《大学物理学》机械振动练习题

《大学物理学》机械振动练习题
《大学物理学》机械振动练习题

大学物理学》机械振动自主学习材料

、选择题

9-1 .一个质点作简谐运动,振幅为A ,在起始时质点的位移为

代表此简谐运动的旋转矢量为()

【旋转矢量转法判断初相位的方法必须掌握】

9-2 .已知某简谐运动的振动曲线如图所示,则此简谐运动

的运动方程(

的单位为

s)为(

2 2cos(

3t

)

2

3

(A)x

22

(B x2cos(t)

33

(C)x

4

2cos(

3

t

2

3

42

(D x2cos(t)

33

4

【考虑在1 秒时间内旋转矢量转过,有】

33

9-3 .两个同周期简谐运动的振动曲线如图所示,x1的相位

比x2 的相位()

(A )落后;(B)超前;

22

(C)落后;(D )超前。

【显然x1的振动曲线在x2 曲线的前面,超前了1/4 周期,即超前

9-5 .图中是两个简谐振动的曲线,若这两个简谐振动可叠

加,则合成的余弦振动的初相位为()

9-4 .当质点以频

作简谐运动时,它的动能变化的频率为

A)2;(B)

考虑到动能的表达式为E

k

C) 2 ;(D) 4 。

1

2

mv 221 kA 2 sin 2( t ) ,出现平方项】

A,且向x 轴正方向运

动,

x 的单位为cm ,t

/2】

3

9-10 .如图所示,两个轻弹簧的劲度系数分别为

9-15 .一个质点作简谐振动, 置到二分之一最大位移这段路程所需要的最短时间为:

3

A )

2 C ) B )2;

D ) 0 。 【由图可见,两个简谐振动同频率,相位相差 是大的那一个】 ,所以,则合成的余弦振动的振幅应该是大减小,初相位 9--1 .一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为 T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为 T ',则 T'/T 为( ) 11 (A ) 2; (B )1; (C ) ; (D ) 。 22 弹簧串联的弹性系数公式为 形成新的弹簧整体,弹性系数为 T ' 2

1 1 1 ,弹簧对半分割后,其中一根的弹性系数为 2k ,两弹簧并联后 k 串 k 1 k

2 4k ,公式为 k 并 k 1 k 2 ,利用 ,考虑到 T 2 ,所以, T

】 2 9--2 .一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的( 33 ;( D ) 。 24

11 E k mv 2

kA 2 sin 2 ( t ) , 位 移 为 振 幅 的 一 半 时 , 有

22

1

kA 2 ( 3)2 】 22

A ) 1;(

B ) 2 考虑到动 12 ;

(C )

能的 表达式 为

2 2

,那么, E k 3k

9--3 .两个同方向, 相位差为(

A ) 6; (

B )

同频率的简谐运动,振幅均为 A ,若合成振幅也为 A ,则两分振动的初

2 3; (C )2

3

D )

则振动频率为: (

1 A )

2 k 1 k 2 ;

m B

C ) 2

m

k 1 k 2

D ) 提示:弹簧串联的弹性系数公式为

k 1 k

2

m(k 1 k 2)

m(k 1 k 2) k 1

k 2

11

1

,而简谐振动的频率为

k 串

k 1

k 2

1

2

k 1和 k 2 ,物体在光滑平面上作简谐振动,

可用旋转矢量考虑,两矢量的夹角应为

周期为 T ,当质点由平衡位置向 x 轴正方向运动时, 由平衡位

A )T/4; (

B )T/6; (

C )T/8 ; (

D )T/12。

【提示:由旋转矢量考察,平衡位置时旋转矢量在 处,最短时间到 1 最大位移处为 ,那么,旋转

2 2

3 矢量转过 的角度,由比例式: :2 t:T ,有t T 】

6 6 12

9-17 .两质点作同频率同振幅的简谐运动, M 质点的运动方程为 M

x 1 Acos ( t ) ,当 M 质点自振动正方向回到平衡位置时,

N 质点恰在振动正方向的端点。则 N 质点的运动方程为: ( )

(A ) x 2 Acos( t

2

) ;( B ) x 2

(C ) x 2 A cos(

t 2) ;(D )

x 2

【提示:

由旋转矢量知 N 落后

M 质点 相位】

2

9-28 . 分振动方程分别为 x 1 3cos(50 t

则它们的合振动表达式为:

( )

Acos( t

) ; O N x

2

A cos( t ) 。

2

0.25 ) 和 x 2 4cos(50 t 0.75 ) ( SI 制)

(A ) x 2cos (50 t 0.25 ) ; ( B ) x 5cos (50

t ) ;

1

4

(C ) x 5cos (50 t tan 1 ) ;

(D ) x 7 。

43

【提示:见图,由于 x 1 和 x 2 相位相差 /2,所以合振动振幅可用勾股定理求出; 4 合振动的相位为 /4 ,而 arctan 】

3

13 .一弹簧振子,当把它竖直放置时,作振动周期为

方向成 θ角的光滑斜面上时,试判断下列情况正确的是: (A ) (B ) (C ) T 0 的简谐振动。 ()

若把它放置在与竖直

D ) 在光滑斜面上不作简谐振动; 在光滑斜面上作简谐振动,振动周期仍为 在光滑斜面上作简谐振动,振动周期为

在光滑斜面上作简谐振动,振动周期为

【提示:由题意弹簧振子竖直放置时的周期为 所以弹簧振子的 T 0 是固有周期】

T 0 T 0;

T 0 / cos

T 0 / cos 。

2 m/ k ,但此弹簧水平放置时周期仍为 2

m/ k ,

14 .两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分

别为 l 1=2 l 2 ,两弹簧振子的周期之比 T 1:T 2为: (A )2; (B ) 2 ; (C )1 ; (D )1/ 2。

2

l 1和 (

l 2,且

提示:可由弹簧的伸长量求出相应的劲度系数 k ,再利用

判定】

二、填空题

9--4 .一质点在 Ox 轴上的 A 、B 之间作简谐运动,

1 cm 1 cm

2 cm

O 为平衡位置,质点每秒往返三次,若分别以 x

x 1、x 2 为起始位置,则它们的振动方程为:

(1 ) ;(2)

4o

x 1 0.02cos (6 t

);同理, x 2为起始位置时,初相位的旋转矢量在第

4 象限与水平轴成 60o 角

的位置,所以

, 则 x 2 0.02cos (6 t ) 】

33

提示:图中可见振幅为 0.1 ,周期为 8 秒,旋转矢量初相位在

2

g 月 1.63 m/ s 】

5 .一单摆的悬线长 l ,在顶端固定点的铅直下方 l /2 处有一小钉,

如图所示。则单摆的左右两方振动周期之比 T 1/ T 2为

提示: O 为平衡位置, A 、B 之间振动,振幅为 2cm ;每秒往返三次,说明

3,有

6 , x 1 为

起始 位置时, 初相位的旋 转矢量在第

三象限与水平轴成 60o

的位置,所以

43

, 则

9--5 .由图示写出质点作简谐运动的振动方程:

1 秒后(即 T /8 后)达最大,则初相位在

提示:图中可见 A 落后 B , A

B 应为负值,

2】

9-20 .如果地球上的秒摆在月球上的周期为 4.9 秒,地球表面的重力加速度取

9.8 m/s 2 ,月

球上的重力加速度为

秒 摆在地球 上的周期 为 2 秒,由单摆 的周期公 式: T 2

知g

4 2

l ,可 见

T 2

l

6.有两个相同的弹簧,其倔强系数均为 k ,( 1)把它们串联起来,下面挂一个质量为

重物,此系统作简谐振动的周期为 ;( 2)把它们并联起来,下面挂一质量为 m 的

重物,此系统作简谐振动的周期为

振动的位相差为π /6 ,若第一个简谐振动的振幅为 为 ,第一、二两个简谐振动的位相差为 。

【提示:∵合振动的振幅与第一个简谐振动的振幅恰满足 cos 3 ,可知第二个简谐振动与合振动的位

2

相差为π/3 ,由勾股定理知第二个简谐振动的振幅为 0.1 m ;第一、二两个简谐振动的位相差为 /2】

9.若两个同方向不同频率的谐振动的表达式分别为 x 1 A cos10 t 和 x 2 A cos12 t ,

则它们的合振动频率为 ,每秒的拍数为 。

10 12 10 12

【提示:由和差化积公式,有 x1 x2 2 A cos 10 12 t cos 10 12 t 2Acos 11 t cos t

1 2

2 2

所以,合振动频率为 5.5Hz ,合振动变化频率(即拍频)为 1Hz ,即1拍/秒 】

10 .质量为 m 的物体和一轻弹簧组成弹簧振子其固有振动周期为

m 的

提示:( 1)弹簧串联公式为 1

k 串

k1 k2

,得

k 串

k

,而周期公式为 T

2

2)并联公式为 k 并 k 1 k 2,可得 k 并 2k ,有T 并

2 2m k 】

7.一弹簧振子作简谐振动,其振动曲线如图所示。

则它的周期 T ,其余弦函数描述时初相位 =

3

【提示:由旋转矢量图,考虑在 2 秒时间内旋转矢量转过 ,

32

11

24

2 有 ,可算出周期 T

s ,图中可见初相位 】

12

11

3

8.两个同方向同频率的简谐振动,其合振动的振幅为

0.2 m ,合振动的位相与第一个简谐

3/10 m ,则第二个简谐振动的振幅

T ,当它作振幅为 A 的自

由单摆的周期公式: 2

m

k

,有 T 串

掉入盘子后的平衡位置为坐标原点,位移以向下为正。 )

9-25 .质量 m =0.10 kg 的物体以 A =0.01 m 的振幅作简谐振动, 求:(1 )振动周期;( 2 )物体通过平衡位置时的总能量与动能; (3)当动能和势能相等时, 物体的位移是多少?( 4)当物体的位移为振幅的一半时,动能、势能各占总能量的多少?

由简谐振动时,其振动能量 E

1 2 2 1

2

2

【提示:振动能量的公式为 E m 2A 2

k A 2

,而

,有 E

2 2 T

11 .李萨如图形常用来对于未知频率和相位的测定,如图所示的两个

2 2 2

2 2

mT 2 A 2

】 不同频率、相互垂直的简谐振动合成图像,选水平方向为 x 振动, 竖直方向为 y 振动,则该李萨如图形表明 T x :T y

【提示:李萨如图形与 x 的水平方向有 2 个切点,与

三、计算题

9-14 .某振动质点的 x-t 曲线如图所示,试求:

(1 )运动方程; (2)点 P 对应的相位;

(3)到达 P 点相应位置所需的时间。

9-18 .如图为一简谐运动质点的速度与时间

关系图,振幅为 2cm ,求 (1 )振动周期; (2 )加速度的最大值; 3 )运动方程。

9-23 .一质量为 M 的盘子系于竖直悬挂的轻弹簧下

端, 弹簧的劲度系数为 k 。现有一质量为 m 的物体自h 高处自由下落,掉在盘上没有反弹,以物体掉在盘上 的瞬时作为计时起点,求盘子的振动表达式。 取物体

其最大加速度为 4.0 m ·s -2

, y 的竖直方向有 3 个切点,表明 T x :T y 2:3 】

9-27 .质量 m =10 g 的小球与轻弹簧组成的振动系统运动方程为 x 0.5cos (8 t )cm ,

3

求( 1)振动的角频率、周期、振幅和初相位; (2)振动的能量; ( 3)一个周期内的平均动 能和平均势能。

9-28 .有两个同方向、同频率的简谐振动,

它们的振动表式为:

3 x 1 0.05cos 10t

, x 2 4

1 0.06cos 10t

4

(SI 制)

