波形产生电路实验报告

波形产生电路实验报告
波形产生电路实验报告

波形产生电路实验报告

一、实验目得

1。通过实验掌握由集成运放构成得正弦波振荡电路得原理与设计方法;

2、通过实验掌握由集成运放构成得方波(矩形波)与三角波(锯齿波)振荡电路得原理与设计方法。

二、实验内容

1. 正弦振荡电路

?实验电路图如下图所示,电源电压为±12V。

(1)缓慢调节电位器R W,观察电路输出波形得变化,解释所观察到得现象、

(2)仔细调节电位器R W,使电路输出较好得正弦波形,测出振荡频率与幅度以及相对应得R W之值,分析电路得振荡条件。

(3)将两个二极管断开,观察输出波形有什么变化。

2、多谐振荡电路

(1)按图2 安装实验电路(电源电压为±12V)。观测V O1、V O2波形得幅度、周期(频率)以及V O1得上升时间与下降时间等参数。

(2)对电路略加修改,使之变成矩形波与锯齿波振荡电路,即V O1为矩形波,V O2为锯齿波、要求锯齿波得逆程(电压下降段)时间大约就是正程(电压上升段)时间得20%

左右、观测V O1、V O2得波形,记录它们得幅度、周期(频率)等参数、

3.设计电路测量滞回比较器得电压传输特性。

三、预习计算与仿真

1、预习计算

(1)正弦振荡电路

由正反馈得反馈系数为:

由此可得RC 串并联选频网络得幅频特性与相频特性分别为

易知当时,与同相,满足自激振荡得相位条件。

若此时,则可以满足,电

路起振,振荡频率为

000

111

994.7Hz 1.005ms 2216k 10nF f T RC f ππ=

====?Ω?,、

若要满足自激振荡,需要满足在起振前略大于1,而,令,即满足条件得R w应略大于10k Ω、 (2)多谐振荡电路

?对电路得滞回部分,输出电压U O =±U Z =±6V ,U P =U O ×R 2R 2+R 1

+U O2×

R 1R 2+R 1

,当U P =

U N =0V 时,可以得到U O2=±R 2R 1

×U O =±3V 、

由U T =

1R 3C

×0.5T ×U O ?U T ,所以得到:T =4R 2R 4C R 1?=400us 、

2。 仿真分析 (1)正弦振荡电路 仿真电路图:

仿真得到得测量数据总结如下(具体见仿真报告): (1)R W 为0时,无波形产生 (2)调节R W 恰好起振时

(3)调节R W 使输出电压幅值最大

(2)多谐振荡电路

仿真电路图:

得到得数据整理如下:

(3)矩形波与锯齿波发生电路

仿真电路图:

仿真结果整理如下:

(4)滞回比较器电压传输特性得测量

仿真电路图:

XSC1

仿真结果整理如下:

四、实验数据记录与处理

1。正弦振荡电路

(1)R W为0时,无波形产生

(2)调节R W恰好起振时

此时得波形:

(3)调节R W使输出电压幅值最大

此时得波形:

(4)将两个二极管断开观察R W从小打大变化时得波形就是如何变化得

调节电阻使得恰好起振时得波形与继续调大电阻后得输出电压波形依次为:

由波形变化可以瞧出,当调节电阻使得电路刚好出现振荡时输出电压幅值就已经到达最大值,并且有一点得失真现象,当继续调大电阻时,输出电压波形失真更加严重。

2。多谐振荡电路

输出电压波形为:

实验数据整理如下:

3、 矩形波与锯齿波发生电路

实验测得得数据整理如下

:

4. 滞回比较器电压传输特性得测量 实验数据整理如下:

?误差分析:

1。 正弦振荡电路中峰值得测量误差较大,可能由于在仿真过程中由于Multisim 中在用示波器测量输出电压时,即使调节电阻已经达到理论值,但示波器上还就是没有波形出现,所以会与实际测量形成一定得误差、

2。 多处得输出电压测量得误差较大。因为实际实验使用得稳压管为5、1V 得,而老师

要求得仿真中采用得稳压管为6V得,即使仿真中采用得就是虚拟得稳压管,但就是经过测量发现稳压管还就是会存在正向导通电压,所以仿真中采用稳压管得稳压值较大,产生了误差。 五、思考题

1. 图 1 中得电位器调到什么位置时最好(电路既容易起振,又能输出较好得正弦波)?

答:由正弦波发生电路得起振条件,R w 应该略大于10kΩ,电路才能输出正弦波。在实验中测得R w =10.33kΩ时电路恰能产生稳定得正弦波,而在R w =18.52kΩ时电路输出得不失真

正弦波幅值最大。因此,为了既使电路容易起振,又能输出较好得正弦波,应该将电位器调节到10.33kΩ与18.52kΩ之间得位置、

6。由运放组成得多谐振荡器电路,其输出波形(方波或矩形波)得跳变沿主要决定于什么?如果要缩短其上升时间与下降时间(使波形变陡),您认为可采取哪些办法?

