函数导数习题(含答案)

函数导数习题(含答案)
函数导数习题(含答案)

函数、导数部分

1、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}

2,,,,=∈=x y x b a x x f y y x 中元素的个数为 1或0

2、将函数()x

x f 2=的图象向左平移一个单位得到图象1C ,再将1C 向上平移一个单位得图

象2C ,作出2C 关于直线x y =对称的图象3C ,则3C 对应的函数的解析式为

()11log 2--=x y

3、函数x x x y sin cos -=在下面的哪个区间上是增函数( B )

A. ??

?

??23,2ππ B. ()ππ2, C. ??? ??25,23ππ D. ()ππ3,2

4、设()x x x f s i n =,1x 、??

?

???-∈2,22ππx ,且()1x f >()2x f ,则下列结论必成立的是(D )

A. 1x >2x

B. 1x +2x >0

C. 1x <2x

D. 2

1x >2

2x 5、方程2log 2=+x x 和2log 3=+x x 的根分别是α、β,则有( A ) 6、方程0122

=++x ax 至少有一个负的实根的充要条件是 a ≤ 1 7、在同一坐标系中,函数1+=ax y 与1

-=x a y (a >0且a ≠1)的图象可能是 C

8、函数()()()b x b x a ax x f +-+-+=34812

3

的图象关于原点中心对称,则()x f (B )

A. 在[]34,34-上为增函数 C. 在[)+∞,34上为增函数,在(]

34,-∞-上为减函数

B. 在[]34,34-上为减函数 D. 在(]34,-∞-上为增函数,在[)+∞,34上为减函数 9、设(){}12,2

++==bx x y y x M ,()(){}b x a y y x P +==2,,(){}φ==P M b a S ,,

则S 的面积是π

10、已知()()

x x x f a a log log 2

+-=对任意??

?

??∈21,

0x 都有意义,则实数a 的取值范围是1,116??

????

11、函数432

--=x x y 的定义域为[]m ,0,值域为??

?

???--

4,425,则实数m 的取值范围是 3,32??

????

12、函数()cox x xcox

x f ++=

sin 1sin 的值域是121,11,22????

---- ??? ???

?. 13、对于任意实数x 、y ,定义运算x *y 为:x *y =cxy by ax ++,其中a 、b 、c 为常数,等式右边的运算是通常的加法和乘法运算,现已知1*2=3,2*3=4,并且有一个非零常数m ,使得对于任意实数x ,都有x *m =x ,则m =__________4_____. 14、若函数())4(log -+

=x

a

x x f a (a >0且a ≠1)的值域为R ,则实数a 的取值范围是04a <≤或1a ≠.

15、若曲线()2

1a x y --=与2+=x y 有且只有一个公共点P ,O 为坐标原点,则

OP 的取值范围是

2??.

16、若定义在区间D 上的函数()x f 对D 上的任意n 个值1x ,2x ,…,n x ,总满足

()()()[]n x f x f x f n ++211

≤??

? ??++n x x x f n 21,

则称()x f 为D 上的凸函数.已知函数x y sin =在区间()π,0上是“凸函数”,则在△ABC 中,C B A sin sin sin ++的

17、二次函数()x f 满足()()22+-=+x f x f ,又()30=f ,()12=f ,若在[0,m ]上有最大值3,最小值1,则m 的取值范围是 [2,4]

18.已知函数)(x f y =的图象与函数x

a y =(0>a 且1≠a )的图象关于直线x y =对称,

记]1)2(2)()[()(-+=f x f x f x g .若)(x g y =在区间]2,2

1[上是增函数,则实数a 的取值范围是( D )

A .),2[+∞

B .)2,1()1,0(

C .)1,21[

D .]2

1,0( 19、设a 为实数,设函数x x x a x f -+++-=111)(2的最大值为g (a )。

(Ⅰ)设t =x x -++11,求t 的取值范围,并把f (x )表示为t 的函数m (t )

(Ⅱ)求g (a )

(Ⅲ)试求满足)1

()(a

g a g =的所有实数a

解析:本小题主要考查函数、方程等基本知识,考查分类讨论的数学思想方法和综合运用数学知识分析问题、解决问题的能力。

(Ⅰ)令t =要使有t 意义,必须1+x ≥0且1-x ≥0,即-1≤x ≤1,

∴22[2,4],t =+t ≥0 ①

t 的取值范围是2].2

112

t =

-

∴m(t)=a(

2112t -)+t=21

,2

at t a t +-∈

(Ⅱ)由题意知g(a)即为函数2

1(),2]2

m t at t a t =+-∈的最大值。

注意到直线1t a =-是抛物线2

1()2

m t at t a =+-的对称轴,分以下几种情况讨论。

(1)当a>0时,函数y=m(t), 2]t ∈的图象是开口向上的抛物线的一段,

由1

t a

=-

<0知m(t)在2].上单调递增,∴g(a)=m(2)=a+2

(2)当a=0时,m(t)=t, 2]t ∈,∴g(a)=2.