(1 )求它们合成振动的振幅和初相位。

(2 )若另有一振动 x 3 0.07cos (10 t 3

) ,问 3为何值

时, x

1

x 3 的振幅为最大;

3

何值时, x 2 x 3 的振幅为最小。

9-35 .在一个 LC 振荡电路中,若电容器上的电容

u 50cos 104 t 伏特,若电路中的电阻忽略不计,

求: 自感;(3)电路中电流随时间变化的规律。

答案

、选择题: B D B C D D D C B D C C B B

2 )旋转矢量图可见 P 0 ;

C 10 7 F ,两极板上的交变电压为

1 )振荡的周期; ( 2)电路的

三、计算题

5

; t 24

1 )简谐运动方程的标准式为: x Acos ( t ) , x-t 曲线图中可见 A 0.1m ,旋转

矢量图可见

3 ,∴ x

5

0.1cos(524t

9-14 . 解:先做出旋转矢量图:

可见 4 秒的时间旋转矢量 转过 3 2 的角度,因此,

A 2

A

3 )旋转矢量图可见,到达 P 点相应位置转过 / 3, t

8 ( s)

5

9-18 . 解:首先注意到所给的图像是 简谐运动的速度表达式为 v 注意到题设条件“简谐运动振幅为 v - t 图,

Asin ( t 2cm ”, v max / A 1 )利用 T 2 )由 a max 1.5; 2 / 有 T 4 A 有 a max

/3; 4.5 cm / s 2 ; ), v/cm s 1

)

有: (3 )简谐运动的速度表达式为 做一个 sin 的旋转矢量图与

7 中有负号,可见, t v -t 图对应,考虑到与 v 方程

5 ) cm / s , 6

由简谐运动方程的标准式 x 9-23 . 解:与 M 由动量守恒定律: m v 0 m M v 0m v A sin ( v 3sin (1.5 t A cos( t ) 有: x 2cos(1.5 t

5

) cm 。 6

碰撞前,物体 m 的速度为 v 0m 2gh mv 0m (m M )v 0 ,有碰撞后的速度为: m m

M 2gh

碰撞点离开平衡位置距离为 x 0 mg k k

h

M

碰撞后,物体系统作简谐振动,振动角频率为

由简谐振动的初始条件, x 0 Acos 0 , v 0 A sin 0 得: x 02 ( v 0 )2 ( m k g )2 (

m m 2gh )2 M k mM m k g 1

2kh (m M )g

tan 0

v0

x 0 mg k k mM m m

M 2gh 2kh (m M )g ∴振动表达式为: x A cos( t

)

mg

1 2kh cos k (m M )g

k t

mM

tan 1

2kh (m M ) g

2

9-25 .解:(1 )由 a max A 2有

a max / A 20,

T 2

10 1 2 2 2) E 总 21m 2A 2 2 10 3 J ,再利用 E k 1 m k 2

2A 2 sin 2 (

) ,取振动在平衡 位置的相位,即 ( t 3 )动能和势能相等→ ) 时,有 E k 2

1 2 1 mv k x 22 2 10 3

J ; 而简谐振动特征, 12 mv 2 1kx 2 k A 2 得: k x 2 1 k A 2

A 0.707 A 7.07 10 3

m ; x A cos( t ) 求出相位: cos( 有( t ) 3 , 3 , 3 , 3 (

一个周期内) , 利用 E k 1 m 2 2A 2 sin 2

( t 1 ) , E P m 2 有: E k / E 总 31 , E P / E 总

4 P 总

4

。 9-27 .解: (1) 由运动方程可

见: 8 , T

(2) 利用 E 总 1 m 2A 2 ,有 2

E 总 8 2 10 总 (3

) 利用 E k

1 m

2 A 2 sin 2 ( t ) ,有: 4 )当 x 6 J ;

2

22 22 A cos ( t 1 A 时,利用简谐振动方程 2 2 0.25 s , 2 则 sin 2 ( t) 34 , cos 2( 4 ) ,考虑到 E 总

3 5 10 m 2

A 2 sin 2

(

)d(

m 2 A 2

4

2

1 cos 2

可得: E k m 2A 2

同理: 可得: 9-28 .

A 2

10 6 J ;

22

A cos ( t

)d ( t

E P

10 J 。

解:根据题意,画出旋转矢量图 1 ) A A 12 A 22 0.052 0.062 0.078(m) 2A 2

2

1 cos 2

1, 2, 1, 4, 2A 2

tan

(2) 3

A 1

A

2

39.8 x 1 39 48 , x 2 振幅最大 ; 84 48 ;

3 )时 , x 2

4 x 3振幅最

小 。

.解:(1 )振荡的周期可由交变电压的角频率求出: 104

,有 T 2

2 10 4 s ;

9-35 再由 T 2 LC ,有

4T

2C ,可得: 1

2

10 1H ;

∴i 由i d d q t ,C q u 有i C d d t [50cos 104 5 10 2 sin 104 t A (或为 i 50C

104 sin 104 0.157sin 104 t A )

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案) 一、机械振动 选择题 1.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O 点为平衡位置,在a 、b 两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( ) A .振子的振动周期等于t 1 B .在t =0时刻,振子的位置在a 点 C .在t =t 1时刻,振子的速度为零 D .从t 1到t 2,振子正从O 点向b 点运动 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( ) A .C 的振幅比 B 的大 B .B 和 C 的振幅相等 C .B 的周期为2π 2 L g D .C 的周期为2π 1 L g 3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后 A 56 T

B .摆动的周期为 65 T C .摆球最高点与最低点的高度差为0.3h D .摆球最高点与最低点的高度差为0.25h 4.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中( ) A .甲的最大速度大于乙的最大速度 B .甲的最大速度小于乙的最大速度 C .甲的振幅大于乙的振幅 D .甲的振幅小于乙的振幅 5.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m 的A 、B 两物体,平衡后剪断A 、B 间细线,此后A 将做简谐运动。已知弹簧的劲度系数为k ,则下列说法中正确的是( ) A .细线剪断瞬间A 的加速度为0 B .A 运动到最高点时弹簧弹力为mg C .A 运动到最高点时,A 的加速度为g D .A 振动的振幅为 2mg k 6.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212()x x g L π- B . 212()2x x g L π- C . 212()4x x g L π- D . 212()8x x g L π-

