圆盘剪的设计与参数选择知识分享

圆盘剪的设计与参数选择知识分享
圆盘剪的设计与参数选择知识分享

圆盘剪的设计与参数

选择

圆盘剪的设计与参数选择

【摘要】本文结合实际工程,介绍了推拉式酸洗线上圆盘剪的结构特点,刀具侧向间隙及刀盘重合度调整的方法等。并给出了剪切力、驱动功率的计算公式和实际例子。本圆盘剪已在华美推拉式酸洗线上使用。

【关键词】圆盘剪设计参数

目录:

1.圆盘剪概述

2.圆盘剪主要技术性能

3.圆盘剪结构

3.1机架

3.2调宽装置

3.3刀刃侧向间隙调整装置

3.4刀盘重合度调整装置

4.有关参数的选择和计算

4.1刀盘直径和厚度的选择

4.2刀盘重合度和侧向间隙的选择

4.3剪切力的计算

4.4剪切力矩的计算

4.5剪切电机功率校核

5.结束语

参考文献

1.圆盘剪概述

带钢在轧制过程中,有时边部会产生细小的裂缝等缺陷,如不及时切掉,极可能在后续加工过程中产生断带事故。所以在酸洗机组中均设置圆盘剪,以便去掉边缘损伤,并使成品带钢达到要求的宽度。另外圆盘剪还广泛用在冶金带钢生产线的其它机组中,如横切机组、纵剪机组、重卷机组、拉矫机组、镀锡机组及焊接机组等。

圆盘剪按其用途和构造可分为两大类:带两对刀盘和多对刀盘.两对刀盘的圆盘剪只用来剪切带材的边部,故称切边圆盘剪或切边剪;多对刀盘的圆盘剪在剪切带材边部的同时并将带材纵切成多条较窄的带材,故称分条圆盘剪或分条剪。

圆盘剪按其传动方式又分为拉剪和动力剪;所谓拉剪,即刀盘没有传动装置,直接由机后的张力辊及卷取机等设备将带钢拉过圆盘剪进行剪切.

本文介绍的圆盘剪是用在推拉式酸洗线上。它的特点是传动系统中装有超越离合器,当机组速度低于穿带速度时,圆盘剪按动力剪状态工作;当机组速度超过穿带速度时,离合器将脱开传动系统,圆盘剪按拉剪状态工作。

为了使切边时不产生毛刺,并保持最小的宽度公差。必须用防跑偏装置加以控制,以使带钢对中和无冲击地进入圆盘剪。因此,在圆盘剪的入口侧布置了一套夹送辊纠偏装置。

2.圆盘剪主要技术性能

带钢厚度: 1.8~4.0mm

带钢宽度:700~1350mm

带钢强度极限:σb≤610Mpa

机组速度:

酸洗出口(圆盘剪):最大 120m/min

穿带速度:最大 60m/min

剪刃直径:φ350mm

剪刃厚度:30mm

最大工作间距:1590mm

最小工作间距:630mm

切边精度:0~+1mm

3.圆盘剪结构

圆盘剪由左右机架、上下刀轴、机架调宽机构、传动装置、刀盘重合度调整装置、刀刃侧向间隙调整装置、固定底座等组成。详见图(1)、(2)。

图1 圆盘剪

1.底座

2.左机架

3.右机架

4.调宽装置

5.刀刃侧向间隙调整装置

图2 圆盘剪

1.机架

2.废边导向溜槽

3.刀盘

4.刀刃侧向间隙调整装置

5.刀盘传动装置

3.1 机架

图3 圆盘剪(左)机架装配

1.刀盘 2,机架 3.芯套 4.下刀轴 5.叠簧 6.超越离合器 7.刀盘驱动齿轮箱 8.上刀轴

9.刀刃侧向间隙调整装置 10.刀盘重合度调整装置 11.偏心套

圆盘剪两个机架左右对称布置,上下刀轴、刀盘、刀盘重合度调整装置、刀刃侧向间隙调整装置均装在机架上。机架为箱形焊接结构,刀轴为悬臂式。

上下刀轴为圆盘剪的主要部件,详见图(3)。其上安装有刀盘、压辊、圆锥滚子轴承、圆柱滚子轴承、芯套(下刀轴)、偏心套(上刀轴)、叠簧、液压螺母等。

由力的分析可以知道,在剪切时,上下刀盘有向上下方向倾翻的趋势,这将使刀盘重合度减小及刀刃侧向间隙增大。直接的后果就是剪切质量下降,毛边产生,严重的可能导致剪不断,造成生产事故。为避免上述现象发生,我们在上下刀轴上安装单列圆锥滚子轴承(成对安装)不允许刀轴窜动。