(3)当a<0时,函数y=m(t), 2]t ∈的图象是开口向下的抛物线的一段,

若1

t a

=-

∈,即2a ≤-则()g a m ==

若1t a =-

∈,即122a -<≤-则11()()2g a m a a a

=-=--

若1(2,)t a =-

∈+∞,即1

02

a -<<则()(2)2g a m a ==+

综上有2,1(),2a g a a a ?+?

?

=--?

1

2

1,222

a a a >-

-

<<-≤-

(III)解法一: 情形1:当2a <-时

112a >-

,此时()g a =11

()2g a a

=+

由1212

a a +

==--a<-2矛盾。 情形2

:当2a -≤<

1122a -

<≤-

时,此时()g a =11()2

a

g a a =--

12

a

a =--解得,

a =

a <

情形3

:当,2a ≤≤

-

12a ≤-

时,此时1

()()g a g a

==

所以2

a ≤-

情形4

:当12a <≤-

时,12a -≤<1()2g a a a

=--,

1

()g a

=1,222a a a a --==->-解得与矛盾。 情形5:当102a -

<<时,12a <-,此时

g(a)=a+2, 1

()g a

=

由2a +=

1

2,2

a a =>-与矛盾。

情形6:当a>0时,10a >,此时g(a)=a+2, 11

()2g a a

=+

由1

221a a a

+=+=±解得,由a>0得a=1.

综上知,满足1()()g a g a =的所有实数a

为,2

a ≤≤-

或a=1

57.(浙江卷)设2

()32f x ax bx c =++ 0=++c b a 若,f(0)>0,f(1)

>0,求证:

(Ⅰ)a >0且-2<

b

a

<-1; (Ⅱ)方程f(x)=0在(0,1)内有两个实根.

解析:本题主要考查二次函数的基本性质与不等式的应用等基础知识。满分14分。 证明:(I )因为(0)0,(1)0f f >>,所以0,320c a b c >++>. 由条件0a b c ++=,消去b ,得0a c >>;

由条件0a b c ++=,消去c ,得0a b +<,20a b +>. 故21b

a

-<

<-. (II )抛物线2

()32f x ax bx c =++的顶点坐标为2

3(,)33b ac b a a

--, 在21b a -<

<-的两边乘以13-,得12

333

b a <-<. 又因为(0)0,(1)0,f f >>而22()0,33b a

c ac

f a a

+--=-

< 所以方程()0f x =在区间(0,)3b a -

与(,1)3b

a

-内分别有一实根。 故方程()0f x =在(0,1)内有两个实根.

13.(福建卷)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12。 (I )求()f x 的解析式;

(II )是否存在实数,m 使得方程37

()0f x x

+

=在区间(,1)m m +内有且只有两个不等的实数根?若存在,求出m 的取值范围;若不存在,说明理由。

本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质 的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力。

解:(I )2

2

()8(4)16.f x x x x =-+=--+

当14,t +<即3t <时,()f x 在[],1t t +上单调递增,

22()(1)(1)8(1)67;h t f t t t t t =+=-+++=-++

当41,t t ≤≤+即34t ≤≤时,()(4)16;h t f ==

当4t >时,()f x 在[],1t t +上单调递减,2

()()8.h t f t t t ==-+

综上,2267,3,()16,34,8,4t t t h t t t t t ?-++

=≤≤??-+>?

(II )函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数

()()()x g x f x φ=-的图象与x 轴的正半轴有且只有三个不同的交点。

22()86ln ,

62862(1)(3)

'()28(0),

x x x x m x x x x x x x x x x φφ=-++-+--∴=-+==> 当(0,1)x ∈时,'()0,()x x φφ>是增函数; 当(0,3)x ∈时,'()0,()x x φφ<是减函数; 当(3,)x ∈+∞时,'()0,()x x φφ>是增函数; 当1,x =或3x =时,'()0.x φ=

()(1)7,()(3)6ln 315.x m x m φφφφ∴==-==+-最大值最小值

当x 充分接近0时,()0,x φ<当x 充分大时,()0.x φ>

∴要使()x φ的图象与x 轴正半轴有三个不同的交点,必须且只须

()70,

()6ln 3150,

x m x m φφ=->???

=+-

所以存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m

的取值范围为(7,156ln 3).-

23.(辽宁卷)已知函数f(x)=d cx bx ax +++233

1

,其中a , b , c 是以d 为公差的等差

数列,,且

a >0,d >0.设的极小值点,在为)(0x f x [1-0,2a

b

]上,处取得最大植在1')(x x f ,

取得

2x ,

次())(,(,()),(,()),(,22'21'100x f x f x x f x x f x A , B , C

(I)求的值o x

(II)若⊿ABC 有一边平行于x 轴,且面积为32+,求a ,d 的值

【解析】(I):

