机械数控专业--外文资料及翻译

机械数控专业--外文资料及翻译
机械数控专业--外文资料及翻译

外文资料及译文

原文:

Television Video Signals

Although over 50 years old , the standard television signal is still one of the most common way to transmit an image. Figure 8.3 shows how the television signal appears on an oscilloscope. This is called composite video, meaning that there are vertical and horizontal synchronization (sync) pulses mixed with the actual picture information.

These pulses are used in the television receiver to synchronize the vertical and horizontal deflection circuits to match the video being displayed. Each second of standard video contains 30 complete images, commonly called frames , A video engineer would say that each frame contains 525 lines, the television jargon for what programmers call rows. This number is a little deceptive because only 480 to 486 of these lines contain video information; the remaining 39to 45 lines are reserved for sync pulses to keep the television’s circuits synchronized with the video signal.

Standard television uses an interlaced format to reduce flicker in the displayed image. This means that all the odd lines of each frame are transmitted first, followed by the even lines. The group of odd lines is called the odd field, and the group of even lines is called the even field.

Since each frame consists of two fields, the video signal transmits 60 fields per second. Each field starts with a complex series of vertical sync pulses lasting 1.3 milliseconds. This is followed by either the even or odd lines of video. Each line lasts for 63.5 microseconds, including a 10.2 microsecond horizontal sync pulse, separating one line from the next. Within each line, the analog voltage corresponds to the gray scale of the image, with brighter values being in the direction away from the sync pulses. This place the sync beyond the black range. In video jargon, the sync pulses are said to be blacker than black..

The hardware used for analog-to-digital conversion of video signals is called a frame grabber. This is usually in the form of an electronics card that plugs into a computer, and connects to a camera through a coaxial cable. Upon command from software, the frame grabber waits for the beginning of the next frame, as indicated by the vertical sync pulses. During the following two fields,each line of video is sampled many times, typically 512,640 or 720 samples per line, at 8bits per sample. These samples are stored in memory as one row of the digital image.

This way of acquiring a digital image results in an important difference between the vertical and horizontal directions. Each row in the digital image corresponds to one line in the video signal, and therefore to one row of wells in the CCD. Unfortunately, the columns are not so straightforward. In the CCD, each row contains between about 400 and

800 wells (columns), depending on the particular device used. When a row of wells is read from the CCD, the resulting line of video is filtered into a smooth analog signal, such as in Figure 8.3. In other words, the video signal does not depend on how many columns are present in the CCD. The resolution in the horizontal direction is limited by how rapidly the analog signal is allowed to change. This is usually set at 3.2 MHz for color television, resulting in a rise time of about 100 nanoseconds, i.e, about 1/500th of the 53.2 microsecond video line.

When the video signal is digitized in the frame grabber, it is converted back into columns, However, these columns in the digitized image have no relation to the columns in the CCD. The number of columns in the digital image depends solely on how many times the frame grabber samples each line of video. For example, a CCD might have 800 wells per row, while the digitized image might only have 512 pixels (i.e , columns) per row.

The number of columns in the digitized image is also important for another reason. The standard television image has an aspect ratio of 4 to 3, i.e. , it is slightly wider than it is high. Motion pictures have the wider aspect ratio of 25 to 9. CCDs used for scientific applications often have an aspect ratio of 1 to 1, i.e , a perfect square. In any event, the aspect ratio of a CCD is fixed by the placement of the electrodes, and cannot be altered. However, the aspect ratio of the digitized image depends on the

number of samples per line. This becomes a problem when the image is displayed, either on a video monitor or in a hardcopy. If the aspect ratio isn’t properly reproduced, the image looks squashed horizontally or vertically.

The 525 line video signal described here is called NTSC (National Television Systems Committee), a standard defined way back in 1954. This is the system used in the United States and Japan. In Europe there are two similar standards called PAL (Phase Alternation by Line) and SECAM (Sequential Chrominance And Memory). The basic concepts are the same , just the numbers are different. Both PAL and SECAM operate with 25 interlaced frames per second, with 625 lines per frame. Just as with NTSC, some of these lines occur during the vertical sync, resulting in about 576 lines that carry picture information. Other more subtle differences relate to how color and sound are added to the signal.