3.2 调宽装置

为剪切不同宽度的带钢,圆盘剪的机架安装有调宽装置,用以调整两对刀盘的开口度。调宽要求准确,由一个安装有编码器的齿轮电机驱动两根左右旋向的螺杆,带动固定在左右机架下方的螺母,实现左右机架的同时开合。

3.3 刀刃侧向间隙调整装置

图4 刀刃侧向间隙调整装置

1.侧向间隙调整齿轮电机

2.蜗杆

3.蜗轮

4.芯套

5.下刀轴

刀刃侧向间隙调整时,上刀盘不动,由下刀盘轴向移动来实现。通过齿轮电机驱动蜗杆,带动蜗轮。蜗轮与下刀盘上的芯套用螺纹联接。通过结构上的设计,保证蜗轮在芯套轴向上不能移动。蜗轮的旋转运动经芯套转化为刀盘的轴向移动。

安装在下刀盘芯套尾部的有预紧力的碟簧,使装在下刀轴芯套上的蜗轮始终与装在机架上的挡块压紧。将刀刃侧向间隙调小时,如图(3)所示,齿轮电机驱动蜗杆,带动蜗轮,使芯套带动下刀轴向左移动。反之则可调大间隙。齿轮电机尾部安装有旋转编码器,可以精确控制刀刃侧向间隙。

3.4 刀盘重合度调整装置

图5 刀盘重合度调整装置

1.刀盘重合度调整齿轮电机

2.蜗杆

3. 蜗轮

4.偏心套

5. 上刀轴

刀盘重合度调整时,下刀轴固定不动,用上刀轴绕偏心套旋转来控制。通过齿轮电机驱动蜗杆,带动蜗轮。蜗轮与上刀轴上的偏心套用键联接。由于上刀轴和偏心套有25mm的偏心量,偏心套的旋转,将使上刀盘的垂直位置发生变化,从而调整上下刀盘的重合度。齿轮电机安装有旋转编码器,可以对重合度精确调整。

4.有关参数的选择和计算

圆盘剪的基本参数是剪切力、重合量、侧向间隙、刀盘厚度、刀盘直径等。

4.1 刀盘直径和厚度的选择

刀盘形状是薄圆柱体,主要几何尺寸是刀盘直径D和厚度b。刀盘直径D主要取决于板带的厚度h,刀盘重合量S和最大咬入角α1。参考类似的机组数据,我们选择刀盘直径为350mm。

选择刀盘的厚度b应使刀盘具有足够的刚度,一般选取b=(0.06~0.10)D,本刀盘选取b=30mm。刀盘的材质应具备强度大、韧性好和硬度高的性能。剪刃性能与制造工艺密切相关,制造性能好的剪刃,必须选用优质材料,精心锻造,合理热处理。材料选用Cr12MoV,表面淬火硬度HRC≥58,表面粗糙度0.8~0.4μm,端面跳动6μm。

4.2 刀盘重合度和侧向间隙的选择

刀盘重合量s和侧向间隙?与被剪切的带钢厚度有关,如图6所示。

图6 圆盘剪刀盘重合量s和侧向间隙?与被剪钢板厚度h的关系曲线

活塞设计说明书

汽油机活塞设计说明书 : :

一、活塞设计要求 活塞是曲柄连杆机构的重要零件,主要功用是承受燃烧气体压力和惯性力,并将燃烧气体压力通过活塞销传给连杆,推动曲轴旋转对外作功。此外,活塞又是燃烧室的组成部分。活塞是内燃机中工作条件最严酷的零件。作用于活塞上的气体压力和惯性力都是周期变化的,燃烧瞬时作用于活塞上的气体压力很高,如增压内燃机的最高燃烧压力可达14—16MPa。而且活塞还要承受在连杆倾斜位置时侧压力的周期性冲击作用,在气体压力、往复惯性力和侧压力的共同作用下,可能引起活塞变形,活塞销座开裂,活塞侧部磨损等。由此可见,活塞应有足够的强度和刚度,而且质量要轻。 本次课程设计的目的是设计四冲程汽油机的活塞,根据某些现有发动机的参数,确定活塞直径D=73mm。 二、活塞材料 活塞材料常用灰铸铁和铝合金,然而由于铸铁材料密度大,产生的往复惯性力也很大,所以目前只用于大中型、低速柴油机上,故采用铝合金活塞。 为了使活塞拥有较好的热导率、高温强度、可锻性以及较小的热膨胀系数,所以才用铝硅铜合金。 三、活塞的结构设计 活塞按部位不同可以分为顶部、头部和裙部。