2b a c =+

22()2()(1)()f x ax bx c ax a c x c x ax c '∴=++=+++=++

令()0f x '=,得1c x x a

=-=-

或 0,00a d a b c

>>∴<<< 1,1c c

a a ∴>-<-

当1c

x a

-

<<-时, ()0f x '<; 当1x >-时, ()0f x '> 所以f(x)在x=-1处取得最小值即1o x =-

(II) 2()2(0)f x ax bx c a '=++>()f x '∴的图像的开口向上,对称轴方程为b

x a

=-

由1b

a

>知2|(1)()||0()|b b b a a a ---<--()f x '∴在2[1,0]b a -上的最大值为(0)f c '=

即1x =0

又由21,[1,0]b b b a a a >-∈-知∴当b

x a =-时, ()f x '取得最小值为22(),b d b f x a a a '-=-=-即

01

()(1)3

f x f a =-=-21(1,),(0,)(,)3b d A a B c C a a ∴----

由三角形ABC 有一条边平行于x 轴知AC 平行于x 轴,所以2

221,a =3(1)3d a d a

-=-

又由三角形ABC 的面积为32+

得1(1)()223

b a

c a -+?+=

利用b=a+d,c=a+2d,得2

22(2)3d d a

+

=+

联立(1)(2)可得3,d a ==.

解法2:

2()2(0)f x ax bx c a '=++>2(1)0,(0)b

f f c a

''-

== 又c>0知()f x 在2[1,0]b

a

-

上的最大值为(0)f c '=即: 1x =0 又由21,[1,0]b b b a a a >-∈-知∴当b

x a =-时, ()f x '取得最小值为22(),b d b f x a a a '-=-=-即

01

()(1)3

f x f a =-=-21(1,),(0,)(,)3b d A a B c C a a ∴----

由三角形ABC 有一条边平行于x 轴知AC 平行于x 轴,所以2

221,a =3(1)3d a d a

-=-

又由三角形ABC

的面积为32+

得1(1)()223

b a

c a -

+?+=利用b=a+d,c=a+2d,得2

22(2)

3d d a

+

=+

联立(1)(2)可得3,d a ==

【点评】本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值,等差数基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力

2005高考(函数部分)

11.(福建卷)(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间(0,6)内解的个数的最小

值是 ( B )

A .5

B .4

C .3

D .2 12. (湖北卷)函数|1||

|ln --=x e y x 的图象大致是

( D )

20. (山东卷)函数2

1

sin(),10,

(),0.

x x x f x e x π-?-<

(A )1 (B

)2- (C

)1,2- (D

)1,2

3. (北京卷)设f (x )是定义在[0, 1]上的函数,若存在x *∈(0,1),使得f (x )在[0, x *]上单调递增,在[x *,1]上单调递减,则称f (x )为[0, 1]上的单峰函数,x *为峰点,包含峰点的区间为含峰区间.对任意的[0,l]上的单峰函数f (x ),下面研究缩短其含峰区间长度的方法. (I )证明:对任意的x 1,x 2∈(0,1),x 1<x 2,若f (x 1)≥f (x 2),则(0,x 2)为含峰区间;若f (x 1)≤f (x 2),则(x *,1)为含峰区间;

(II )对给定的r (0<r <0.5),证明:存在x 1,x 2∈(0,1),满足x 2-x 1≥2r ,使得由(I )所确定的含峰区间的长度不大于 0.5+r ;

(III )选取x 1,x 2∈(0, 1),x 1<x 2,由(I )可确定含峰区间为(0,x 2)或(x 1,1),在所得的含峰区间内选取x 3,由x 3与x 1或x 3与x 2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x 2)的情况下,试确定x 1,x 2,x 3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)

解:(I )证明:设x *为f (x ) 的峰点,则由单峰函数定义可知,f (x )在[0, x *]上单调递增,在[x *, 1]上单调递减.

当f (x 1)≥f (x 2)时,假设x *?(0, x 2),则x 1f (x 1), 这与f (x 1)≥f (x 2)矛盾,所以x *∈(0, x 2),即(0, x 2)是含峰区间.

当f (x 1)≤f (x 2)时,假设x *?( x 2, 1),则x *<≤x 1f (x 2), 这与f (x 1)≤f (x 2)矛盾,所以x *∈(x 1, 1),即(x 1, 1)是含峰区间. (II )证明:由(I )的结论可知:

当f (x 1)≥f (x 2)时,含峰区间的长度为l 1=x 2; 当f (x 1)≤f (x 2)时,含峰区间的长度为l 2=1-x 1; 对于上述两种情况,由题意得 210.5

10.5x r x r +??

-+

?≤≤ ① 由①得 1+x 2-x 1≤1+2r ,即x 1-x 1≤2r.

又因为x 2-x 1≥2r ,所以x 2-x 1=2r, ② 将②代入①得

x 1≤0.5-r, x 2≥0.5-r , ③ 由①和③解得 x 1=0.5-r , x 2=0.5+r .

所以这时含峰区间的长度l 1=l 1=0.5+r ,即存在x 1,x 2使得所确定的含峰区间的长度不大于0.5+r .

(III )解:对先选择的x 1;x 2,x 1

在第一次确定的含峰区间为(0, x 2)的情况下,x 3的取值应满足 x 3+x 1=x 2, ⑤ 由④与⑤可得21

31

112x x x x =-??

=-?,

当x 1>x 3时,含峰区间的长度为x 1.