The most straightforward way of transmitting color television would be to have three separate analog signals, one for each of the three colors the human eye can detect: red, green and blue. Unfortunately, the historical development of television did not allow such a simple scheme. The color television signal was developed to allow existing black and white television sets to remain in use without modification. This was done by retaining the same signal for brightness information , but adding a separate signal for color information. In video jargon, the brightness is

called the luminance signal, while the color is the chrominance signal. The chrominance signal is contained on a 3.58 MHz carrier wave added to the black and white video signal. Sound is added in this same way, on a 4.5 MHz carrier wave. The television receiver separates these three signals, processes them individually, and recombines them in the final diplay.

译文:

关键词:核心,合成信号,电压耦合

电视信号

尽管已经拥有50年的历史了,电视信号依然是常用的传递信息的途径之一。图 8.3演示了电视信号如何出现在一个示波器上。这叫做合成信号,意谓有垂直的方向和水平的方向的合成(同步)和真实的图片数据混合的脉冲信号。

这些脉冲被电视接收器同垂直与水平线以及其他歪斜线路配和成信号并被电视显示出来。标准的信号每秒包含30个完整的图像,一般被做成了体格,电视工程师会把每个体格编制成包含525条行(电视专门术语)。因为在这些线中的只有80到486条包含了电视信号的数据;剩余39到45条行被同步脉冲保留用以维持电视能与信号一起同时被使用,所以这一个数字稍微具有一定的迷惑性。

标准的电视信号使用了一个被交织的格式以便减少显示时图像的闪烁。这就意谓着每个体格中的所有奇数的线首先被传输,而那些平坦的线然后跟随着被传输。那群奇数的线被叫做奇数领域, 和另外一群线叫做平坦领域。由于每个体格都是由二个领域组成,并且每秒以60个领域的速度进行信号传送。由一个复杂的连续垂直的同步脉冲长1.3个毫秒领域开始。这与跟随线或电视的平坦或奇数的线相结合。每条线的速度为63.5个微秒,包括一个10.2微秒的水平线以同步脉冲持续,分开并从下一个阶段排成一行。在每条线里面,类比电压符合图像的灰色刻度,由较明亮的线在水平方向中远离同步脉冲。在超过黑色的范围这一个地方同步。在电视的专门术语中,同步脉冲被说成是比黑色的线更具有黑色性。

作为电视的信号类比到转变为传送信号的硬件叫做一个体系的核心。通常是以一张的形式插入到一部计算机中,而且经由一个同桥电缆线连接到一个摄像机的电子学卡片的形式。由来自软件的指令之下,核心等候下一个体格的开始,如垂直的同步脉冲所指出。在下列各项领域的出现的时候,电视的每条线许多次被抽取样品,典型地以每线512,640或720个三种样品,每样品8B。这些样品被储存就像传送图像一样被记忆.

这样获得的传送图像造成在垂直和水平线之间的一种明显的不同方向。每个在数传图像中符合电视的信号排成一行,并因此在电压耦合元件中输出。然而,信号并不是如此垂直。在电压耦合元件中,每排包含在约400和800之间输出,依赖一种被用的特别装置。当从电压耦合元件读出来时,电视的产生线进入平滑的类比信号之内然后被过滤, 如此就如在图 8.3 中所显示的那样. 换句话说,电视信号并不依赖信号在电压耦合元件中存在的多少。水平的方向被限制类比信号有多快的速度决定了其是否允许被改变。这通常是以 3.2个百万赫兹为彩色电视

放置,造成上升时间大约 100个十亿分之一秒,i.e,约 1/53.2 微秒中的第 500个电视信号线。

当电视的信号在核心中被数字化的时候,然而,它被转换返回专栏,被数字化了的图像专栏没有关系到电压耦合元件的专栏。数传图像的专栏数字独自地依赖核心抽取样品许多次电视信号的每条线。举例来说,一个电压耦合元件可能每一排有800得好,当被数字化的图像只可能有每排 512个图素 ( i.e,专栏) 的时候。