1.活塞顶部设计 活塞顶部形状对于四冲程内燃机取决于燃烧室形状,一般有平顶、凸顶和凹顶,此处选用平顶活塞。 活塞顶的厚度δ是根据强度、刚度及散热条件来确定,在满足强度的条件下δ值尽量取小。对于铝合金材料的活塞δ值,汽油机为(0.06~0.10)D,柴油机为(0.1~0.2)D。 则:δ=(0.06~0.10)*73=(4.38~7.3)mm 取δ=5.00mm 2.活塞头部设计 2.1设计要求 活塞头主要功用是承受气压力,并通过销座把它传给连杆,同时

齿轮传动设计参数的选择

齿轮传动设计参数的选择: 1)压力角α的选择 2)小齿轮齿数Z1的选择 3)齿宽系数φd的选择 齿轮传动的许用应力 精度选择 压力角α的选择 由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。我国对一般用途的齿轮传动规定的压力角为α=20o。为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。但增大压力角并不一定都对传动有利。对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16o~18o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。 小齿轮齿数Z 1 的选择 若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多 一些为好,小一些为好,小齿轮的齿数可取为z 1 =20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿 数,一般可取z 1 =17~20。 为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z 1≥17。Z 2 =u·z 1 。 齿宽系数φ d 的选择 由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。圆柱齿轮齿宽系数的荐用值列于下表。对于标准圆柱齿轮减速器,齿宽系数取为

【过程控制】PID参数对系统动静态特性的影响(可编辑)

【过程控制】PID参数对系统动静态特性的影响(可编 辑) 主要内容 PID参数对系统动静态特性的影响控制器参数整定: 现场试凑法临界比例度法衰减曲线法采样周期选择 PID参数对系统动静态特性的影响比例度过小,即比例放大系数过大时,比例控制作用很强,系统有可能产生振荡; 积分时间过小时,积分控制作用很强,易引起振荡; 微分时间过大时,微分控制作用过强,易产生振荡。 PID参数对系统动静态特性的影响 比例(P)控制 PID参数对系统动静态特性的影响 比例积分(PI)控制 PID参数对系统动静态特性的影响 比例微分(PD)控制 PID参数对系统动静态特性的影响 比例积分微分(PID)控制控制器参数整定指决定调节器的比例度δ、积分时 间TI和微分时间TD和采样周期Ts的具体数值。整定的实质是通过改变调节器的参数,使其特性和过程特性相匹配,以改善系统的动态和静态指标,取得最佳的控制效果。整定方法整定调节器参数的方法很多,归纳起来可分为两大类,即理论计算整定法和工程整定法: 理论计算整定法有对数频率特性法、根轨迹法等; 工程整定法有经验法、衰减曲线法、监界比例度法和响应曲线法等。工程整定法特点不需要事先知道过程的数学模型,直接在过程控制系统中进行现场整定方法简单; 计算简便; 易于掌握。现场凑试法按照先比例(P)、再积分(I)、最后微分(D)的顺序。置调节器积分时间TI=?,微分时间TD=0,在比例度δ按经验设置的初值条件下,将系统投入运行,整定比例度δ。求得满意的4:1过渡过程曲线。引入积分作用(此时应将上述比例度δ加大1.2倍)。将TI由大到小进行整定。若需引入微分作用时,则将TD按经验值或按TD=

优化设计的概念和原理

优化设计的概念和原理 优化设计的概念和原则 概念 1前言 对于任何设计者来说,其目的都是为了制定最优的设计方案,使所设计的产品或工程设施具有最佳的性能和最低的材料消耗和制造成本,以获得最佳的经济效益和社会效益。因此,在实际设计中,科技人员往往会先提出几种不同的方案,并通过比较分析来选择最佳方案。然而,在现实中,由于资金限制,选定的候选方案的数量往往非常有限。因此,迫切需要一种科学有效的数学方法,于是“优化设计”理论应运而生。 优化设计是在计算机广泛应用的基础上发展起来的新技术。这是一种现代设计方法,它根据优化原理和方法将各种因素结合起来,在计算机上以人机合作或“自动探索”的方式进行半自动或自动设计,以选择现有工程条件下的最佳设计方案。其设计原则是优化设计:设计手段是电子计算机和计算程序;设计方法是采用最优化数学方法。本文将简要介绍优化设计中常用的概念,如设计变量、目标函数、约束条件等。 2设计变量 设计变量是独立参数,必须在设计过程的最终选择中确定它们是选择过程中的变量,但是一旦确定了变量,设计对象就完全确定了。优化设计是研究如何合理优化这些设计变量值的现代设计方法。