答:由于电路中使用得运放不就是理想得运放,所以转换速率有限,因此输出方波或矩形波时会出现跳变沿。如果要缩短其上升与下降时间,应该提高运放得转换速率。

六、实验结论

1. 正弦振荡电路得起振条件为R w应该略大于10kΩ,实验中测得当R w=10.33kΩ时电路恰好起振;

2、在正弦振荡电路中加入二极管得非线性环节可以在一定范围内避免波形发生失真,实验测得输出最大不失真正弦波时R w=18.52kΩ,若去掉二极管环节则电路一起振就失真、

3。多谐振荡电路第一级电路输出方波,第二级电路输出三角波,若在电路中加入占空比可调环节可以调节积分电路得充电与放电得时间常数,当其时间常数不一样时,则充电与放电所需要得时间就不同,进而使电路输出锯齿波;

4、滞回比较器电路有两个阈值电压,其输出特性如上面仿真图示。

七、实验收获与体会

1、实验中通过仿真分析与亲手搭建电路加深了对于波形产生电路得理解;

2。正弦振荡电路中通过观察去掉二极管后得产生得波形,深刻理解了非线性环节对于正弦振荡电路得重要性;

3. 通过测量滞回比较器得电压传输特性初步掌握了示波器X—Y输出通道得基本操作方法,对于示波器得使用有了更深得体会。

信号波形合成实验报告之欧阳家百创编

信号波形合成实验电路 欧阳家百(2021.03.07) 摘要:本设计包含方波振荡电路,分频电路,滤波电路,移相电路,加法电路,测量显示电路。题目要求对点频率的各参数处理,制作一个由移相器和加法器构成的电路,将产生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形。振荡电路采用晶振自振荡并与74LS04 结 合,产生6MHz 的方波源。分频电路采用74HC164与74HC74分频出固定频率的 方波,作为波形合成的基础。滤波采用TI公司的运放LC084,分别设置各波形 的滤波电路。移相电路主要处理在滤波过程中相位的偏差,避免对波形的合成结 果造成影响。 关键词:方波振荡电路分频与滤波移相电路加法器 Experimental waveform synthesis circuit Abstract:The design consists of a square wave oscillator circuit, divider circuit, filtercircuit, phase shift circuits, addition circuits, measurement display circuit. Subject ofthe request of the point frequency of the various parameters of processing, productionof a phase shifter circuit consisting of adders, will have the 10KHz

方波_三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

:侯涛 日期:2016年4月26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

电路实验二实验报告仪器仪表的使用

电路实验二实验报告 实验题目:仪器仪表的使用 实验内容: 1.熟悉示波器和函数信号发生器的使用; 2.测量示波器自带的校准信号; 3.用示波器测量函数信号发生器提供的正弦波、三角波和方波; 4.在面包板上搭接一个积分电路,用示波器观测其波形。 实验环境: 示波器DS1052E,函数发生器EE1641D,面包板SYB-130。 实验原理: 1.示波器是一种用途十分广泛的电子测量仪器。把肉眼看不见的电信号变换成看得见的 图象,便于研究各种电现象的变化过程。利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 2.函数发生器是一种多波形的信号源。它可以产生正弦波、方波、三角波、锯齿波,甚

至任意波形。有的函数发生器还具有调制的功能,可以进行调幅、调频、调相、脉宽调制和VCO控制。 3.面包板是专为电子电路的无焊接实验设计制造的。由于各种电子元器件可根据需要随 意插入或拔出,免去了焊接,节省了电路的组装时间,而且元件可以重复使用,所以非常适合电子电路的组装、调试和训练。 实验记录及结果分析: 1.示波器自带的校准信号: 2.函数发生器提供正弦波: 3.函数发生器提供的方波: 最大值:2.40V 最小值:-2.64V 峰峰值:5.04V 频率:2.016kHz 周期:496.0μs 占空比:48.0% 4.函数发生器提供的三角波: 最大值:2.40V 最小值:-2.64V 峰峰值:5.04V 频率:2.016kHz 周期:496.0μs 实验总结: 示波器能够产生波形,把肉眼看不见的电信号转为我们很容易看见的图形,而函数发生器则会产生不同类型的电信号,这样利用示波器和函数发生器就可以对函数发生器所发

