,也就是在纯氧化锌的表层上制造一条直径为20nm~150nm且长度为10000nm的导线,其次,当研究人员在温室中使用一种激光照射在纯氧化锌表层上的导线中时,纯氧化锌晶体被激活,其会发射一种波长仅为17nm的激光。纳米导线激光器能够被应用于鉴别化学物质等工作中,并且能够促使磁盘的存储空间增长。 1.2 紫外纳米激光器 紫外纳米激光器能够发射直径小于0.3nm,波长为385nm的激光,并且该激光器件具有制作简单、亮度高、体积小、性能好的优势,能够在高密度纳米线阵列的制作中起到较好的效果,因此,紫外纳米激光器被应用于现代许的GaAs器件无法设计的领域。该激光器主要是应用了催化外延晶体生长的气相输运法合成的原理:(1)将蓝宝石底部贴上一层1nm~3.5nm厚的金膜;(2)将贴膜后的蓝宝石放置在氧化铝上,并将底部与材料放置氨气中加热至880℃~905℃,就能够生产Zn蒸汽;(3)将Zn蒸汽与蓝宝石底部相连,于2~10min中蓝宝石底部会生成截面积为六边形2~10um的纳米线。相关文献表示,ZnO纳米线能够生

光氧催化技术方案书

光氧催化技术方案 书 1 2020年4月19日

废气处理方案书 项目编号:ZKHB-150926 常州市中康环保设备有限公司

第一部分 解 决 方 案 第一章项目及现场概况 1.项目概况 现场为装配电子元器件产生的有机气体,主要有甲苯,二甲苯等气体

第二章设计依据、原则、范围及治理目标 2.1设计依据 1)《中华人民共和国环境保护法》; 2)《中华人民共和国大气污染防治法》; 3)GB16297-1996《大气污染物综合排放标准》; 4)业主提供的相关资料和公司的现实情况; 5)《环境空气质量标准》(GB3095-1996); 6)《机械工程设计手册》; 7)《电器工程设计手册》; 8)《环境工程设计手册》; 9)《大气污染控制工程》; 10)《工业企业设计卫生标准》; 11)《通用用电设备设计规范》(GB50057-94); 12)多年来从事该废气治理工程的设计的成功经验。 2.2设计原则 1)根据环保要求,保证该项目对企业周边的空气环境质量影响 在允许范围内为原则; 2)坚持安全、经济、适用,并兼顾美观的精心设计原则; 3)选择工艺先进成熟、系统稳定可靠、管理方便的治理技术;

4)对设备、仪表等选型本着可靠、适用的原则。 2.3设计范围 从烟气进入设备进口及烟气出口整个净化系统的设计、设备的设计制作。 2.4治理目标 1)烟气排放出口符合《大气污染物综合排放标准》(GB16297- 1996)的排放要求,实现达标排放; 2)符合节能减排、清洁生产的原则; 3)废气去除率达到95%以上,且总颗粒物去除率达到90%以 上; 第三章烟气冶理工艺流程 3.1 工艺选择 1)喷淋吸收塔 5)光电解设备 3.2 设计处理的工艺流程

光催化剂的发展前景与突破

光催化剂的发展前景与突破 一、解决人类生存的重大问题 光催化学科是催化化学、光电化学、半导体物理、材料科学和环境科学等多学科交叉的新兴研究领域。光催化剂的研究应用一旦获得突破,将可以使环境和能源这两个二十一世纪人类面临的重大生存问题得以解决。 利用太阳能光催化分解水制氢H2O → H2 + ? O2 彻底解决能源问题 利用环境光催化 C6H6 + 7 ? O2 → 6 CO2 + 3H2O 彻底解决污染问题 光催化以其室温深度反应和可直接利用太阳光作为光源来驱动反应等独特性能而成为一种理想的环境污染治理技术和洁净能源生产技术。 二、光催化研究领域急需解决的重大科技问题 目前以二氧化钛为基础的半导体光催化存在一些关键科学技术难题,使其广泛的工业应用受到极大制约,而这些问题的解决有赖于深入系统的基础研究。 最突出的问题在于: (1)量子效率低(~4%) 难以处理量大且浓度高的废气和废水,难以实现光催化分解水制氢的产业化。(2)太阳能利用率低 由于TiO2半导体的能带结构(Eg=3.2eV)决定了其只能吸收利用紫外光或太阳光中的紫外线部分(太阳光中紫外辐射仅占~5 %)。 (3)多相光催化反应机理尚不十分明确 以半导体能带理论为基础的光催化理论难以解释许多实验现象,使得改进和开发新型高效光催化剂的研究工作盲目性大。 (4)光催化应用中的技术难题 如在液相反应体系中光催化剂的负载技术和分离回收技术,在气相反应体系中光催化剂的成膜技术及光催化剂活性稳定性问题。 上述关键问题也是目前国内外光催化领域的研究焦点,围绕这些问题开展进一步的研究不仅可望在光催化基础理论方面获得较大的突破,而且有利于促进光催化技术真正能在上述众多领域得到大规模广泛工业应用。 三、光催化领域的最新研究进展 近年来,光催化的基础与应用研究发展非常迅速,特别是在可见光诱导的新型光催