被数字化的图像专栏的数字也对另外的一个非常重要的理由。标准电视图像要占3/4,也就是,有些稍微宽有些稍微高一些。体育照片就有9/25的宽度比。作为科学的申请电压耦合元件时常用1:1的宽度比,i.e ,就是一个完美的正方形。无论如何,电压耦合元件的方向比被电极的安置调整,而且不能够再被改变。然而,被数字化的图像方向比依赖每条样品线的数字。当图像在电视监视器上或在显示器中被显示的时候,这就变成了一个问题。如果这方面不能被适当地调整,图像容貌就会水平方向或垂直方向压扁。

信号在这里描述的525行电视信号被称为国际电视系统委员会(国家的电视系统委员会),一个标准一直到1954定义了其方法。这是沿用于美国和日本的系统。在欧洲有二个被称为可程序化行列逻辑(时期交互线)和SECAM 的相似标准。(继续影象和记忆)他们基本的观念是相同的,只是数字不同而已。可程序化行列逻辑SECAM 操作由于25使其交织成了一秒体格,由每体格 625条行。正如国际电视系统委员会所说,一些线在垂直的同步期间发生,大约造成进位画数据的576条行。其他的较敏感的方面不同例如如何把颜色和声音增加到信号之中。

传输彩色电视的最直接的要求要有三个分开的类比信号,一为人类的眼睛能发现的三种颜色:红色,绿色和蓝色。然而,电视的历史发展并不是一个如此简单的方案。彩色电视信号被发展并允许存在于黑白的电视,其设定在没有修正的使用当中保存。这被称为光亮数据并保有相同的信号,是增加一个分开信号为彩色数据。在电视的专门术语中,光亮叫做亮度信号,当颜色成为电视信号的时候。电视信号被包含在能增加到黑白的电视信号的一个3.58百万赫兹的运送波上。声音以相同的方式被增加在一个4.5百万赫兹运送到波上。电视接收器分开这三信号,独立地处理他们,并且最后在显示器中结合他们。

冲压模具技术外文翻译(含外文文献)

前言 在目前激烈的市场竞争中,产品投入市场的迟早往往是成败的关键。模具是高质量、高效率的产品生产工具,模具开发周期占整个产品开发周期的主要部分。因此客户对模具开发周期要求越来越短,不少客户把模具的交货期放在第一位置,然后才是质量和价格。因此,如何在保证质量、控制成本的前提下加工模具是值得认真考虑的问题。模具加工工艺是一项先进的制造工艺,已成为重要发展方向,在航空航天、汽车、机械等各行业得到越来越广泛的应用。模具加工技术,可以提高制造业的综合效益和竞争力。研究和建立模具工艺数据库,为生产企业提供迫切需要的高速切削加工数据,对推广高速切削加工技术具有非常重要的意义。本文的主要目标就是构建一个冲压模具工艺过程,将模具制造企业在实际生产中结合刀具、工件、机床与企业自身的实际情况积累得高速切削加工实例、工艺参数和经验等数据有选择地存储到高速切削数据库中,不但可以节省大量的人力、物力、财力,而且可以指导高速加工生产实践,达到提高加工效率,降低刀具费用,获得更高的经济效益。 1.冲压的概念、特点及应用 冲压是利用安装在冲压设备(主要是压力机)上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件(俗称冲压或冲压件)的一种压力加工方法。冲压通常是在常温下对材料进行冷变形加工,且主要采用板料来加工成所需零件,所以也叫冷冲压或板料冲压。冲压是材料压力加工或塑性加工的主要方法之一,隶属于材料成型工程术。 冲压所使用的模具称为冲压模具,简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。 与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点,主要表现如下; (1) 冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是