波形产生电路实验报告

波形产生电路实验报告 一、实验目的 1. 通过实验掌握由集成运放构成的正弦波振荡电路的原理与设计方法; 2. 通过实验掌握由集成运放构成的方波(矩形波)和三角波(锯齿波)振荡电路的原理与设计方法。 二、实验内容 1. 正弦振荡电路 实验电路图如下图所示,电源电压为±12V。 (1)缓慢调节电位器R W,观察电路输出波形的变化,解释所观察到的现象。 (2)仔细调节电位器R W,使电路输出较好的正弦波形,测出振荡频率和幅度以及相对应的R W之值,分析电路的振荡条件。 (3)将两个二极管断开,观察输出波形有什么变化。 2. 多谐振荡电路 (1)按图2 安装实验电路(电源电压为±12V)。观测V O1、V O2波形的幅度、周期(频率)以及V O1的上升时间和下降时间等参数。 (2)对电路略加修改,使之变成矩形波和锯齿波振荡电路,即V O1为矩形波,V O2为锯

齿波。要求锯齿波的逆程(电压下降段)时间大约是正程(电压上升段)时间的 20% 左右。观测V O1、V O2的波形,记录它们的幅度、周期(频率)等参数。 3. 设计电路测量滞回比较器的电压传输特性。 三、预习计算与仿真 1. 预习计算 (1)正弦振荡电路 由正反馈的反馈系数为: f 1 12 0o 013V Z F Z Z V j ωωωω? ? ? = = = +??+- ? ?? 由此可得RC 串并联选频网络的幅频特性与相频特性分别为 2 00231? ??? ??-+= ωωωωF 0F arctan 3 ωωωω φ-=- 易知当RC 1 0==ωω时,?f V 和?o V 同相,满足自激振荡的相位条件。 若此时f 3v A >,则可以满足f 1v A F >,电路起振,振荡频率为 000 111 994.7Hz 1.005ms 2216k 10nF f T RC f ππ= ====?Ω?,。 若要满足自激振荡,需要满足f v A F 在起振前略大于1,而max 1 3 F =,令f 3v A =,即满足条件的R w 应略大于10k Ω。 (2)多谐振荡电路

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

方波三角波发生电路实验报告修订版

物理与机电工程学院(2015——2016 学年第二学期) 综合设计报告 方波-三角波产生电路 专业:电子信息科学与技术学号: 2014216010 姓名:侯涛 指导教师:石玉军

方波-三角波产生电路 摘要 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进 行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。凭借,可以立即创建具有完整组件库的电路图。本设计就是利用软件进行电路图的绘制并进行仿真。 关键词 折线法,比较器,积分器,转换电路,低通滤波, 1、 引言 波形发生器就是信号源的一种,能够给被测电路提供所需要的波形,广泛地应用于各大院校和科研场所。随着科技的进步,社会的发展,单一的波形发生器已经不能满足人们的需求,而我们设计的正是多种波形发生器。本次设计用运放来组成积分电路,低通滤波电路来分别实现方波,三角波和正弦波的输出。它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源。 本文通过介绍一种电路的连接,实现函数发生器的基本功能。将其接入电源,具有实际的应用价值。并通过在示波器上观察波形及数据,得到结果。电压比较器实现方波的输出,又连接积分器得到三角波,并通过方波-三角波转换电路看到三角波,得到想要的信号。 2、设计内容和要求 设计要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 设计指标:输出频率分别为:2z 10H 、310Z H 和4 10Z H ;方波的输出电压峰 峰值 20P P V v -≥ 。 3、方案的论证和选择 3.1方案的提出 3.1.1方案一: 0.12Multisim 0.12Multisim 0.12Multisim 0.12Multisim RC

波形产生电路实验报告

波形产生电路实验报告 一、实验目得 1。通过实验掌握由集成运放构成得正弦波振荡电路得原理与设计方法; 2、通过实验掌握由集成运放构成得方波(矩形波)与三角波(锯齿波)振荡电路得原理与设计方法。 二、实验内容 1. 正弦振荡电路 ?实验电路图如下图所示,电源电压为±12V。 (1)缓慢调节电位器R W,观察电路输出波形得变化,解释所观察到得现象、 (2)仔细调节电位器R W,使电路输出较好得正弦波形,测出振荡频率与幅度以及相对应得R W之值,分析电路得振荡条件。 (3)将两个二极管断开,观察输出波形有什么变化。 2、多谐振荡电路 (1)按图2 安装实验电路(电源电压为±12V)。观测V O1、V O2波形得幅度、周期(频率)以及V O1得上升时间与下降时间等参数。 (2)对电路略加修改,使之变成矩形波与锯齿波振荡电路,即V O1为矩形波,V O2为锯齿波、要求锯齿波得逆程(电压下降段)时间大约就是正程(电压上升段)时间得20% 左右、观测V O1、V O2得波形,记录它们得幅度、周期(频率)等参数、 3.设计电路测量滞回比较器得电压传输特性。 三、预习计算与仿真 1、预习计算 (1)正弦振荡电路