高三 高中物理竞赛机械振动(无答案)

机械振动 振动类型:机械振动,交流电中电流和电压的振动,电磁学中电场和磁场的振动等。 这些振的物理本质不同,但遵守的基本规律相同。机械振动形象直观,最简单的机械振动是简谐运动。 1.简谐运动物体的受力特征: 质点离开平衡位置后所受合力是线性回复力 kx F -= 式中 x 为质点相对于平衡位置的位移,k 为力常数。 2.简谐运动的矢量图示分析法: 如图所示,矢量OP 绕x 轴上的坐标原点O 沿逆时针方向匀速转动,则P 做匀速圆周运动,P 在x 轴上的投影点Q 的运动就 是简谐运动,O 为平衡位置,OP 的长为振幅值。简谐运动的周 期等于圆周运动的周期。这种用旋转矢量表示简谐运动的方法称为矢量图示法。P 通过的圆为参考圆。 3.简谐运动的位移、速度和加速度方程 如图,令OP 长为A ,其旋转角速度为ω,在t=0时矢量OP 与x 夹角为φ0,则经过时间t ,P 在x 轴上投影点Q 的位移为()0cos φω+==t A OQ x ,此方程即为简谐运动的位移方程。 参考圆上参考点P 的线速度v P 在x 轴上的投影就等于Q 点作简谐运动的速度?? ? ?? ++=2cos 0πφωt v v P ,式中A v P ω=为速度的幅值。 参考圆上参考点P 的向心加速度a P 在x 轴上的投影就等于Q 点做简谐运动的加速度()0cos φω+-=t a a P 。其中A a P 2ω=为加速度的幅值。 4.简谐运动的图象 图象是从另一角度来描述物体的运动特征的,它与方程相比 较具有形象直观的特点。如下图中的甲、乙、丙三图分别表示简谐运动物体的位移——时间,速度——时间,加速度——时间图象。 2π(或者说落后2 ),加速度相位比位移相位超前π(或者说落后π)。 5.简谐运动的固有周期和频率 由牛顿第二定律和简谐运动的受力特征有 x m k m F a -==回 ………………① 由位移方程)c o s (0?ω+=t A x 和加速度方程)c o s (02?ωω+-=t A a 可得

机械振动课程期终考试卷-答案

一、填空题 1、机械振动按不同情况进行分类大致可分成(线性振动)和非线性振动;确定性振动和(随机振动);(自由振动)和强迫振动。 2、周期运动的最简单形式是(简谐运动),它是时间的单一(正弦)或( 余弦)函数。 3、单自由度系统无阻尼自由振动的频率只与(质量)和(刚度)有关,与系统受到的激励无关。 4、简谐激励下单自由度系统的响应由(瞬态响应)和(稳态响应)组成。 5、工程上分析随机振动用(数学统计)方法,描述随机过程的最基本的数字特征包括均值、方差、(自相关函数)和(互相关函数)。 6、单位脉冲力激励下,系统的脉冲响应函数和系统的(频响函数)函数是一对傅里叶变换对,和系统的(传递函数)函数是一对拉普拉斯变换对。 2、在离散系统中,弹性元件储存( 势能),惯性元件储存(动能),(阻尼)元件耗散能量。 4、叠加原理是分析(线性)系统的基础。 5、系统固有频率主要与系统的(刚度)和(质量)有关,与系统受到的激励无关。 6、系统的脉冲响应函数和(频响函数)函数是一对傅里叶变换对,和(传递函数)函数是一对拉普拉斯变换对。 7、机械振动是指机械或结构在平衡位置附近的(往复弹性)运动。 1.振动基本研究课题中的系统识别是指根据已知的激励和响应特性分析系统的性质,并可得到振动系统的全部参数。(本小题2分) 2.振动按激励情况可分为自由振动和强迫振动两类。(本小题2分)。 3.图(a)所示n个弹簧串联的等效刚度= k ∑ = n i i k1 1 1 ;图(b)所示n个粘性阻尼串联的等效粘 性阻尼系数= e C ∑ = n i i c1 1 1 。(本小题3分) (a)(b) 题一 3 题图 4.已知简谐振动的物体通过距离静平衡位置为cm x5 1 =和cm x10 2 =时的速度分别为s cm x20 1 = &和s cm x8 2 = &,则其振动周期= T;振幅= A10.69cm。(本小题4分) 5.如图(a)所示扭转振动系统,等效为如图(b)所示以转角 2 ?描述系统运动的单自由度 系统后,则系统的等效转动惯量= eq I 2 2 1 I i I+,等效扭转刚度= teq k 2 2 1t t k i k+。(本小题4分)

高一物理 机械振动

高一物理机械振动 【教学结构】 一、机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 二、简谐振动 1.定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2.简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3.简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 三、描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1.振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2.周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。 振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期 和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固 有周期和固有频率。 四、单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线 的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆 做简谐振动的条件是:最大摆角小于5°,单摆的回复力F 是重力在圆弧切线方向的分力。如图1所示,单摆的周期公图1

高中物理竞赛教程(超详细修订版)_第九讲_机械振动和机械波

第五讲 机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满足: K F -=回的关系,那么这个物体的运动就定义为简谐振动。根据牛顿第二定律,物体的加速度m K m F a -== 回x ,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大 小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中 0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此 kx F =回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟 x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x (2) 这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos(? ωω+-=t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 02 cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 由公式(2)、(4)可得 x a 2ω-= 由牛顿第二定律简谐振动的加速度为 x m k m F a -== 因此有 m k = 2ω (5) 简谐振动的周期T 也就是参考圆上质点的运动周期,所以 图5-1-1 图5-1-2