机械设计中常用的独立参数包括结构的整体构型尺寸、部件的几何尺寸和材料的机械物理性能等。在这些参数中,根据设计要求可以预先给出的不是设计变量,而是设计常数。最简单的设计变量是元件尺寸,例如杆元件的长度、横截面积、弯曲元件的惯性矩、板元件的厚度等。 3目标函数 目标函数是设计中要达到的目标在优化设计中,所追求的设计目标(最优指标)可以用设计变量的函数来表示。这个过程被称为建立目标函数。一般目标函数表示为 f(x)=f(xl,xZ,?,x) 此功能代表设计的最重要特征,如设计组件的性能、质量或体积以及成本。最常见的情况是使用质量作为一个函数,因为质量的大小是最容易量化的价值度量。尽管费用具有更大的实际重要性,但通常需要有足够的数据来构成费用的目标函数。目标函数是设计变量的标量函数。优化设计的过程就是优化设计变量,使目标函数达到最优值或找到目标函数的最小值(或最大值)的过程。在实际工程设计过程中,经常会遇到多目标函数的某些目标之间存在矛盾,这就要求设计者正确处理各目标函数之间的关系目前,对这类多目标函数优化问题的研究还没有单目标函数的研究成熟。有时一个目标函数可以用来表示几个期望目标的加权和,多目标问题可以转化为单目标问题来求解。4约束 设计变量是优化设计中的基本参数。目标函数取决于设计变量。在

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

活塞结构设计与加工工艺

课程设计任务书 一、设计题目:活塞结构设计与加工工艺 二、设计参数:五十铃6120、排量2.0L、D S ?为120?135、转速1300r?min 顶岸高度F、活塞销直径BO、裙长SL、销座间距A、总长GL、 最大爆发压力、活塞销校核 三、设计要求: 1用计算机绘制活塞总装配图一张(A1图)、零件图(加工工件)一张(A2图)2设计说明书一份(包括零件图分析、定位方案确定、定位误差计算等内容;最好能写出整个工艺过程) 四、进度安排: 第一周:查找课程设计所需要的书籍,资料。 第二周:对活塞进行尺寸设计计算。 第三周:强度校核 第四周:绘图并书写说明书。 第五周:应用制图软件绘制零件图及装配图并完善课程设计说明书。 五、总评成绩及评语: 指导教师签名日期年月

目录 前言 (1) 1活塞的概述 (2) 1.1活塞的功用及工作条件 (2) 1.2活塞的材料 (2) 1.3活塞结构 (2) 1.3.1活塞顶部 (2) 1.3.2活塞头部 (3) 1.3.3活塞裙部 (3) 2活塞的结构参数 (4) 3活塞最大爆发压力的计算 (5) 3.1热力过程计算 (5) 3.2柴油机的指示参数 (8) 3.3柴油机有效效率 (10) 4活塞销的受力分析 (12) 5活塞的加工工艺 (14) 参考文献: (15)

课程设计 前言 内燃机的不断发展,是建立在主要零部件性能和寿命不断改进和提高的基础上的,尤其是随着发动机强化程度的提高、功率的增大和转速的增加,零部件尤其是直喷式柴油机活塞的工作环境变得更加恶劣了。活塞的结构直接影响活塞的温度分布和热应力分布,因此就有必要对活塞的结构和性能作出预测和评价。 活塞是内燃机上最关键的运动件,它在高温高压下承受反复交变载荷,被称为内燃机的心脏,特别是坦克、舰艇和军用车船用内燃机活塞则要求更高,它已成为制约内燃机发展的一个突出问题。 本次课程设计的题目是发动机铝活塞的结构及工艺设计,选择利用合适的机床加工发动机活塞,通过这次课程设计,要求熟练掌握并能在实际问题中进行创新和优化其加工工艺过程。

活塞结构设计与工艺设计毕业设计说明书

目录 前言 (1) 1活塞的概述 (2) 1.1活塞的功用及工作条件 (2) 1.2活塞的材料 (2) 1.3活塞结构 (2) 1.3.1活塞顶部 (2) 1.3.2活塞头部 (3) 1.3.3活塞裙部 (3) 2活塞的结构参数 (4) 3活塞最大爆发压力的计算 (5) 3.1热力过程计算 (5) 3.2柴油机的指示参数 (8) 3.3柴油机有效效率 (10) 4活塞销的受力分析 (12) 5活塞的加工工艺 (14) 参考文献: (15)