由正反馈得反馈系数为: 由此可得RC 串并联选频网络得幅频特性与相频特性分别为 易知当时,与同相,满足自激振荡得相位条件。 若此时,则可以满足,电 路起振,振荡频率为 000 111 994.7Hz 1.005ms 2216k 10nF f T RC f ππ= ====?Ω?,、 若要满足自激振荡,需要满足在起振前略大于1,而,令,即满足条件得R w应略大于10k Ω、 (2)多谐振荡电路 ?对电路得滞回部分,输出电压U O =±U Z =±6V ,U P =U O ×R 2R 2+R 1 +U O2× R 1R 2+R 1 ,当U P = U N =0V 时,可以得到U O2=±R 2R 1 ×U O =±3V 、 由U T = 1R 3C ×0.5T ×U O ?U T ,所以得到:T =4R 2R 4C R 1?=400us 、 2。 仿真分析 (1)正弦振荡电路 仿真电路图: 仿真得到得测量数据总结如下(具体见仿真报告): (1)R W 为0时,无波形产生 (2)调节R W 恰好起振时 (3)调节R W 使输出电压幅值最大

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

波形发生电路实验报告

波形发生电路实验报告 班级 姓名 学号

一、实验目的 1. 掌握由集成运放构成的正弦波振荡电路的原理与设计方法。 2. 学习电压比较器的组成及电压传输特性的测试方法。 3. 掌握由集成运放构成的矩形波和三角波振荡电路的原理与设计方法。 二、实验内容 1. 正弦波发生电路 (1)实验参考电路见图1。 (2)缓慢调节电位器R W,观察电路输出波形的变化,完成以下测试: ①R W为0Ω 时的u O的波形; ②调整R W使电路刚好起振,记录u O的幅值、频率及R W的阻值; ③调整R W使输出为不失真的正弦波且幅值最大,记录u O幅值、频率及R W的阻值; ④将两个二极管断开,观察R W从小到大变化时输出波形的变化情况。 2. 方波- 三角波发生电路 (1)实验参考电路见图2。 (2)测试滞回比较电路的电压传输特性 将图2 电路的第一级改造为滞回比较电路,在输入端输入合适的测试信号,用示波器X-Y模式观测电压传输特性曲线并记录阈值电压和u O1的幅值。

(3)测量图2电路u O1、u O2波形的幅值、周期及u O1波形的上升和下降时间。 3.矩形波- 锯齿波发生电路 修改电路图2,使之成为矩形波- 锯齿波发生电路。要求锯齿波的逆程(电压下降)时间大约是正程时间的20%,记录u O1、u O2的幅值、周期。 三、实验要求 1. 实验课上搭建硬件电路,记录各项测试数据。 2. 完成正弦波电路的实验后在面包板上保留其电路,并使其输出电压U o在1-3V范围内连续可调。 四、预习计算 1.正弦波振荡电路 起振条件为|A|略大于3,刚起振时幅值较小,认为二极管还未导通,即R4+R W R2 +1略大于3,即R W略大于10kΩ时刚好起振,随着R W的增大,振幅会增大,当R W过大时波形会出现失真。 振荡频率由RC串并联选频网络决定,f0=1 2πR1C1 ≈106.1Hz 2.方波- 三角波发生电路 滞回比较器的阈值电压±U T=±R2 R1 U Z=±2.9V,测试滞回比较电路时将R2与运放A2的输出端断开,改接输入信号(三角波为宜)。 方波(u O1)的幅值为U Z=5.8V,三角波(u O2)的幅值为U T=2.9V。 U T=?1 4 (?U Z) T ?U T U T=R2 1 U Z 解得:T=4R2R4C R1 =0.4ms,即u O1和u O2的周期为0.4ms。 3.矩形波- 锯齿波发生电路 只需让电容充放电回路的时间常数不一样即可。电路原理图如下:

DAC0832波形发生器课程设计实验报告

DAC0832波形发生器课程设计实验报告 目录 第1章系统设计方案 (2) 1.1 设计思路 (2) 1.2 方案比较与选择 (2) 第2章系统硬件设计..................................................................................2. 2.1 主控制器电路 (2) 2.2 数模转换电路 (3) 第3章系统软件设计................................................................................ .6 3.1 系统整体流程...................................................................................... .6 3.2 数模转换程序...................................................................................... .6 第4章系统调试 (8) 4.1 proteus的调试 (8) 第5章结论与总结 (11) 5.1 结论 (11) (系统总体设计与完成做一个总结,是客观的,主要包括:设计思路,设计过程,测试结果及完善改进的方向。) 5.2 总结 (11) (这是一个主观的总结,谈谈自己收获和不足等方面的内容。) 第1章系统设计方案 1.1 设计思路 (一)、课设需要各个波形的基本输出。如输出矩形波、锯齿波,正弦波。这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。然而为了实现100HZ的频率,终于发现,将总时间除了总步数,根据每步执行时间,算出延时时间,最终达到要求,然后建一个表通过查表来进行输出,这样主要工作任务就落到了建表的过程中。这样做的好处在于,查表所耗费的时钟周期相同,这样输出的点与点之间的距离就相等了,输出的波形行将更趋于完美,当然更让我们感到的高兴的是它输出波形的频率将近达到了100赫兹,能够满足我们设计的扩展要求了。

波形发生器设计实验报告

一、实验目的 (1)熟悉555型集成时基电路结构、工作原理及其特点。 (2)掌握555型集成时基电路的基本应用。 (3)掌握由555集成型时基电路组成的占空比可调的方波信号发生器。 二、实验基本原理 555电路的工作原理 555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体。 555芯片管脚介绍 555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。

用555定时器组成的多谐振荡器如图所示。接通电源后,电容C2被充电,当电容C2上端电压Vc 升到2Vcc/3时使555第3脚V0为低电平,同时555内放电三极管T 导通,此时电容C2通过R1放电,Vc 下降。当Vc 下降到Vcc/3时,V0翻转为高电平。电容器C2放电所需的时间为 2ln 12??=C R t pL ( 1-1) 当放电结束时,T 截止,Vcc 将通过R1,R2,R3向电容器C2充电,Vc 由Vcc/3 上升到2Vcc/3所需的时间为 22)321(7.02ln )321(C R R R C R R R t pH ++=++= (1-2) 当Vc 上升到2Vcc/3时,电路又翻转为低电平。如此周而复始,于是,在电路的输出端就得到一个周期性的矩形波。电路的工作波形如图4,其中的震荡频率为 : f=1/(tpL+tpH )=1.43/(2R1+R2+R3) C2 (1-3) 三、实验设计目标 波形发生器是建立在模拟电子技术基础上的一个设计性实验,它是借助综合测试板上的555芯片和一片通用四运放324芯片,以及各种电阻、电感、电容等基本元器件,从而设计制作一个频率可变的同时输出脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ的波形产生电路,其借助于计算机软件multisim 仿真以及电路板硬件调

信号发生器实验报告

电子线路课程设计报告设计题目:简易数字合成信号发生器 专业: 指导教师: 小组成员:

数字合成信号发生器设计、调试报告 一:设计目标陈述 设计一个简易数字信号发生器,使其能够产生正弦信号、方波信号、三角波信号、锯齿波信号,要求有滤波有放大,可以按键选择波形的模式及周期及频率,波形可以在示波器上 显示,此外可以加入数码管显示。 二、完成情况简述 成功完成了电路的基本焊接,程序完整,能够实现要求功能。能够通过程序控制实现正弦波的输出,但是有一定噪声;由于时间问题,我们没有设计数码管,也不能通过按键调节频率。 三、系统总体描述及系统框图 总体描述:以51单片机开发板为基础,将输出的数字信号接入D\A转换器进行D\A转换,然后接入到滤波器进行滤波,最后通过运算放大器得到最后的波形输出。 四:各模块说明 1、单片机电路80C51 程序下载于开发板上的单片机内进行程序的执行,为D\A转换提供了八位数字信号,同时为滤波器提供高频方波。通过开发板上的232串口,可以进行软件控制信号波形及频率切换。通过开发板连接液晶显示屏,显示波形和频率。 2、D/A电路TLC7528 将波形样值的编码转换成模拟值,完成单极性的波形输出。TLC7528是双路8位数字模拟转换器,本设计采用的是电压输出模式,示波器上显示波形。直接将单片机的P0口输出传给TLC7528并用A路直接输出结果,没有寄存。 3、滤波电路MAX7400 通过接收到的单片机发送来的高频方波信号(其频率为所要实现波频率的一百倍)D转换器输出的波形,对转换器输出波形进行滤波并得到平滑的输出信号。 4、放大电路TL072

TL072用以对滤波器输出的波进行十倍放大,采用双电源,并将放大结果送到示波器进行波形显示。 五:调试流程 1、利用proteus做各个模块和程序的单独仿真,修改电路和程序。 2、用完整的程序对完整电路进行仿真,调整程序结构等。 3、焊接电路,利用硬件仿真器进行仿真,并用示波器进行波形显示,调整电路的一些细节错误。 六:遇到的问题及解决方法 遇到的软件方面的问题: 最开始,无法形成波形,然后用示波器查看滤波器的滤波,发现频率过低,于是检查程序发现,滤波器的频率设置方面的参数过大,延时程序的参数设置过大,频率输出过低,几次调整好参数后,在进行试验,波形终于产生了。 七:原理图和实物照片 波形照片:

信号发生器实验报告(终)

南昌大学实验报告 学生姓名:王晟尧学号:6102215054专业班级:通信152班 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p=6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶 m 体管的截止电压值。 图4 三角波→正弦波变换电路

方波发生器实验报告

方波发生器及其调制 一、实验内容 设计一方波信号发生器,采用ROM进行一个周期数据存储,并通过地址发生器产生方波信号。并通过控制端输入a对方波信号进行调幅和调频。ROM(4位地址16位数据) 二、实验原理 方波信号发生器是由地址发生器和方波数据存储器ROM两块构成,输入为时钟脉冲,输出为8位二进制。

1地址发生器的原理 地址发生器实质上就是计数器,ROM的地址是4位数据,相当于16位循环计数器。 2.只读存储器ROM的设计 (1)、VHDL编程的实现 ①基本原理:为每一个存储单元编写一个地址,只有地址指定的存储单元才能与公共的I/O 相连,然后进行存储数据的读写操作。 ②逻辑功能:地址信号的选择下,从指定存储单元中读取相应数据。 3.调幅与调频 通过输入信号a(3位数据),选择不同调制,如 a=000,2分频 a=001,4分频 a=010,8分频 a=011,16分频 a=100,2倍调幅 a=101,4倍调幅 a=110,8倍调幅 a=111,16倍调幅 分频原理:偶数分频,即分频系数N=2n(n=1,2,…),若输入的信号频率为f,那么分频器的输出信号的频率为f/2n(n=1,2,…)。 调幅原理:通过移位寄存器改变方波幅值(左移)。 三、设计方案 1. 基于VHDL编程的设计 在地址信号的选择下,从指定存储单元中读取相应数据,系统框图如下: FPGA 四、原理图 1、VHDL编程的实现

(1)、顶层原理图 (2)、地址发生器的VHDL语言的实现library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity addr_count is port ( clk1khz: in std_logic; qout: out integer range 0 to 15 ); end addr_count; architecture behave of addr_count is signal temp: integer range 0 to 15;

波形产生电路实验报告之欧阳学文创作

波形产生电路实验报告 欧阳学文 一、实验目的 1. 通过实验掌握由集成运放构成的正弦波振荡电路的原理与设计方法; 2. 通过实验掌握由集成运放构成的方波(矩形波)和三角波(锯齿波)振荡电路的原理与设计方法。 二、实验内容 1. 正弦振荡电路 实验电路图如下图所示,电源电压为。 (1)缓慢调节电位器,观察电路输出波形的变化,解释所观察到的现象。 (2)仔细调节电位器,使电路输出较好的正弦波形,测出振荡频率和幅度以及相对应的之值,分析电路的振荡条件。(3)将两个二极管断开,观察输出波形有什么变化。 2. 多谐振荡电路 (1)按图2 安装实验电路(电源电压为±12V)。观测、波形的幅度、周期(频

率)以及的上升时间和下降时间等参数。 (2)对电路略加修改,使之变成矩形波和锯齿波振荡电路,即 为矩形波, 为锯齿波。要求锯齿波的逆程(电压下降 段)时间大约是正程(电压上升段)时间的 20% 左右。观测、的波形,记录它们的幅度、周期(频率) 等参数。 3. 设计电路测量滞回比较器的电压传输特性。 三、预习计算与仿真 1. 预习计算 (1)正弦振荡电路 由正反馈的反馈系数为: 由此可得RC 串并联选频网络的幅频特性与相频特性分别为 易知当RC 1 0==ωω时,? f V 和? o V 同相,满足自激振荡的相位条件。 若此时f 3v A >,则可以满足f 1v A F >,电路起振,振荡频率为 000 111 994.7Hz 1.005ms 2216k 10nF f T RC f ππ= ====?Ω?,。 若要满足自激振荡,需要满足f v A F 在起振前略大于1,而

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

信号发生器实验报告(DOC)

信号发生器 F组 组长:*** 组员:***、*** 2013年8月12日星期一

1系统方案 (4) 1.1系统方案论证与选择 (4) 1.2方案描述 (4) 2理论分析与计算 (5) 3电路与程序设计 (6) 3.1电路的设计 (6) 3.1.1 ICL8038模块电路 (6) 3.1.2 放大电路 (6) 3.2程序的设计 (7) 4测试方案与测试结果 (9) 4.1测试仪器与结果 (9) 4.2调试出现的问题及解决方案 (9) 5 小结 (10)