外文翻译

Load and Ultimate Moment of Prestressed Concrete Action Under Overload-Cracking Load It has been shown that a variation in the external load acting on a prestressed beam results in a change in the location of the pressure line for beams in the elastic range.This is a fundamental principle of prestressed construction.In a normal prestressed beam,this shift in the location of the pressure line continues at a relatively uniform rate,as the external load is increased,to the point where cracks develop in the tension fiber.After the cracking load has been exceeded,the rate of movement in the pressure line decreases as additional load is applied,and a significant increase in the stress in the prestressing tendon and the resultant concrete force begins to take place.This change in the action of the internal moment continues until all movement of the pressure line ceases.The moment caused by loads that are applied thereafter is offset entirely by a corresponding and proportional change in the internal forces,just as in reinforced-concrete construction.This fact,that the load in the elastic range and the plastic range is carried by actions that are fundamentally different,is very significant and renders strength computations essential for all designs in order to ensure that adequate safety factors exist.This is true even though the stresses in the elastic range may conform to a recognized elastic design criterion. It should be noted that the load deflection curve is close to a straight line up to the cracking load and that the curve becomes progressively more curved as the load is increased above the cracking load.The curvature of the load-deflection curve for loads over the cracking load is due to the change in the basic internal resisting moment action that counteracts the applied loads,as described above,as well as to plastic strains that begin to take place in the steel and the concrete when stressed to high levels. In some structures it may be essential that the flexural members remain crack free even under significant overloads.This may be due to the structures’being exposed to exceptionally corrosive atmospheres during their useful life.In designing prestressed members to be used in special structures of this type,it may be necessary to compute the load that causes cracking of the tensile flange,in order to ensure that adequate safety against cracking is provided by the design.The computation of the moment that will cause cracking is also necessary to ensure compliance with some design criteria. Many tests have demonstrated that the load-deflection curves of prestressed beams are approximately linear up to and slightly in excess of the load that causes the first cracks in the tensile flange.(The linearity is a function of the rate at which the load is applied.)For this reason,normal elastic-design relationships can be used in computing the cracking load by simply determining the load that results in a net tensile stress in the tensile flange(prestress minus the effects of the applied loads)that is equal to the tensile strength of the concrete.It is customary to assume that the flexural tensile strength of the concrete is equal to the modulus of rupture of the

ASP外文翻译原文

https://www.360docs.net/doc/374126875.html, https://www.360docs.net/doc/374126875.html, 是一个统一的 Web 开发模型,它包括您使用尽可能少的代码生成企业级 Web 应用程序所必需的各种服务。https://www.360docs.net/doc/374126875.html, 作为 .NET Framework 的一部分提供。当您编写 https://www.360docs.net/doc/374126875.html, 应用程序的代码时,可以访问 .NET Framework 中的类。您可以使用与公共语言运行库 (CLR) 兼容的任何语言来编写应用程序的代码,这些语言包括 Microsoft Visual Basic、C#、JScript .NET 和 J#。使用这些语言,可以开发利用公共语言运行库、类型安全、继承等方面的优点的https://www.360docs.net/doc/374126875.html, 应用程序。 https://www.360docs.net/doc/374126875.html, 包括: ?页和控件框架 ?https://www.360docs.net/doc/374126875.html, 编译器 ?安全基础结构 ?状态管理功能 ?应用程序配置 ?运行状况监视和性能功能 ?调试支持 ?XML Web services 框架 ?可扩展的宿主环境和应用程序生命周期管理 ?可扩展的设计器环境 https://www.360docs.net/doc/374126875.html, 页和控件框架是一种编程框架,它在 Web 服务器上运行,可以动态地生成和呈现 https://www.360docs.net/doc/374126875.html, 网页。可以从任何浏览器或客户端设备请求 https://www.360docs.net/doc/374126875.html, 网页,https://www.360docs.net/doc/374126875.html, 会向请求浏览器呈现标记(例如 HTML)。通常,您可以对多个浏览器使用相同的页,因为 https://www.360docs.net/doc/374126875.html, 会为发出请求的浏览器呈现适当的标记。但是,您可以针对诸如 Microsoft Internet Explorer 6 的特定浏览器设计https://www.360docs.net/doc/374126875.html, 网页,并利用该浏览器的功能。https://www.360docs.net/doc/374126875.html, 支持基于 Web 的设备(如移动电话、手持型计算机和个人数字助理 (PDA))的移动控件。