机械振动基础试卷3答案

(共计15分) 故系统的周期为 2.重物m 1悬挂在刚度为k 的弹簧上,并处于静平衡位置,另一重物m 2 从高度为h 处自由落到m i 上无弹跳,如图2所示,求其后的运动。(共 计15分) 解:根据题意,取M=M 1+m 2所处的平衡位置为原点,向下为正,得系 统运动的微分方程为: =詈cos (pZ t ) jl^sin (pZ t ) k m 1 m 2 . k . m, m 2 3.如图3所示系统两个圆盘的半径为r ,设 I 1 I 2 I,k 1 k 2 k,k 3 3k,求系统的固有频率和振型。(共计15分) 解:取1, 2为系 统的广义坐标, 系统的动能为 E T I 1 12 212 22 11 ( 12 22) 振动分析与实验基础课程考试 3答案 1.求如图1所示系统的周期,三个弹簧都成铅垂, 且k 2 2k 〔 , k g k 〔 o 解: 等效刚度二一1— 1 1 (-—) k 1 k 2 k 3 永1 5k 1 k m 3m 解得 x x 0cos n t —°sin n t n T 乙2 n

2). 1 2 1 2 1 2 U 尹i (r J 2 步(「! r 2)2 尹(「2)2 系统的特征方程为: 在频率比/ n = , 2时,恒有X A 2).在/ n V 、2 , X/A 随E 增大而减小,而在 / n > 2 , X/A 随 E 增大而增大 (共计15分) 证明:1).因—<1 (2 / n )2|H() A^ 1 故当 / n = 2 时, |H(W )| .—. V 1 (2 J 2)2 所以,X 1 (2 2 )2 1,故无论阻尼比E 取何值恒有 X/A A ;1 (2 厨 (2 / n )2 ( / n )2 2( / n )2 1 (2 / n )2 (1 ( / n )2)2 (2 / n )2'2 系统的势能为 从而可得 k 1r 2 k 2r 2 k 2r 2 k 2r 2 k 2r 2 k 3r 2 2kr 2 kr 2 kr 2 4kr 2 得 W 12 (3 .2)牛 (3 其振型分别为:U 1 u 2 4. H( )| 1 (2 / n )2, |H( )| 1/ . 1-( / n ) 2 2 (2 / n )2 证明: 1).无论阻尼比E 取何值,

高中物理机械振动机械波习题含答案解析

机械振动、机械波 第一部分五年高考题荟萃 2009年高考新题 一、选择题 1.(09·全国Ⅰ·20)一列简谐横波在某一时刻的波形图如图1所示,图中P、Q两质点的横坐标分别为x=1.5m 和x=4.5m。P点的振动图像如图2所示。 在下列四幅图中,Q点的振动图像可能是(BC ) 解析:本题考查波的传播.该波的波长为4m.,PQ两点间的距离为3m..当波沿x轴正方向传播时当P在平衡位置向上振动时而Q点此时应处于波峰,B正确.当沿x轴负方向传播时,P点处于向上振动时Q点应处于波谷,C对。 2.(09·全国卷Ⅱ·14)下列关于简谐振动和简谐波的说法,正确的是(AD ) A.媒质中质点振动的周期一定和相应的波的周期相等 B.媒质中质点振动的速度一定和相应的波的波速相等 C.波的传播方向一定和媒质中质点振动的方向一致 D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍 解析:本题考查机械波和机械振动.介质中的质点的振动周期和相应的波传播周期一致A正确.而各质点做简谐

运动速度随时间作周期性的变化,但波在介质中是匀速向前传播的,所以不相等,B错.对于横波而言传播方向和振动方向是垂直的,C错.根据波的特点D正确。 3.(09·北京·15)类比是一种有效的学习方法,通过归类和比较,有助于掌握新知识,提高学习效率。在类比过程中,既要找出共同之处,又要抓住不同之处。某同学对机械波和电磁波进行类比,总结出下列内容,其中的是( D ) 不正确 ... A.机械波的频率、波长和波速三者满足的关系,对电磁波也适用 B.机械波和电磁波都能产生干涉和衍射现象 C.机械波的传播依赖于介质,而电磁波可以在真空中传播 D.机械波既有横波又有纵波,而电磁波只有纵波 解析:波长、波速、频率的关系对任何波都是成立的,对电磁波当然成立,故A选项正确;干涉和衍射是波的特性,机械波、电磁波都是波,这些特性都具有,故B项正确;机械波是机械振动在介质中传播形成的,所以机械波的传播需要介质而电磁波是交替变化的电场和磁场由近及远的传播形成的,所以电磁波传播不需要介质,故C项正确;机械波既有横波又有纵波,但是电磁波只能是横波,其证据就是电磁波能够发生偏振现象,而偏振现象是横波才有的,D项错误。故正确答案应为D。 4.(09·北京·17)一简谐机械波沿x轴正方向传播,周期为T,波长为 。若在x=0处质点的振动图像如右图所示,则该波在t=T/2时刻的波形曲线为( A ) 解析:从振动图上可以看出x=0处的质点在t=T/2时刻处于平衡位置,且正在向下振动,四个选项中只有A图符合要求,故A项正确。 5.(09·上海物理·4)做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的( C )A.频率、振幅都不变B.频率、振幅都改变 C.频率不变、振幅改变D.频率改变、振幅不变

高中物理竞赛辅导机械振动和机械波

高中物理竞赛辅导机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 假如一个物体受到的回复力回F 与它偏离平稳位置的位移x 大小成正比,方向相反。即满 足:K F -=回的关系,那么那个物体的运动就定义为简谐振动依照牛顿第二是律,物体的加速度 m K m F a -== 回,因此作简谐振动的物体,其加速度也和它偏 离平稳位置的位移大小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平稳时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中0x 为物体处于平稳位置时,弹簧伸长的长度,且有mg kx =0, 因此 kx F =回 讲明物体所受回复力的大小与离开平稳位置的位移x 成正比。因回复力指向平稳位置O , 而位移x 总是背离平稳位置,因此回复力的方向与离开平稳位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平稳位置的位移,并不确实是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平稳位置O 为圆心,以振幅A 为半径作圆,这圆就 称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在 时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x 〔2〕 这确实是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,那个线速度在x 轴上的投影是 0cos(? ωω+-=t A v 〕 〔3〕 这也确实是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 图5-1-1 图5-1-2