前言 内燃机的不断发展,是建立在主要零部件性能和寿命不断改进和提高的基础上的,尤其是随着发动机强化程度的提高、功率的增大和转速的增加,零部件尤其是直喷式柴油机活塞的工作环境变得更加恶劣了。活塞的结构直接影响活塞的温度分布和热应力分布,因此就有必要对活塞的结构和性能作出预测和评价。 活塞是内燃机上最关键的运动件,它在高温高压下承受反复交变载荷,被称为内燃机的心脏,特别是坦克、舰艇和军用车船用内燃机活塞则要求更高,它已成为制约内燃机发展的一个突出问题。 本次课程设计的题目是发动机铝活塞的结构及工艺设计,选择利用合适的机床加工发动机活塞,通过这次课程设计,要求熟练掌握并能在实际问题中进行创新和优化其加工工艺过程。

1活塞的概述 1.1活塞的功用及工作条件 全套图纸及更多设计请联系QQ:360702501活塞是曲柄连杆机构的重要零件煤气主要功用是承受燃烧气体压力和惯性力,并将燃烧气体压力通过活塞销传给连杆,推动曲轴旋转对外作功。此外,活塞又是燃烧室的组成部分。 活塞是内燃机中工作条件最严酷的零件。作用于活塞上的气体压力和惯性力都是周期变化的,燃烧瞬时作用于活塞上的气体压力很高,如增压内燃机的最高燃烧压力可达14—16MPa。而且活塞还要承受在连杆倾斜位置时侧压力的周期性冲击作用,在气体压力、往复惯性力和侧压力的共同作用下,可能引起活塞变形,活塞销座开裂,活塞侧部磨损等。由此可见,活塞应有足够的强度和刚度,而且质量要轻。 活塞顶部直接与高温燃气接触,活塞顶部的温度很高,各部的温差很大,柴油机活塞顶部常布置有凹坑状燃烧室,使顶部实际受热面积加大,热负荷更加严重。高温必然会引起活塞材料的强度下降,活塞的热膨胀量增加,破坏活塞与气缸壁的正常间隙。另外,由于冷热不均匀所产生的热应力容易使活塞顶部出现疲劳热裂现象。所以要求活塞应有足够的耐热性和良好的导热性,小的线膨胀系数。同时在结构上采取适当的措施,防止过大的热变形。 活塞运动速度和工作温度高,润滑条件差,因此摩擦损失大,磨损严重。要求应具良好的减摩性或采取特殊的表面处理。 1.2活塞的材料 现代内燃机广泛使用铝合金活塞。铝合金导热性好(比铸铁大3-4倍),密度小(约为铸铁的1/3)。因此铝活塞惯性力小,工作温度低,温度分布均匀,对改善工作条件减少热应力延缓机油变质有利。目前铝活塞广泛采用含硅12%左右的共晶铝硅合金制造,外加铜和镍,以提高热稳定性和高温机械性能。铝活塞毛胚可采用金属模铸造,锻造和液压模锻等方法生产。 为了提高铝活塞的强度和硬度,并稳定形状尺寸,必须对活塞进行淬火和时效热处理。 1.3活塞结构 活塞按部位不同,分为顶部,头部和裙部三部分。 1.3.1活塞顶部 活塞顶部是燃烧室的组成部分,其形状与燃烧室形状和压缩比有关,一般有平顶,凸

设计参数的合理选择

1、抗震等级的确定:钢筋混凝土房屋应根烈度、结构类型和房屋高度的不同分别按〈抗规〉6.1.2条或〈高规〉4.8条确定本工程的抗震等级。但需注意以下几点: (1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。 (2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。 (3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按〈抗规〉6. 1.2条或〈高规〉4.8条查的抗震等级提高一级采用,已为特一级时可不调整。 (4)短肢剪力墙结构的抗震等级也应按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用……但注意对多层短肢剪力墙结构可不提高。 (5)注意:钢结构、砌体结没有抗震等级。计算时可不考虑抗震构造措施。 2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。但要注意以下几点: (1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。 (2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。 (3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%.在归档文件>结构计算书>振型参与质量中查看,如果不满足,程序自动给出提示。 3、主振型的判断;