由条件x 1-x 3≥0.02,得x 1-(1-2x 1)≥0.02,从而x 1≥0.34. 因此,为了将含峰区间的长度缩短到0.34,只要取

x 1=0.34,x 2=0.66,x 3=0.32.

4(上海)已知函数f(x)=kx+b 的图象与x 、y 轴分别相交于点A 、B,j i AB 22+=(i 、j 分别是与x 、y 轴正半轴同方向的单位向量), 函数g(x)=x 2-x-6.

(1)求k 、b 的值;

(2)当x 满足f(x)> g(x)时,求函数

)

(1

)(x f x g +的最小值. [解](1)由已知得A(k

b

-

,0),B(0,b),则AB ={k b ,b},于是k b =2,b=2. ∴k=1,b=2.

(2)由f(x)> g(x),得x+2>x 2-x-6,即(x+2)(x-4)<0, 得-2

)(1)(x f x g +=252+--x x x =x+2+2

1

+x -5

由于x+2>0,则

)

(1

)(x f x g +≥-3,其中等号当且仅当x+2=1,即x=-1时成立 ∴

)

(1

)(x f x g +的最小值是-3. 7.(浙江)已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .

(Ⅰ)求函数g (x )的解析式;

(Ⅱ)解不等式g (x )≥f (x )-|x -1|;

(Ⅲ)若h (x )=g (x )-λf (x )+1在[-1,1]上是增函数,求实数λ的取值范围.

解:(I )设函数()y f x =的图象上任一点00(,)Q x y 关于原点的对称点为(,)P x y ,

则 0002

2

x x

y y +?=???+?=?? 即 00x x y y =-??=-?.

∵点00(,)Q x y 在函数()y f x =的图象上.

∴22,y x x -=- 即22,y x x =-+ 故g(x)=22x x -+.

(II)由()()|1|g x f x x ≥--可得:2

|2|1|0x x --≤

当x ≥1时,2

21|0x x -+≤

此时不等式无解。

当1x <时,2

210x x -+≤

∴112

x -≤≤

因此,原不等式的解集为[-1,

12

]. (III) 2

()(1)2(1) 1.h x x x λλ=-++-+

① 当1λ=-时,()h x =41x +在[-1,1]上是增函数,

∴1λ=-

②当1λ≠-时,对称轴的方程为11x λ

λ

-=+ (i) 当1λ<-时,

11λ

λ-+1≤-,解得1λ<-。 (ii) 当1λ>-时,11λ

λ

-+≥1时,解得10λ-<≤

综上,0λ≤

9.(全国I )(1)设函数22()log (1)log (1)(01)f x x x x x x =+--<<,求)(x f 的最小值; (2)设正数1232,,,

,n p p p p 满足12321n p p p p ++++=, 求证:121222323222log log log log .n n p p p p p p p p n +++

+≥-

(Ⅰ)解:对函数)(x f 求导数:])1(log )1[()log ()(22'--+'='x x x x x f

.2

ln 1

2ln 1)1(log log 22-+

--=x x ).1(log log 22x x --= 于是.0)2

1(='f

当221

,()log log (1)0,()2

x f x x x f x '<=--<时在区间)21,0(是减函数,

当221

,()log log (1)0,()2

x f x x x f x '>=-->时在区间)1,21(是增函数.

所以21)(=x x f 在时取得最小值,1)2

1

(-=f ,

(Ⅱ)证法一:用数学归纳法证明.

(i )当n=1时,由(Ⅰ)知命题成立.

(ii )假定当k n =时命题成立,即若正数1,,,221221=+++k k p p p p p p 满足, 则.log log log 222222121k p p p p p p k k -≥+++

当1+=k n 时,若正数,1,,,11221221=+++++k k p p p p p p 满足

令.,,,,222

211221x

p q x p q x p q p p p x k k k ===+++= 则k q q q 221,,, 为正数,且.1221=+++k q q q

由归纳假定知.log log log 222222121k q q p p p q k k -≥+++

k

k k k q q q q q q x p p p p p p 222222121222222121log log log (log log log +++=+++ ,l o g )()l o g 22x x k x x +-≥+ ①

同理,由x p p p k k k -=++++++1122212 可得1122212212log log ++++++k k k k p p p p

).1(log )1())(1(2x x k x --+--≥ ②

综合①、②两式11222222121log log log +++++k k p p p p p p

).1()1(log )1(log ))](1([22+-≥--++--+≥k x x x x k x x

即当1+=k n 时命题也成立.

根据(i )、(ii )可知对一切正整数n 命题成立. 证法二:

令函数那么常数)),,0(,0)((log )(log )(22c x c x c x c x x x g ∈>--+=

],log )1(log )1(log [)(222c c

x

c x c x c x c x g +--+=

利用(Ⅰ)知,当1(),().22

x c

x g x c ==即时函数取得最小值

对任意都有,0,021>>x x

2

log 22log log 2

1221222121x x x x x x x x ++?

≥+ ]1)()[log (21221-++=x x x x . ① 下面用数学归纳法证明结论.

(i )当n=1时,由(I )知命题成立.