本系统设计的是信号发生器,是以 ICL8038和 STC89C51为核心设计的数控及扫频函数信号发生器。ICL8038作为函数信号源结合外围电路产生占空比和频率可调的正弦波、方波、三角波;该函数信号发生器的频率可调范围1~100kHz,波形稳定,无明显失真。单片机控制LCD12864液晶显示频率、频段和波形名称。 关键字:信号发生器ICL8038、 STC89C51、波形、LCD12864

信号发生器实验报告 1系统方案 1.1系统方案论证与选择 方案一:由单片机内部产生波形,经DAC0832输出,然后再经过uA741放大信号后,最后经过CD4046和CD4518组成的锁相环放大频率输出波形,可是输出的波形频率太低,达不到设计要求。 方案二:采用单片机对信号发生器MAX038芯片进行程序控制的函数发生器,该发生器有正弦波、三角波和方波信号三种波形,输出信号频率在0.1Hz~100MHz 范围内。MAX038为核心构成硬件电路能自动地反馈控制输出频率,通过按键选择波形,调节频率,可是MAX038芯片价格太高,过于昂贵。 方案三:利用芯片ICL8038产生正弦波、方波和三角波三种波形,根据电阻和电容的不同可以调节波形的频率和占空比,产生的波形频率足够大,能达到设计要求,而且ICL8038价格比较便宜,设计起来成本较低。 综上所述,所以选择第三个方案来设计信号发生器。 1.2方案描述 本次设计方案是由ICL8038 芯片和外围电路产生三种波形,由公式: ,改变电阻和电容的大小可以改变波形的频率,有开关控制频段和波形并给单片机一个信号,由单片机识别并在LCD液晶屏上显示,电路的系统法案框图为下图1所示: 图1 总系统框图

波形发生器设计实验报告

波形发生器设计实验报告 一、设计目的 掌握用99SE软件制作集成放大器构成方波,三角波函数发生器的设计方法。 二、设计原理 波形发生器:函数信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、函(波形)信号、脉冲信号和随机信号发生器等四大类。而波形发生器是指能够输出方波、三角波、正弦波等多种电压波形的信号源。它可采用不同的电路形式和元器件来实现,具体可采用运算放大器和分立元件构成,也可用单片专用集成芯片设计。 设计原理图:

三、设计元件 电阻:R1 5.1K、R2 8.2K 、R3 680 、R4 3K 、R5 39K R6 1K 、R7 39K 、R8 39K 电容:C 1uF 运算放大器:U1A LM324 、U1B LM324 二极管:D1 3.3V 、D2 3.3V 滑动变阻器:RW1 10K 接口:CON3 地线、GND 四、设计步骤 大概流程图 1、打开99SE,建立Sch文件。绘制原理图。 绘制原理图时要注意放大器的引脚(注意引脚上所对应的数字)和二极管的引脚(注意原理图和PCB中的引脚参数是否一致)。 元件元件库代码

电阻:RES2 滑动变阻器:POT2 电容:CAP 放大器:OPAMP 二极管:ZENER3 元件封装代码 电阻:AXIAL0.4 滑动变阻器:VR5 放大器:DIP14 二极管:DIODE0.4 电容:RB.2/.4 2、生成网络表格 本步骤可完成建立材料清单(可执行report中的Bill of Material)、电器规则检查(Tools中ERC )、建立网络表(Design中Create Netlist,点击OK即可)3、PCB文件的设置 建立PCB文件 单双面板设置:Design中Options进行设置单双面板,及面板大小(8cm*7cm)建立原点(Edit中Origin中的set) 并在KeepOutLayer层中制板 4、引入网络表 执行Design中Load Nets载入网络表,屏幕弹出对话框,点击Browse按钮选择网络表文件(*net),载入网络表,单机Execute,便成功引入网络表。 5、修改封装与布局 按照原理图调试布局,美观整齐即可 6、设置PCB规则 Design中Rules即可设置规则例:设置地线,电源线等的粗细参数。双面布线及单面布线的设置等等。

函数信号发生器与示波器的使用实验报告书

函数信号发生器与示波器的使用实验报告书 专业:班级:学号: 姓名:实验时间: 实验目的 1、学会数字合成函数信号发生器常用功能的设置、使用; 2、会从函数信号发生器胡频率计上读出信号频率; 3、在了解数字双踪示波器显示波形的工作原理基础上,观察 并测量以下信号:(见下表)学会数字示波器的基本操作与 读书; 实验仪器 F40函数信号发生器、UTD2102CE数字示波器、探头。 实验原理 1、函数信号发生器的原理