(1)对于刚度均匀的结构,在考虑扭转耦联计算(即在全局信息设置中振型组合方法为CQC)时,一般来说前两个或前几个振型为其主振型。 (2)对于刚度不均匀的复杂结构,上述规律不一定存在,此时应注意查看结构计算书“周期、振型、地震力”中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。 4、地震力、风力的作用方向:结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。但设计者注意以下几种情况: (1)设计应注意查看结构计算书输出结果中给出了地震作用的最大方向是否与设计假定一致,对于大于150度时,应将此方向输入重新计算(全局信息附加计算地震方向)。 (2)对于有有斜交抗侧力构件的结构,当大等于150度时,应分别计算各抗力构件方向的水平地震力。此处所指交角是指与设计输入时,所选择坐标系间的夹角。 (3)对于主体结构中存在有斜向放置的梁、柱时,也要分别计算各抗力构件方向的水平地震力。 5、周期折减系数:高规3.3.17条规定:当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折减系数,可按下列规定取值。 (1)框架结构 0.6—0.7;框架—剪力墙结构0.7—0.8;剪力墙结构 0.9—1.0;短肢剪力墙结构 0.8—0.9. (2)请大家注意:周期折减是强制性条文,但减多少则不是强制性条文,这就要求在折减时慎重考虑,既不能太多,也不能太少,因为折减不仅影响结构内力,同时还影响结构的位移。 6、活荷载质量调整系数:该参数即为荷载组合系数。可按《抗规》5.1.3条取值。注意该调整系数只改变楼层质量,不改变荷载总值,即对竖向荷载作用下的内力计算无影响,

压力传感器静态特性与动态特性的对比有什么不同

传感器有很多特性,所谓特性也就是传感器所独有的性质,压力传感器作为传感器中最普遍的一种传感器也有很多特性,压力传感器的特性一般可分为静态特性和动态特性。 压力传感器的静态特性是指对静态的输入信号,压力传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即压力传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征压力传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 所谓动态特性,是指压力传感器在输入变化时,它的输出的特性。在实际工作中,压力传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为压力传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以压力传感器的动态特性也常用阶跃响应和频率响应来表示。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/3911651697.html,/

IGBT的动态特性与静态特性的研究

IGBT的动态特性与静态特性的研究 IGBT动态参数 IGBT模块动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合IGBT模块静态参数可全面评估IGBT芯片的性能。RGint:模块内部栅极电阻: 为了实现模块内部芯片均流,模块内部集成有栅极电阻。该电阻值应该被当成总的栅极电阻的一部分来计算IGBT驱动器的峰值电流能力。 RGext:外部栅极电阻: 外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能。 上图中开关测试条件中的栅极电阻为Rgext的最小推荐值。 用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff。

已知栅极电阻和驱动电压条件下,IGBT驱动理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和。 实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到。 如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响。 最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏。Cge:外部栅极电容: 高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗。 IGBT寄生电容参数: IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示。输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略。

主要设计参数资料

主要设计参数 鼓式制动器结构形式及选择 除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,既是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。 鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱表面与制动蹄摩擦片的外表面作为一对摩

擦表面在制动鼓上产生摩擦力矩,故称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已经很少使用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式制动器。 1.1鼓式制动器的形式结构 鼓式制动器可按其制动蹄的受力情况分类(见图1.1),它们的制动效能,制动鼓的受力平衡状况以及对车轮旋转方向对制动效能的影响均不同。 图1.1 鼓式制动器简图 (a)领从蹄式(用凸轮张开);(b)领从蹄式(用制动轮缸张开);(c)双领蹄式(非双向,平衡式); (d)双向双领蹄式;(e)单向增力式;(f)双向増力式 制动蹄按其张开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。