(ii )设当n=k 时命题成立,即若正数有满足,1,,,221221=+++k k p p p p p p

111111

12122222212122212122222212122log log log .

1,,,

, 1.

log log log log k k k k k k k k p p p p p p k n k p p p p p p H p p p p p p p p ++++++--++

+≥-=+++

+==++

++当时满足令

由①得到

11111112212221221212212()[log ()1]()[log ()1],

()()1,

k k k k k k H p p p p p p p p p p p p ++++++---≥++-++++-++

++=因为

由归纳法假设

11

11

1221

22212

212

()l o g ()()l o g (),k k k k p p p p p p

p p k ++++--

++++

+

+≥-得到 1112212()(1).k k H k p p p p k +++≥--++

++=-+

即当1+=k n 时命题也成立. 所以对一切正整数n 命题成立.

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥L . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

第三讲 柯西积分公式与解析函数的高阶导数

工程数学II 课程教案 授课时间:第 周 周 第 节 课时安排 课次__ 授课方式(请打√):理论课□ 讨论课□ 实验课□ 习题课□ 综合课□ 其他□ 授课题目(教学章、节或主题): §3.5 柯西积分公式;§3.6 解析函数的高阶导数. 教学目的、要求(分掌握、熟悉、了解三个层次): 1.熟练掌握柯西积分公式; 2.熟练掌握高阶导数公式. 教学重点及难点: 重点: 柯西积分公式;高阶导数公式. 难点: 柯西积分公式. 教学基本内容(要体现出教学方法及手段): §3.5 柯西积分公式 一、问题的提出 0 , .B z B 设为一单连通域为中一点 () , f z B 如果在内解析那末 ()f z z z -在 0.z 不解析0 () d ,C f z z z z -? 所以一般不为零0.C B z 为内围绕的闭曲线根据闭 路变形原理知, 该积分值不随闭曲线 C 的变化而改变, 求这个值. C 积分曲线取作以 00 , ,z z z δδ-=为中心半径为很小的的正向圆周 () ,f z 由的连续性 C 在上 0 () , f z z δ函数的值将随着的缩小而逐渐接近于它在圆心处的值0 ()d C f z z z z -? 00 () d .()C f z z z z δ-? 将接近于缩小, 00 ()d C f z z z z -? 000 1()d 2().C f z z if z z z π==-? 二、柯西积分公式 定理 () , f z D C D 如果函数 在区域内处处解析为内的任何一条正向简单闭 0, , , D z C 曲线它的内部完全含于为内任一点那末

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

函数与导数例题高考压轴题含答案

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(), ,,;()2t t f x ??-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(),,,;()2t t f x ??-∞-+∞ ??? 的单调递减区间是,.2t t ? ?- ??? (Ⅲ)证明:由(Ⅱ)可知,当0t >时,()f x 在0,2t ? ? ??? 内的单调递减,在,2t ?? +∞ ??? 内单调递增,以下分两种情况讨论: (1)当1,22 t t ≥≥即时,()f x 在(0,1)内单调递减, 所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零点。

函数与导数经典例题--高考压轴题(含答案)

函数与导数经典例题--高考压轴题(含答案)

所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零 点。 (2)当01,022t t <<<<即时,()f x 在0,2t ?? ??? 内单调递减,在,12t ?? ???内单调递增,若3 3177(0,1],10.244t f t t t ??∈=-+-≤-< ??? 2(1)643643230.f t t t t t =-++≥-++=-+> 所以(),12t f x ?? ??? 在内存在零点。 若()3377(1,2),110.244t t f t t t ??∈=-+-<-+< ??? (0)10f t =-> 所以()0,2 t f x ?? ???在内存在零点。 所以,对任意(0,2),()t f x ∈在区间(0,1)内均存在 零点。 综上,对任意(0,),()t f x ∈+∞在区间(0,1)内均存在 零点。 2. 已知函数21 ()32 f x x =+,()h x =. (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x ) 的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6f n h n h h h n -+++≥. 本小题主要考查函数导数的应用、不等式的证

明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力. 解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥, 2()312F x x '∴=-+. 令()0F x '∴=,得2x =(2x =-舍去). 当(0,2)x ∈时.()0F x '>;当(2,)x ∈+∞时,()0F x '<, 故当[0,2)x ∈时,()F x 为增函数;当[2,)x ∈+∞时,()F x 为 减函数. 2x =为()F x 的极大值点,且(2)824925F =-++=. (Ⅱ)方法一:原方程可化为 422 33log [(1)]log ()log (4)24f x h a x h x --=---, 即为4222log (1)log log log x -==,且,14,x a x , 此时3x ==±∵1x a <<, 此时方程仅有一解3x = ②当4a >时,14x <<,由14a x x x --=-,得2640x x a -++=,364(4)204a a ?=-+=-, 若45a <<,则0?> ,方程有两解3x =± 若5a =时,则0?=,方程有一解3x =; 若1a ≤或5a >,原方程无解. 方法二:原方程可化为422log (1)log (4)log ()x h x h a x -+-=-, 即222 1log (1)log log 2x -+,