光催化在有机合成中的应用 文献综述

光催化在有机合成中的应用 沈晓峰150110113 化学师范10 摘要21世纪, 化学研究的一个主要目标是发展一种高效能技术, 用于取代那些对环境 有害的耗能过程。在光催化的有机合成中,通过优化反应环境可以实现对某种目标产物的高选择性, 从而为有机合成提供了一种绿色、节能的途径, 成为21世纪最具潜力的绿色有机化学技术。 1.引言1972 年, Fujishima和Honda[1]发现TiO2单晶电极能够在光照条件下将水分解为 氢气和氧气, 光催化技术的序幕由此揭开. 光催化领域的开拓瞬时点燃了科研工作者们对这一崭新领域的研究热情. 随着研究工作的深入开展, 人们的目光不再局限于光解水制氢这一体系, 而是投向了更广阔的天地. 在过去的近四十年里, 有关光催化的研究报道如雨后春笋般涌现出来。目前, 大多数的研究工作主要集中于降解水和空气中污染物等环境治理和改善方面, 太阳能的转化以及界面电子转移等电化学过程上。尽管如此, 将光催化用于特定的有机化合物的合成等方面已经得到了越来越多的关注。众所周知, 传统的有机合成不仅步骤繁琐, 而且所使用的氧化剂通常是一些具有毒性或者腐蚀性的强氧化剂。光催化反应将太阳光引入有机合成体系,无论从节能的角度还是环保的角度, 都无疑是一个重大的突破, 主要原因有以下三点: (1)太阳能是一种完全可再生的资源; (2)光化学激发所需要的条件比热催化所要求的条件要温和得多; (3)光化学激发为人们设计出更短的反应历程提供条件, 从而将副反应的发生减小到最小程度。 2.光催化原理光催化是光化学和催化科学的交叉点,一般是指在催化剂参与下的光化学反应。半导体材料之所以具有光催化特性,是由它的能带结构所决定。半导体的晶粒内含有能带结构,其能带结构通常由一个充满电子的低能价带(HD<8351KD3=,RS)和一个空的高能导带(E93=7E5693KD3=,>S)构成,价带和导带之间由禁带分开,该区域的大小称为禁带宽度,其能差为带隙能,半导体的带隙能一般为"+!!(+"8R。当用能量等于或大于带隙能的光照射催化剂时,价带上的电子被激发,越过禁带进入导带,同时在价带上产生相应的空穴,即生成电子/空穴对。由于半导体能带的不连续性,电子和空穴的寿命较长,在电场作用下或通过扩散的方式运动,与吸附在催化剂粒子表面上的物质发生氧化还原反应,或者被表面晶格缺陷俘获。空穴和电子在催化剂内部或表面也可能直接复合[0]。因此半导体光催化关键步骤是:催化剂的光激发,光生电子和空穴的迁移和俘获,光生电子和空穴与吸附之间表面电荷迁移以及电子和空穴的体内或表面复合[%]。光催化反应的量子效率低是其难以实用化最为关键的因素。光催化反应的量子效率取决于电子和空穴的复合几率,而电子和空穴的复合过程则主要取决于两个因素:电子和空穴在催化剂表面的俘获过程;表面电荷的迁移过程。 非半导体光催化的过程更为复杂,以金属有机物催化剂为例,主要包括激发活化、配位络合、能量传递和电子传递。激发活化是指吸收光子能量后克服催化剂和反应物形成的活化能垒的过程,根据激发状态可将光催化分成多种类型,如反应物被光激发后在催化剂作用下引起的催化反应、由激发的催化剂所引起的催化反应等。配位络合对光催化是极有利的,反应底物络合于催化剂分子的空配位上形成络合物,能量传递与电子传递从分子间方式变为 分子内传递,减少了激发能的损失,提高了传递效率。光催化反应中,由于分子间的碰撞而

光氧催化废气净化成套设备与方案

二台套CSXA系列光氧催化废气净化成套设备(含抽风机、管道安装)技术条件1.概述 依据国家和地方有关环保法律、法规及产业政策要求对工业污染进行治理,充分发挥建设项目的社会效益、环境效益和经济效益。严格执行国家环境保护有关法规,按规定的排放标准,使处理后的废气各项指标达到且优于国家标准。 2.主要功能特性 (1).积极稳妥地采用新技术、新设备,结合企业的现状和管理水平采用先进、可靠的改造技术和污染治理工艺处理工艺,力求运行稳定、费用低、管理方便、维护容易,从而达到治理污染、保护环境的目的。使治理项目具有显着的环境效益、社会效益和经济效益。 (2). 妥善解决项目建设及运行过程中产生的污染物,避免二次污染。工艺设计与设备选型,能够在生产运行过程中,具有较大的灵活性和调节余地,确保达标排放。 (3). 严格执行现行的防火、安全、卫生、环境保护等国家和地方颁布的规范、法规与标准。在净化设备运行过程中,便于操作管理、便于维修、节省动力消耗和运行费用。 3.设备组成 云母带车间上二套15000 m3/h光氧催化废气净化成套设备,云母带车间应考每小时15次进行室内外空气交换抽排,能及时引入室外新鲜空气,以改善工作环境。车间工作空间内产生的废气除通过集中收集外,每个处理点都由独立的防爆轴流风机把废气完全抽出后再独立净化。 4.设备规格型号 CSXA-KJ800光氧催化废气净化成套设备:功率:220V 4.6KW 处理风量:15000m3/h 设备尺寸:2200mm ×1500mm×1900 mm 风口尺寸:500 mm×500 mm 数量:2套 5.设备主要技术参数 废气收集罩:暂定:1000mm*800mm 风机 每组机组后与烟囱间提供抽排动力的风机,风机做防护处理,电机采用防爆型。 进出口管道及排气筒 上升管道采用钢板制材料,按照4米/秒的风速设计;主风管道为600(mm),按照6米/秒的风速设计,采用钢制管道。为达到最佳净化效果,臭氧氧化+光解催化氧化净化设备后排风管道长度需15米以上。

相关文档
最新文档