直流锅炉的静态和动态特性以及运行参数的调节特点

1.直流锅炉的静态和动态特性以及运行参数的调节特点 1.1.概述 锅炉正常运行是指单元机组启动后的锅炉运行过程。锅炉是单元机组中的一个重要环节,锅炉与汽轮发电机之间存在着相互联系、相互影响、相互依赖的运行关系。锅炉正常运行内容主要是监视和调整各种状态参数,满足汽轮发电机对蒸汽流量、蒸汽参数的要求,并保持锅炉长期连续安全经济运行。 锅炉各种状态参数之间的运行关系、变化规律称为锅炉运行特性,它有静态特性和动态特性两种。锅炉在各个工况的稳定状态下,各种状态参数都有确定的数值,称为静态特性。例如,不同的燃料量就有相应的蒸汽流量、相应的受热面吸热量、相应的汽温与汽压等,这些都是锅炉的静态特性。 锅炉从一个工况变到另一个工况的过程中,各种状态参数随着时间而变化,最终到达一个新的稳定状态。各种状态参数在变工况中随着时间变化的方向、历程和速度等称为锅炉的动态特性。 锅炉在正常运行中,各种状态参数的变化是绝对的,稳定不变是相对的。因为,锅炉经常受到各种内外干扰,往往在一个动态过程尚未结束时,又来了另一个动态过程。锅炉的静态特性与动态特性表明各种状态参数随时偏离设计值。锅炉正常运行的任务就是要使各种状态参数不论在静态或动态过程都应在允许的安全、经济范围内波动,这必须要通过调节手段才能实现。锅炉正常运行调节可分为自动调节和人工调节两种,高参数大型锅炉广泛采用高度的自动调节,以确保静态与动态过程各种状态参数的偏离在允许范围内。 锅炉正常运行还要注意炉内燃烧稳定,防止受热面结渣、积灰,高低温腐蚀、磨损,防止各级受热面管金属超温。正常运行还要监视给水、锅水与蒸汽品质,并进行正确的锅水处理。 1.2.过热汽温静态特性 直流锅炉各级受热面串联连接,水的加热与汽化、蒸汽的过热三个阶段的分界点在受热面中的位置不固定而随工况变化。由此而形成了直流锅炉不同于汽包锅炉的汽温静态特性。对有再热器的直流锅炉,建立热量平衡式稳定工况下,以给水为基准的过热蒸汽总焓升可按下式计算 式中——锅炉输入热量,kJ/kg; ——锅炉效率%; 、——给水焓、过热器出口焓,kJ/kg; ——再热器相对吸热量,; ——再热器吸热量,kJ/kg。 G——给水流量,等于蒸汽流量,kg/s;

转炉设计参数选择

设计参数选择 1 氧气转炉物料平衡与热平衡计算 氧气 半钢、废钢 矿石或铁皮 (1)收入项石灰 萤石、白云石 炉衬侵蚀 其它 炉气 喷溅 炉渣 (2)支出项铁珠 钢水 其它 1.1 计算原始条件假设:

(5)冷却剂 用废钢作冷却剂,其他成分与冶炼钢种成分的中限皆同。

(7)根据国内同类转炉的实验数据选取 ① 渣中铁珠量为渣量的8%; ② 金属中碳的氧化,其中90%的碳氧化成CO ,10%碳氧化成CO 2; ③ 喷溅铁损为铁水量的1%; ④ 炉气和烟尘量,取炉气平均温度1450℃。炉气中自由氧含量为0.5%。 烟尘量为铁水量的1.6%,其中%77)Fe (=O ω,)O Fe (32ω=20%; ⑤ 炉衬侵蚀量为铁水量的0.5%; ⑥ 氧气成分,)O (2?=99.5%、)N (2?=0.5%。 2 转炉炉型主要参数 参数确定方法有两种方法:① 直接推荐法;② 推荐经验公式。由北京钢铁设计研究总院推荐的一套经验公式。主要包括: (1)炉容比(V/T );(2)高宽比(H/D );(3)熔池深度直径比(h/D );(4)炉口直径比(d 0/D );(5)帽锥角(θ);(6)出钢口参数;(7)转炉的公称吨位。 3 炉型设计计算 新转炉的炉型和各部位尺寸可根据经验公式计算,结合现有转炉生产实际并通过模型试验来确定。炉型尺寸的选择依据:生产规模、原材料条件、工艺操作方法。

① 确定所设计炉子的公称容量 ② 选择炉型 设计程序 ③ 确定炉型主要设计参数 ④ 计算熔池尺寸 ⑤ 确定整个炉型尺寸 (1)原始条件 ① 炉子平均出钢量为120t ,钢水收得率为92.62%,则金属装入量为: t 130562.129%62.92120G ≈== ② 原料:半钢,采用单渣不留渣操作。 ③ 氧枪喷嘴采用四孔拉瓦尔喷孔, (2)熔池尺寸的计算 1)熔池直径 t G K D = 2)熔池深度(h )本文采用筒球形熔池深度计算公式 金属熔池的体积为: 32046.079.0D hD V -=熔池 因而 2 3 79.0046.0D D V h += 熔池 (3)炉帽尺寸 1)炉口直径d D d )53.0~43.0(=,本文d 取2200mm 。 2)炉帽倾角θ θ的取值范围在60°~68°。本文取63°。 3)炉帽高度帽H ))(口直斜帽400~300(tan 2 1 +-=+=θd D H H H 炉帽容积: 直台直台帽)(H d d Dd D H V V V 2224 12 π π + ++= += (4)炉身尺寸的计算 1)炉膛直径膛D :