机械设计设计外文文献翻译、中英文翻译、外文翻译

机械设计 摘要:机器是由机械装置和其它组件组成的。它是一种用来转换或传递能量的装置,例如:发动机、涡轮机、车辆、起重机、印刷机、洗衣机、照相机和摄影机等。许多原则和设计方法不但适用于机器的设计,也适用于非机器的设计。术语中的“机械装置设计”的含义要比“机械设计”的含义更为广泛一些,机械装置设计包括机械设计。在分析运动及设计结构时,要把产品外型以及以后的保养也要考虑在机械设计中。在机械工程领域中,以及其它工程领域中,所有这些都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。 关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实际性,现存的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需具有以前机器所能执行的功能。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束。即使产生了许多不切实际的想法,也会在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,还要提出几套设计方案,然后加以比较。很有可能在这个计划最后决定中,使用了某些不在计划之内的一些设想。 一般的当外型特点和组件部分的尺寸特点分析得透彻时,就可以全面的设计和分析。接着还要客观的分析机器性能的优越性,以及它的安全、重量、耐用性,并且竞争力的成本也要考虑在分析结果之内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分相协调。 也要选择原材料和处理原材料的方法。通过力学原理来分析和实现这些重要的特性,如那些静态反应的能量和摩擦力的最佳利用,像动力惯性、加速动力和能量;包括弹性材料的强度、应力和刚度等材料的物理特性,以及流体润滑和驱动器的流体力学。设计的过程是重复和合作的过程,无论是正式或非正式的进行,对设计者来说每个阶段都很重要。 最后,以图样为设计的标准,并建立将来的模型。如果它的测试是符合事先要

机械类外文文献

附:外文翻译 外文原文: Fundamentals of Mechanical Design Mechanical design means the design of things and systems of a mechanical nature—machines, products, structures, devices, and instruments. For the most part mechanical design utilizes mathematics, the materials sciences, and the engineering-mechanics sciences. The total design process is of interest to us. How does it begin? Does the engineer simply sit down at his desk with a blank sheet of paper? And, as he jots down some ideas, what happens next? What factors influence or control the decisions which have to be made? Finally, then, how does this design process end? Sometimes, but not always, design begins when an engineer recognizes a need and decides to do something about it. Recognition of the need and phrasing it in so many words often constitute a highly creative act because the need may be only a vague discontent, a feeling of uneasiness, of a sensing that something is not right. The need is usually not evident at all. For example, the need to do something about a food-packaging machine may be indicated by the noise level, by the variations in package weight, and by slight but perceptible variations in the quality of the packaging or wrap. There is a distinct difference between the statement of the need and the identification of the problem. Which follows this statement? The problem is more specific. If the need is for cleaner air, the problem might be that of reducing the dust discharge from power-plant stacks, or reducing the quantity of irritants from automotive exhausts. Definition of the problem must include all the specifications for the thing that is to be designed. The specifications are the input and output quantities, the characteristics of the space the thing must occupy and all the limitations on t hese quantities. We can regard the thing to be designed as something in a black box. In this case we must specify the inputs and outputs of the box together with their characteristics and limitations. The specifications define the cost, the number to be manufactured, the expected life, the range, the operating temperature, and the reliability. There are many implied specifications which result either from the designer's particular environment or from the nature of the problem itself. The manufacturing processes which are available, together with the facilities of a certain plant, constitute restrictions on a designer's freedom, and hence are a part of the implied specifications. A small plant, for instance, may not own cold-working machinery. Knowing this, the designer selects other metal-processing methods which can be performed in the plant. The labor skills available and the competitive situation also constitute implied specifications. After the problem has been defined and a set of written and implied specifications has been obtained, the next step in design is the synthesis of an optimum solution. Now synthesis cannot take place without both analysis and optimization because the system under design must be analyzed to determine whether the performance complies with the specifications. The design is an iterative process in which we proceed through several steps, evaluate the results, and then return to an earlier phase of the procedure. Thus we may synthesize several components of a system, analyze and optimize them, and return to synthesis to see what effect this has on the remaining parts of the system. Both analysis and optimization require that we construct or devise abstract models of the system which will admit some form of mathematical analysis. We call these models

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

毕业设计外文翻译原文.