(完整)2019-2020年高考数学压轴题集锦——导数及其应用(一).doc

2019-2020 年高考数学压轴题集锦——导数及其应用(一) 1.已知函数f (x) x2 ax ln x(a R) . (1)函数f (x)在 [1,2] 上的性; (2)令函数g( x) e x 1 x2 a f (x) ,e=2.71828?是自然数的底数, 若函数 g (x) 有且只有一个零点m,判断 m 与 e 的大小,并明理由 . 2.已知函数 f (x) x3ax2bx c 在x 2 与x 1都取得极. 3 (1)求 a, b 的与函数f( x)的区; (2)若x [ c,1] ,不等式 f (x) c 恒成立,求 c 的取范 . 2 3.已知函数 f (x) ln(1 x) ln(1x) . (1)明 f '(x) 2 ; (2)如果 f (x) ax x [0,1) 恒成立,求 a 的范 .

x 1 4.已知函数f (x) ( e 自然数的底数) . e x (1)求函数f (x)的区; (2)函数(x) xf (x) tf '(x) 1 x1, x2 [0 ,1] ,使得 2 ( x1 )(x2 ) x ,存在数 e 成立,求数t 的取范 . 5.已知函数 f ( x) kx a x,其中k R,a 0且a 1 . (1)当 a e ( e=2.71 ?自然数的底),f(x)的性;(2)当k 1,若函数f(x)存在最大g(a),求g(a)的最小. 6.已知函数 f x x2ax ln x a R (1)当a 3 ,求函数f(x)在 1 , 2 上的最大和最小; 2 (2)函数 f(x)既有极大又有极小,求数 a 的取范 .

7.已知 f( x)是定义在 R 上的奇函数,当 x 0 时, f x 1 x 3 ax a R ,且曲线 f(x)在 3 x 1 处的切线与直线 y 3 x 1平行 2 4 (1)求 a 的值及函数 f(x)的解析式; (2)若函数 y f x m 在区间 3, 3 上有三个零点,求实数 m 的取值范围 . 8.已知函数 f x x 0 ax, a ln x (1)若函数 y f x 在 1, 上减函数,求实数 a 的最小值; (2)若存在 x 1 , x 2 e,e 2 ,使 f x 1 f x 2 a 成立,求实数 a 的取值范围 . 9.已知函数 f (x) x 3 ax 2 bx 1, a , b R . ( 1)若 a 2 b 0 , ①当 a 0 时,求函数 f(x)的极值(用 a 表示); ②若 f(x)有三个相异零点,问是否存在实数 a 使得这三个零点成等差数列?若存在,试 求出 a 的值;若不存在,请说明理由; ( 2)函数 f( x)图象上点 A 处的切线 l 1 与 f(x)的图象相交于另一点 B ,在点 B 处的切线为 l 2 ,直线 l 1, l 2 的斜率分别为 k 1, k 2 ,且 k 2 =4k 1 ,求 a ,b 满足的关系式.

高考导数压轴题---函数与导数核心考点(精编完美版)

导数与函数核心考点 目录 题型一切线型 1.求在某处的切线方程 2.求过某点的切线方程 3.已知切线方程求参数 题型二单调型 1.主导函数需“二次求导”型 2.主导函数为“一次函数”型 3.主导函数为“二次函数”型 4.已知函数单调性,求参数范围 题型三极值最值型 1.求函数的极值 2.求函数的最值 3.已知极值求参数 4.已知最值求参数 题型四零点型 1.零点(交点,根)的个数问题 2.零点存在性定理的应用 3.极值点偏移问题 题型五恒成立与存在性问题 1.单变量型恒成立问题 2.单变量型存在性问题 3.双变量型的恒成立与存在性问题 4.等式型恒成立与存在性问题 题型六与不等式有关的证明问题 1.单变量型不等式证明 2.含有e x与lnx的不等式证明技巧 3.多元函数不等式的证明 4.数列型不等式证明的构造方法

题型一 切线型 1.求在某处的切线方程 例1.【2015重庆理20】求函数f (x )=3x 2 e x 在点(1, f (1))处的切线方程. 解:由f (x )=3x 2e x ,得f ′(x )=6x -3x 2e x ,切点为(1,3e ) ,斜率为f ′(1)=3 e 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3 e ; ∴切线方程为y -3e =3 e (x -1),即3x -ey =0. 例2.求f (x )=e x (1 x +2)在点(1,f (1))处的切线方程. 解:由f (x )=e x (1x +2),得f ′(x )=e x (-1x 2+1 x +2) 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ; ∴切线方程为y -3e =2e (x -1),即2ex -y +e =0. 例3.求f (x )=ln 1-x 1+x 在点(0,f (0))处的切线方程. 解:由f (x )=ln 1-x 1+x =ln (1-x )-ln (1+x ),得f ′(x )=-11-x -1 1+x 由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2; ∴切线方程为y =-2x ,即2x +y =0. 例4.【2015全国新课标理20⑴】在直角坐标系xoy 中,曲线C :y =x 2 4 与 直线l :y =kx +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程. 解:由题意得:a =x 2 4,则x =±2a ,即M (-2a ,a ),N (2a ,a ), 由f (x )=x 24,得f ′(x )=x 2, 当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a , 此时切线方程为:ax +y +a =0; 当切点为N (2a ,a )时,切线斜率为f ′(2a )=a , 此时切线方程为:ax -y -a =0;