机械振动基础试卷

机械振动基础试卷 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

振动分析与实验基础课程考试试卷 1 1. 设有两个刚度分别为21,k k 的线性弹簧如图1所示, 试证明:1)它们并联时的总刚度eq k 为: 2)它们串联时的总刚度eq k 为: (共计15分) 2. 弹簧下悬挂一物体,弹簧静伸长为δ,设将物体向下拉,使弹簧有静 伸长3δ,然后无初速度地释放,求此后的运动方程。 (共计15分) 3. 求如图2所示系统微幅扭振的周期。图中两个摩擦轮可分别绕水平轴1O ,2O 转动,它们相互啮合,不能相对滑动,在图示位置(半径1O A 与2O B 在同一水平线上),弹簧不受力。摩擦轮可以看做等厚均质圆盘, 质量分别为1m ,2m 。(共计15分) 4. 试证明:对数衰减率也可用下式表示 n n x x l n 01=δ (式中n x 是经过n 个循环后的振幅)。 并给出在阻尼比ξ为0.01,0.1,0.3时振幅减小到50%以下所需要的循环数。(共计15分) 5. 如图3所示的扭振系统,设, 221I I =12t t K K = 1).写出系统的刚度矩阵和质量矩阵。 2).写出系统的频率方程并求出固有频率和振型,画出振型图。 (共计15分) 6. 证明:对系统的任一位移{}x ,Rayleigh 商 满足221)(n x R ωω≤≤

这里[]K和[]M分别是系统的刚度矩阵和质量矩阵,1ω和nω分别是系统的最低和最高固有频率。(共计15分) 7. 求整流正弦波 T tπ A x(t) 2 sin =的均值,均方值和方差。(共计10分)

高中物理-机械振动、机械波高考真题演练

高中物理-机械振动、机械波高考真题演练1.[·山东理综,38(1)](多选)如图, 轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动。以竖直向上为正方向,物块简谐运动的表达式为y=0.1sin(2.5πt)m。t=0时刻,一小球从距物块h高处自由落下;t=0.6 s时,小球恰好与物块处于同一高度。取重力加速度的大小g=10 m/s2。以下判断正确的是() A.h=1.7 m B.简谐运动的周期是0.8 s C.0.6 s内物块运动的路程是0.2 m D.t=0.4 s时,物块与小球运动方向相反 2.(·天津理综,3)图甲为一列简谐横波在某一时刻的波形图,a、b 两质点的横坐标分别为x a=2 m和x b=6 m,图乙为质点b从该时刻开始计时的振动图象。下列说法正确的是() A.该波沿+x方向传播,波速为1 m/s B.质点a经4 s振动的路程为4 m C.此时刻质点a的速度沿+y方向

D.质点a在t=2 s时速度为零 3.(·北京理综,15) 周期为2.0 s的简谐横波沿x轴传播,该波在某时刻的图象如图所示,此时质点P沿y轴负方向运动,则该波() A.沿x轴正方向传播,波速v=20 m/s B.沿x轴正方向传播,波速v=10 m/s C.沿x轴负方向传播,波速v=20 m/s D.沿x轴负方向传播,波速v=10 m/s 4.(·四川理综,2)平静湖面传播着一列水面波(横波),在波的传播方向上有相距3 m的甲、乙两小木块随波上下运动,测得两小木块每分钟都上下30次,甲在波谷时,乙在波峰,且两木块之间有一个波峰。这列水面波() A.频率是30 Hz B.波长是3 m C.波速是1 m/s D.周期是0.1 s 5.(·福建理综,16)简谐横波在同一均匀介质中沿x轴正方向传播,波速为v。若某时刻在波的传播方向上,位于平衡位置的两质点a、b 相距为s,a、b之间只存在一个波谷,则从该时刻起,下列四幅波形图中质点a最早到达波谷的是()

高考复习——《机械振动》典型例题复习

九、机械振动 一、知识网络 二、画龙点睛 概念 1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。 (2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。 (3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动 (1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。 (2)振动形成的原因 ①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。 振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。 (4)简谐运动的力学特征 ①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。 ②动力学特征:回复力F与位移x之间的关系为 F=-kx 式中F为回复力,x为偏离平衡位置的位移,k是常数。简谐运动的动力学特征是判断物体是否为简谐运动的依据。 ③简谐运动的运动学特征 a=-k m x 加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。 简谐运动加速度的大小和方向都在变化,是一种变加速运动。简谐运动的运动学特征也可用来判断物体是否为简谐运动。 例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。 证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得 x0=mg/k 当振子向下偏离平衡位置x时,回复力为 F=mg-k(x+x0) 则F=-kx 所以此振动为简谐运动。 3、振幅、周期和频率 ⑴振幅 ①物理意义:振幅是描述振动强弱的物理量。 ②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。 ③单位:在国际单位制中,振幅的单位是米(m)。