该仪器采用直接数字合成技术,可以输出函数信号、调频、调幅、FSK、PSK、猝发、频率扫描等信号,还具有测频、计数、任意波形发生器功能。 2、示波器显示波形原理 如果在示波器CH1或CH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与 正弦波电压相等时,则显示完整的周期的正弦波形,若在示波 器CH1和YCH2同时加上正弦波,在示波器的X偏转板上加上 示波器的锯齿波,则在荧光屏上将的到两个正弦波。 实验内容 1、做好准备工作,连接实验仪器电路,设置好函数信号发生 器、示波器; (1)、把函数信号发生器的“函数输出”输出端与示波器的 X CH1信号输入端连接,两台仪器的接通220V交流电源。 (2)、启动函数信号发生器,开机后仪器不需要设置,短暂 时间后,即输出10K Hz的正弦波形。 (3)、需要信号源的其他信号,到时在进行相关的数据设定 (如正弦波2的波形、频率、点频输出、信号幅度)等。 2、用示波器观察上表中序号1的信号波形(10KHz);过程如下: (1)、打开示波器的电源开关,将数字存储示波器探头连接到CH1输入端,按下“AUTO”按键,示波器将自动设置垂直偏转系数、扫描时基以及触发方式;按下CH1按键。

波形发生器实验报告

(此文档为word格式,下载后您可任意编辑修改!) 单片机课程设计报告 波形发生器 2014 年02 月23日

1、用户需求 1、产生三角波、方波、正弦波信号 2、输出信号的频率和幅度可以通过按键来改变,,分析波形产生的最高频率。 2、设计任务 基于AT89C51的波形发生器主要功能如下: (1)可以三产生角波、方波、正弦波信号并通过按键控制。 (2)输出信号的频率和幅度可以通过按键来改变,分析波形产生的最高频率。 (3)以单片机为核心,经过D/A转换和放大电路的处理,最后输出信号。 3、原理框图及说明 根据设计任务,设计如下框图: 图1、原理框图 电源部分,为单片机提供5V稳压电源;8位按键提供给用户用来选择需要输出的波形,以及修改频率及方波占空比;数码管显示所选择的的波形代号,1代表正弦波,2代表方波,3代表锯齿波,4代表三角波;幅度调节电路用来调节输出波形的幅度;D/A转换及放大电路可以将数字信号转换成模拟信号输出我们所需要的波形;显示电路则是将波形显示在屏幕上。 89C51上电后,扫描P1口,判断是否有键按下,进行相应的操作。 根据原理框图,设计电路图如附件1. 设置的3位按键分别为S1代表正弦波,S2代表方波,S3代表锯齿波,S4代表三角波,S5代表增加方波占空比,S6代表减小方波占空比,S7代表增加频率,S8代表减小频率。 4、主要电路说明、元件选择及参数计算 简易函数信号发生器原件清单如下:

4.1主控芯片单片机的介绍 (1)AT89C51的引脚如图2.2所示。 AT89C51单片机的40个引脚可分为:电源引脚2根、时钟引脚两根、控制引脚4根、输入/输出引脚32根。各引脚功能描述如下: (1)主电压引脚 ●V CC:电源端,正常工作时接+5V电源 ● V SS:接地端 (2)时钟引脚 ●XTAL1:内部振荡电路的反相放大器的输入端,接外部晶振和微调电容的一端。采用外部时钟电路时,对HMOS型工艺的单片机而言,此引脚应接地;对CHMOS型而言,此引脚应接外部时钟的输入端。 ●内部振荡电路的反相放大器的输出端,接外部晶振和微调电容的另一端。采用外部时钟电路时,对HMOS型工艺的单片机而言,此引脚应接外部时钟的输入端;对CHMOS型而言,此引脚悬空。 (3)控制引脚 ●RST/V PD:复位信号/备用电源输入引脚。当振荡运行时,RST引脚保持2个机器周期的高电平后,就可以使8051完成复位工作。该引脚的第二功能是V , PD 掉电期间,该引脚可接即备用电源的输入端,具有掉电保护功能。在主电源V CC 向内部RAM提供备用电源,保持内部RAM中的数据不丢失。+5V备用电源,由V PD ● ALE/PROG:地址锁存允许信号/编程脉冲输入端。当CPU访问片外存储器时,ALE输出信号控制锁存P0口的低8位地址,从而实现P0口的数据与低位地 /6)址的分时复用。当8051上电正常工作后,ALE端以不变频率(振荡器频率的f osc 周期性地输出正脉冲信号。该脉冲可用作对外输出的时钟,或用于定时目的。该引脚的第二功能PROG是做编程脉冲的输入端。 ● PSEN:外部程序存储器读选通信号端,低电平有效。

相关文档
最新文档