导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题 2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。 洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ? ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()() lim x f x l g x →∞'=', 那么 ()() lim x f x g x →∞ =() () lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型。 ○ 3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数2()1x f x e x ax =---。 (1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围 原解:(1)0a =时,()1x f x e x =--,'()1x f x e =-. 当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在 (0,)+∞单调增加 (II )'()12x f x e ax =-- 由(I )知1x e x ≥+,当且仅当0x =时等号成立.故 '()2(12)f x x ax a x ≥-=-, 从而当120a -≥,即1 2 a ≤ 时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥. 由1(0)x e x x >+≠可得1(0)x e x x ->-≠.从而当1 2 a > 时, '()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--, 故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <. 综合得a 的取值范围为1,2? ?-∞ ???

高考数学函数与导数相结合压轴题精选(含具体解答)

函数与导数相结合压轴题精选(二) 11、已知)0()(2 3 >+++=a d cx bx ax x f 为连续、可导函数,如果)(x f 既有极大值M ,又有极小值N ,求证:.N M > 证明:由题设有),)((323)(212 x x x x a c bx ax x f --=++='不仿设21x x <, 则由时当时当时当知),(,0)(),(,0)(),(:02211+∞∈<'∈>'-∞∈>x x x f x x x x f x x a 1)(,0)(x x f x f 在故>'处取极大值,在x 2处取极小值, )()()()()(212 221323121x x c x x b x x a x f x f -+-+-=- ])()()[(212122121c x x b x ax x x a x x +++-+-= )] 3(92 )[(]3232)32()[(22121ac b a x x c a b b a c a a b a x x ---=+-?+?-- ?-= 由方程0232 =++c bx ax 有两个相异根,有,0)3(412)2(2 2>-=-=?ac b ac b 又)()(,0)()(,0,0212121x f x f x f x f a x x >>-∴><-即,得证. 12、已知函数ax x x f +-=3 )(在(0,1)上是增函数. (1)求实数a 的取值集合A ; (2)当a 取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+,且b b a )(1,0(1=为常 数),试比较n n a a 与1+的大小; (3)在(2)的条件下,问是否存在正实数C ,使20<-+< c a c a n n 对一切N n ∈恒成立? (1)设))(()()(,102 2212 1122121a x x x x x x x f x f x x -++-=-<<<则 由题意知:0)()(21<-x f x f ,且012>-x x )3,0(,2 22121222121∈++<++∴x x x x a x x x x 则 }3|{,3≥=≥∴a a A a 即 (4分) (注:法2:)1,0(,03)(2 ∈>+-='x a x x f 对恒成立,求出3≥a ). (2)当a =3时,由题意:)1,0(,2 3 21131∈=+- =+b a a a a n n n 且

函数与导数经典例题--高考压轴题(含标准答案)

函数与导数 1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,322()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:22 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-= 或 因为0t ≠,以下分两种情况讨论: (1)若0,,t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(),,,;()2t t f x ? ?-∞-+∞ ???的单调递减区间是,2t t ??- ??? 。 (2)若0,t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(),,,;()2t t f x ??-∞-+∞ ???的单调递减区间是,.2t t ??- ???

(Ⅲ)证明:由(Ⅱ)可知,当0t >时,()f x 在0,2t ?? ???内的单调递减,在,2t ?? +∞ ??? 内单调递增,以下分两种情况讨论: (1)当1,22 t t ≥≥即时,()f x 在(0,1)内单调递减, 2(0)10,(1)643644230.f t f t t =->=-++≤-?+?+< 所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零点。 (2)当01,022t t < <<<即时,()f x 在0,2t ?? ???内单调递减,在,12t ?? ??? 内单调递增,若33177(0,1],10.244t f t t t ?? ∈=-+-≤-< ??? 2(1)643643230.f t t t t t =-++≥-++=-+> 所以(),12t f x ?? ???在内存在零点。 若()3377(1,2),110.24 4 t t f t t t ??∈=-+-<-+< ??? (0)10f t =-> 所以()0,2t f x ?? ??? 在内存在零点。 所以,对任意(0,2),()t f x ∈在区间(0,1)内均存在零点。 综上,对任意(0,),()t f x ∈+∞在区间(0,1)内均存在零点。 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥. 本小题主要考查函数导数的应用、不等式的证明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力. 解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥, 2()312F x x '∴=-+.