高中物理第十一章机械振动总结

高中物理第十一章 机械振动总结 一、机械振动: (一)简谐运动: 1、简谐运动的特征: 1)运动学特征:振动物体离开平衡位置的位移随时间按正弦规律变化 在振动中位移常指是物体离开平衡位置的位移 2)动力学特征:回复力的大小与振动物体离开平衡的位移成正比, 方向与位移方向相反(指向平衡位置) kx F -= ①回复力:使振动物体回到平衡位置的力叫做回复力。 ②回复力是根据力的效果来命名的。 ③回复力的方向总是指向平衡位置。 ④回复力可以是物体所受的合外力,也可以是几个力的合力,也可以是一个力,或者某个力的分力。 ⑤由回复力产生的加速度与位移成正比,方向与位移方向相反x m k a -= ⑥证明一个物体是否是作简谐运动,只需要看它的回复力的特征 2、简谐运动的运动学分析: 1)简谐运动的运动过程分析: (1)常用模型:弹簧振子(其运动过程代表了简谐运动的过程) (2)运动过程: 简谐运动的基本过程是两个加速度减小的加速运动过程和两个加速度增大的减速运动过程 (3)简谐运动的对称性: 做简谐运动的物体在经过关于平衡位置对称的两点时,两处的加速度、速度、回复力大小相等 (大小相等、相等)。动能、势能相等(大小相等、

相等)。 2)表征简谐运动的物理量: (1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。 ①振幅是标量。 ②振幅是反映振动强弱的物理量。 (2)周期和频率: ①振动物体完成一次全振动所用的时间叫做振动的周期。 ②单位时间内完成全振动的次数叫做全振动的频率。 它们的关系是T=1/f 。 在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(?ω+=t A x 4)简谐运动的图像: 振动图像表示了振动物体的位移随时间变化的规律。 反映了振动质点在所有时刻的位移。 从图像中可得到的信息: ①某时刻的位置、振幅、周期 ②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程: 1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。 ①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。 ②阻尼振动的振幅越来越小。 2)简谐运动过程中能量的转化: 系统的动能和势能相互转化,转化过程中机械能的总量保持不变。

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案) 一、机械振动选择题 1.甲、乙两弹簧振子,振动图象如图所示,则可知() A.甲的速度为零时,乙的速度最大 B.甲的加速度最小时,乙的速度最小 C.任一时刻两个振子受到的回复力都不相同 D.两个振子的振动频率之比f甲:f乙=1:2 E.两个振子的振幅之比为A甲:A乙=2:1 2.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中() A.甲的最大速度大于乙的最大速度 B.甲的最大速度小于乙的最大速度 C.甲的振幅大于乙的振幅 D.甲的振幅小于乙的振幅 3.甲、乙两单摆的振动图像如图所示,由图像可知 A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3 C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等 4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为() A.T=2GM l B.T=2 l GM

C .T = 2πGM r l D .T =2πl r GM 5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212 ()x x g L π- B . 212 ()2x x g L π- C . 212 ()4x x g L π- D . 212 ()8x x g L π- 6.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( ) A .丙球最先到达D 点,乙球最后到达D 点 B .甲球最先到达D 点,乙球最后到达D 点 C .甲球最先到达 D 点,丙球最后到达D 点 D .甲球最先到达D 点,无法判断哪个球最后到达D 点 7.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。以钢球的平衡位置为坐标原点,竖直向上为正方向建立x 轴,当钢球在振动过程中某一次经过平衡位置时开始计时,钢球运动的位移—时间图像如图2所示。已知钢球振动过程中弹簧始终处于拉伸状态,则( ) A .1t 时刻钢球处于超重状态

高中物理机械振动知识点与题型总结.doc

(一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐 振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)阻尼振动、受迫振动、共振。 简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量总要有所耗散,因此振动系统的机械能总要减小,其振幅也要逐渐减小,直到停下来。振幅逐渐减小的振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变的振动叫无阻尼振动。 振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力的周期和频率,而与振动物体的固有周期或频率无关。 物体做受迫振动的振幅与策动力的周期(频率)和物体的固有周期(频率)有关,二者相差越小,物体受迫振动的振幅越大,当策动力的周期或频率等于物体固有周期或频率时,受迫振动的振幅最大,叫共振。 【典型例题】 [例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是() A. 振子在M、N两点受回复力相同 B. 振子在M、N两点对平衡位置的位移相同 C. 振子在M、N两点加速度大小相等 D. 从M点到N点,振子先做匀加速运动,后做匀减速运动 解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的)。建立起这样的物理模型,这时问题就明朗化了。

机械振动基础习题

机械振动分析与应用习题 第一部分问答题 1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。 2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。 3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。 4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么? 5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。 6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。 第二部分计算题 1.求图2-1所示两系统的等效刚度。 图2-1 图2-2 图2-3 2.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。3.如图2-3所示系统,求轴1的等效转动惯量。 图2-4 图2-5 图2-6 图2-7 4.一个飞轮其内侧支承在刀刃上摆动,如图2-4所示。现测得振荡周期为1.2s,飞轮质量为35kg,求飞轮绕中心的转动惯量。(注:飞轮外径100mm,R=150mm。) 5.质量为0.5kg的重物悬挂在细弹簧上,伸长为8mm,求系统的固有频率。 6.质量为m1的重物悬挂在刚度为k的弹簧上并处于静平衡位置;另一质量为m2的重物从高度为h处自由降落到m l上而无弹跳,如图2-5所示,求其后的运动。 7.一质量为m、转动惯量为J的圆柱体作自由纯滚动,但圆心有一弹簧k约束,如图2-6所示,求振动的固有频率。 8.一薄长条板被弯成半圆形,如图2-7所示,让它在平面上摇摆,求它的摇摆周期。