Optimum blank design of an automobile sub-frame Jong-Yop Kim a ,Naksoo Kim a,*,Man-Sung Huh b a Department of Mechanical Engineering,Sogang University,Shinsu-dong 1,Mapo-ku,Seoul 121-742,South Korea b Hwa-shin Corporation,Young-chun,Kyung-buk,770-140,South Korea Received 17July 1998 Abstract A roll-back method is proposed to predict the optimum initial blank shape in the sheet metal forming process.The method takes the difference between the ?nal deformed shape and the target contour shape into account.Based on the method,a computer program composed of a blank design module,an FE-analysis program and a mesh generation module is developed.The roll-back method is applied to the drawing of a square cup with the ˉange of uniform size around its periphery,to con?rm its validity.Good agreement is recognized between the numerical results and the published results for initial blank shape and thickness strain distribution.The optimum blank shapes for two parts of an automobile sub-frame are designed.Both the thickness distribution and the level of punch load are improved with the designed blank.Also,the method is applied to design the weld line in a tailor-welded blank.It is concluded that the roll-back method is an effective and convenient method for an optimum blank shape design.#2000Elsevier Science S.A.All rights reserved. Keywords:Blank design;Sheet metal forming;Finite element method;Roll-back method

机械专业外文翻译(中英文翻译)

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important considerations in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems covering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11-and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

Manufacturing Engineering and Technology(机械类英文文献+翻译)

Manufacturing Engineering and Technology—Machining Serope kalpakjian;Steven R.Schmid 机械工业出版社2004年3月第1版 20.9 MACHINABILITY The machinability of a material usually defined in terms of four factors: 1、Surface finish and integrity of the machined part; 2、Tool life obtained; 3、Force and power requirements; 4、Chip control. Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone. Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below. 20.9.1 Machinability Of Steels Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels. Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in

引进外资外文翻译资料

河南科技学院新科学院 2013届本科毕业生论文(设计) 英文文献及翻译 Foreign capital inflows and welfare in an economy with imperfect competition 学生姓名:王艳杰 所在院系:经济系 所学专业:国际经济与贸易 导师姓名:侯黎杰 完成时间:2013年4月15日

Foreign capital inflows and welfare in an economy with imperfect competition Abstract:This paper examines the resource allocational and welfare effects of exogenous inflows of foreign capital in a general-equilibrium model with oligopolistic competition and unemployment. Although the welfare impact for the short run is ambiguous and dependent upon the strength of excess profits and scale economies relative to unemployment in manufacturing, in the long run additional inflows of foreign capital always improve national welfare with capital mobility. Hence, attracting foreign capital remains a sound policy for economies characterized by imperfect competition, scale economies,and regional unemployment. Keywords: International capital mobility; Imperfect competition; Welfare 1.Introduction The welfare effects of exogenous inflows of foreign capital in the presence of trade restrictions have been extensively studied. Brecher and Diaz Alejandro (1977) show that when imports are subject to tariffs, an introduction of fo reign capital inflows accentuates the tariff distortion and hence reduces national welfare if the import-competing sector is relatively capital-intensive. In contrast, Dei (1985) shows that when imports are restricted by quotas,foreign capital inflows in the presence of foreign-owned capital always improve welfare by depressing the rental and so lowering the payments to existing foreign-owned capital. Recently, Neary (1981), using a common framework for both tariffs and quotas, obtains more general results of foreign capital inflows; the welfare effect of such inflows depends crucially on whether foreign-owned capital exists initially in the home country. In addition, Khan (1982) and Grinols (1991) have examined the effects of foreign capital inflows for a generalized Harris-Todaro economy under tariff protection. Khan finds that the result by Brecher and Diaz Alejandro is still valid even in the presence of unemployment, whereas Grinols argues that increased foreign capital need not be detrimental to welfare if the opportunity costs of labor are sufficiently low. Noteworthy is that the models used by these authors are all based upon the premise of perfect competition along with constant returns-to-scale technology. Although perfect competition serves as a useful assumption in crystallizing theoretical insights, it nevertheless fails to depict many of the real-world phenomena. The real-world economy is characterized, to a large extent, by imperfect competition and economies of scale. The policy implications of imperfect competition and economies

相关文档
最新文档