函数与导数压轴题题型与解题方法(高考必备)

压轴题题型与方法(选择、填空题) 一、函数与导数 1、抽象函数与性质 主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线) 对策与方法:赋值法、特例法、数形结合 【例1】已知定义在[)+∞,0上的函数()x f ,当[]1,0∈x 时,;2 1 42)(--=x x f 当1>x 时,()()1,f x af x a R =-∈,a 为常数.下列有关函数()x f 的描 述: ①_x0001_ 2=a 时,423=?? ? ??f ; ②当, <1a 函数()x f 的值域为[]2,2-; ③当0>a 时,不等式()2 12- ≤x a x f 在区间[)+∞,0上恒成立; ④当01-<<a 时,函数()x f 的图像与直线()*-∈=N n a y n 12在[]n ,0内的交点个 数为()2 11n n -+-. 其中描述正确的个数有( )【答案】C (A)4 (B)3 (C)2 (D)1

故④正确, 【例2】定义在R 上的函数()f x 满足(1)1f =,且对任意x ∈R 都有1 ()2 f x '<,则不 等式22 1 ()2 x f x +>的解集为_________.【答案】(1,1)- 【解析】令1()()2x g x f x +=-,则1()()02g x f x ''=-<,11 (1)(1)0 2g f +=-=,

所以22 1()2x f x +>22 ()0(1)111g x g x x ?>=?的解集为(1,1)-. 【例3】定义在()0+∞,上的单调函数()[]2(),0,,()log 3f x x f f x x ?∈+∞-=,则方程2)()(='-x f x f 的解所在区间是( )【答案】C A.??? ??21,0 B.?? ? ??1,21 C.()2,1 D.()3,2 【解析】根据题意,对任意的(0,)x ∈+∞ ,都有[]2()log 3f f x x -= , 由f(x)是定义在(0,)+∞上的单调函数,则2()log f x x -为定值, 设2()log t f x x =- ,则2()log f x x t =+ , 又由f(t)=3,即log 2 t+t=3,解可得,t=2; 则2()log 2f x x =+ ,1 ()ln 2 f x x '= 。 因为()()2f x f x '-= ,所以21log 22ln 2x x +-=, 即21 log 0ln 2x x -= , 令21 ()log ln 2h x x x =- , 因为211(1)log 10ln 2ln 2h =-=-< ,211 (2)log 2102ln 2ln 4h =-=-> , 所以21 ()log ln 2 h x x x =- 的零点在区间(1,2) ,即方程()()2f x f x '-= 的解所在的区间是(1,2) 例 4.(2014湖南理科·T10)已知函数 221 ()(0)()ln()2x f x x e x g x x x a =+-<=++与的图象上存在关于y 轴对称的点, 则a 的取值范围是 ( ) 【答案】B A.( -∞ B.(-∞ C.( D.(

导数、数列压轴题的破解策略:合理巧设函数与导数压轴题

合理“巧设”,轻松应对函数与导数压轴题 函数与导数的交汇问题经常出现在压轴题(包括客观题和主观题中的压轴题)位置.解决这类问题时,往往会遇到某些难以确定的根、交点、极值点或难以计算的代数式.倘若迎难而上,往往无功而返;这时,放弃正面求解所需要的量,先设它为某字母,再利用其满足的条件式进行整体代换以达到消元或化简的效果.下面通过介绍几种具体的“设”的方法来解决这类难题. 一、根据函数的单调性,巧设自变量 【例1】(2013四川卷理)设函数()f x ,a R e ∈为自然对数的底数),若曲线sin y x =上存在点()00,x y ,使得00(())f f y y =,则a 的取值范围是( ). A. []1,e B. 11,1e -??-?? C. []1,1e + D. 1 1,1e e -??-+?? 【解析】 易知()f x . 设0()f t y =……… ①,又00()()y f f y =,由单调性则0()t f y =……… ②. 下面证明0t y =. 若0t y ≠,由单调性则0()f t y ≠,则()00()f y f y ≠与已知矛盾,.所以必有0t y =. 代入②即00()f y y =. 曲线sin y x =上存在点()00,x y ,使得00()f y y =x =在[]0,1上存在解.即2x e x x a +-=在[]0,1x ∈上有解. 设2()x h x e x x =+-,则()12x h x e x '=+-.在[]0,1x ∈上12x e +≥,22x ≤,所以()120x h x e x '=+-≥, 则()h x 在[]0,1上单调递增,所以1(0)()(1)h h x h e =≤≤=.故[]1,a e ∈. 故选A. 【评注】由()f x 的单调性可知, 对于00(())f f y y =,则必存在唯一的自变量t ,使得0()f t y =,从而有0()t f y =.这样方便表达. 【变式1】(2015·石家庄高三教学检测一)设函数()2x f x e x a =+-(,a R e ∈为自然对数的底数),若曲线sin y x =上存在点()00,x y ,使得00(())f f y y =,则a 的取值范围是( ). A. 1 1,1e e -??-+?? B. []1,1e + C. [],1e e + D. []1,e

函数与导数经典例题--高考压轴题(含答案)

函数与导数经典例题--高考压轴题(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与导数 1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲 线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,322()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:22()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,t t t x <<-则当变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(),,,;()2t f x -∞-+∞ ???的单调递减区间是 ,2t t ?? - ??? 。 (2)若0,t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(),,,;()2t f x -∞-+∞ ??? 的单调递减区间是,.2t - ???

相关文档
最新文档