高一物理竞赛第4讲 机械振动.教师版

第四讲 机械振动 1 .简谐振动的受力分析 2 .等效法研究简谐振动 3 .三角函数法描述振动 第一部分:振动的受力特点以及参数 知识点睛 一、模型引入 1.什么是振动? 振动是自然界和工程技术领域常见的一种运动,广泛存在于机械运动、电磁运动、热运动、原子运动等运动形式之中.从狭义上说,通常把具有时间周期性的运动称为振动.如钟摆、发声体、开动的机器、行驶中的交通工具都有机械振动. 如图:振动演示实验:当振子往复振动时,匀速的拉动纸带,就可以研究振子离开中心位置的位移与时间的关系。 广义地说,任何一个物理量在某一数值附近作周期性的变化,都称为振动.变化的物理量称为振动量,它可以是力学量,电学量或其它物理量.例如:交流电压、电流的变化、无线电波电磁场的变化等等. 2.什么是机械振动? 机械振动是最直观的振动,它是物体在一定位置附近的来回往复的运动,口语称为“来回晃悠”。如活塞的运动,钟摆的摆动等都是机械振动. 产生机械振动的条件是:物体受到回复力的作用; 回复力: 使振动物体返回平衡位置的力叫回复力.回复力时刻指向平衡位置.回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等. 3.简谐运动 物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动.表达式为:F kx =-.做简谐运动物体的位移是相对于平衡位置的,位移的方向总是由平衡位置指向物体,而回复力总由物体是指向平衡位置,所以回复力总跟位移方向相反,式中的负号表示了这种相反关系. 知识模块 本讲介绍

浙江大学《机械振动基础》期末试卷

诚信考试沉着应考杜绝违纪 浙江大学2013–2014学年夏学期 《机械振动基础》课程期末考试试卷A卷 开课学院:化工系,考试形式:闭卷,允许带 1张A4纸的笔记入场 考试时间: 2014 年 7 月 2 日, 下午14:00~16:00 ,所需时间: 120 分钟 考生姓名: __学号:专业:过程装备与控制工程 . 注意事项: (1)、考试形式为闭卷,允许带1页A4纸大小的参考资料、计算器和尺子。不允许带 PPT课件打印稿、作业本、笔记本草稿纸等纸质材料,不允许带计算机、IPad等智能电子设备。 (2)、第一、二大题答题内容写在试卷上,第三大题答题内容写在试卷所附答题纸上。试题(三个大题,共100分): 一、判断题(每题2分,共18分) 1.1 杆的纵向振动、弦的横向振动和轴的扭转振动虽然在运动表现形式上并不相同, 但它们的运动微分方程是同类的,都属于一维波动方程。() 1.2 稳态响应的振幅及相位只取决于系统本身的物理性质(m, k, c)和激振力的频率 及力幅,而与系统进入运动的方式(即初始条件)无关. () 1.3 在受到激励开始振动的初始阶段,振动系统的响应是暂态响应与稳态响应的叠 加。即使在零初始条件下,也有自由振动与受迫振动相伴发生。() 1.4 为减轻钢丝绳突然被卡住时引起的动张力,应适当减小升降系统的刚度。() 1.5 汽轮机等高速旋转机械在开、停机过程中经过某一转速附近时,支撑系统会发生 剧烈振动,此为转子系统的临界转速,即转子横向振动的固有频率。() 1.6 谐波分析法是将非周期激励通过傅立叶变换表示成了一系列频率为基频整数倍的 简谐激励的叠加,从而完成系统响应分析。 () 1.7阻尼自由振动的周期小于无阻尼自由振动的周期。 () 1.8叠加原理可用于线性和非线性振动系统。 () 1.9若将激振力 F(t) 看作一系列单元脉冲力的叠加,则线性振动系统对任意激振力的 响应等于激振力作用时间内各个单元脉冲响应的总和。 ()

高中物理竞赛机械振动和机械波知识点讲解

高中物理竞赛机械振动和机械波知识点讲解 知识点击 1.简谐运动的描述和基本模型 ⑴简谐振动的描述:当一质点,或一物体的质心偏离其平衡位置x,且其所受合力 kk2???xx?a???0)kx??(k?F满足,故得,F mm则该物体将在其平衡位置附近作简谐振动。 ⑵简谐运动的能量:一个弹簧振子的能量由振子的动能和弹簧的弹性势能构成, 111?222??kx??mkAE即222?F??kx,那么这个物体⑶简谐运动的周期:如果能证明一个物体受的合外力?m2?2??T ,式中m一定做简谐运动,而且振动的周期是振动物体的质量。?k⑷弹簧振子:恒力对弹簧振子的作用:只要m和k都相同,则弹簧振子的振动周期T就是相同的,这就是说,一个振动方向上的恒力一般不会改变振动的周期。 多振子系统:如果在一个振动系统中有不止一个振子,那么我们一般要找振动系统的等效质量。悬点不固定的弹簧振子:如果弹簧振子是有加速度的,那么在研究振子的运动时应加上惯性力. 5⑸单摆及等效摆:单摆的运动在摆角小于l?l和 0时可近似地看做是一个简谐运动,振 g2T?的含义及值会发生变化。,在一些“异型单摆”中,动的周期为g(6)同方向、同频率简谐振动的合成:若有两个同方向的简谐振动,它们的圆频率??,则它们的运动学方程分别为和和都是ω,振幅分别为AA,初相分别为2121??)cos(A?t?x111??)cos(A?t?x222x仍应在同一直线因振动是同方向的,所以这两个简谐振动在任一时刻的合位移 x?x?x上,而且等于这两个分振动位移的代数和,即21??)tAcos(?x?由旋转矢量法,可求得合振动的运动学方程为这表明,合振动仍是简谐振动,它的圆频率与分振动的圆频率相同,而其合振幅为 22??)Acos(?AA?A?2A?121122??sinsinA?A?2211?tan合振动的初相满足 ??cosA?Acos2112 2.机械波:(1)机械波的描述:如果有一列波沿x 方向传播,振源的振动方程为y=Acosωt,?,那么在离振源x波的传播速度为远处一个质点的振动方程便是x???(t??Acos)y,在此方程中有两个自变量:t和x,当t不变时,这个方程描写?????某一时刻波上各点相对平衡位置的位移;当x不变时,这个方程就是波中某一点的振动方程. (2)简谐波的波动方程:简谐振动在均匀、无吸收的弹性介质中传播所形成的波ox xyo?轴正方向传播,振沿平面内,以波速叫做平面简谐波。如果一列简谐波在u??)cos(?ty?A,由于波是振动状态的传播,源(设其位于坐标原点)的振动方程为x?t0)?x(x的时间。这表明若坐标故知

相关文档
最新文档