活塞设计说明书样板

(一)压缩高度的确定 1.第一环的位置 根据活塞环的布置确定活塞压缩高度时,首先须定出第一环的位置,即所谓火力岸的高度h。为缩小H1,,当然希望h尽可能小,但h过小会使第一环温度过高,导致活塞环弹性松弛、粘结等故障。柴油机活塞环的工作条件比汽油机更严重,故h应更大些。一般柴油机h=(0.15~0.25)D。 2.第二环的位置 为减小活塞高度,活塞环槽轴向高度b应尽可能小,这样活塞环惯性力小,会减轻对环槽侧面冲击,有助有提高环槽耐久性。但b太小,会使制环工艺困难。在小型高速内燃机上,一般气环高b=2~3毫米,油环高b=4~6毫米。大缸径柴油机的推荐环高见表。 环岸的高度c,应保证它在气压力造成的负荷下不会破坏。实践证明强化柴油活塞第一环岸有时会沿着岸根整圈断落下来。当然,第二、第三环岸负荷要比第一环岸小得多,温度也低,只有在第一环岸已破坏的情况下,它们才可能被破坏。因此,环岸高度一般第一环最大,其它较小。实际发动机的统计表明,c1=(1.5~2.5)b1,c2=c3=(1~2)b1,汽油机接近下限,柴油机特别是增压柴油机取上限,因为后者负荷重。 3.活塞环数 活塞环数目对活塞头部的高度H1有很大影响。目前高速汽油机一般用2~3道气环和一道油环 4.活塞销上面的裙部长度 确定好活塞头部环的布置以后,高度H1最后决定于活塞销轴线到最低环槽(一般是油环槽)的距离h’。为了保证油环工作良好,环在槽中的轴向间隙是很小的,环槽如有较大变形就会使油环卡住而失效。现代高速内燃机活塞的压缩高度在下述范围内:汽油机H1=0.45~0.6)D,柴油机H1=(0.6~0.8)D。由于这一尺寸的变化直接影响发动机的压缩比,在柴油机中有可能造成活塞与气门碰撞的故障,所以要保证严格的公差,一般规定H1±0.05。 (二)活塞顶和环带断面 1.活塞顶 活塞顶的形状主要取决于燃烧室的选择和设计。仅从活塞设计角度,为了减轻活塞组的热负荷和应力集中,希望采用受热面积最小、加工最简单的活塞顶形状,即平顶。大多数汽油机正是采用平顶活塞,非直接喷射的高速柴油机,也采用平顶或接近平顶的形状。但是直接喷射式的高速柴油机,由于混合气形成的需要,活塞顶上应设有一定深度的凹坑作为燃烧室,如果燃烧室深度h1很大,则连杆小头在燃烧室下面自由运动的需要,有时就决定了H1的下限值。有的柴油机活塞顶除有燃烧室外,还设有为防止活塞与气门干涉的浅坑。 中小型高速柴油机活塞顶的厚度是根据结构考虑决定的,主要从活塞向外传热条件和活塞的刚度出发,一般强度是足够的,通常并不对铝活塞顶部进行校核。实际统计数据表明,活塞顶部最小厚度,汽油机δ=(0.06~0.1)D,柴油机为δ=(0.1~0.2)D。 活塞顶面接受的热量,主要通过活塞环传出。专门的试验表明,对无强制冷却的活塞来说,经活塞环传到气缸壁的热量占70%~80%,经活塞本身传到气缸壁的占10%~20%,而传给曲轴箱空气和机油的仅占10%左右。所以活塞顶厚度δ应从中央到四周逐渐加大,而且过渡圆角R应足够大,使活塞顶吸收的热量能顺利的被导至第二、第三环,以减轻第一环的热符合,并降低最高温度。 为了减少积炭和受热,活塞顶表面应光洁,在个别情况下甚至抛光。复杂形状的活塞顶

活塞表设计

旋转活塞式水表的设计方法 摘要:本文介绍了旋转活塞式水表的工作原理,分析了计量腔参数间的关系,给出了结构常数K值,提出了设计方法 关键词:水表旋转活塞结构常数K 设计方法 一、工作原理 本厂研制的旋转活塞式水表是容积式水表的一种,通过计量水流过一定容积的数目来计算累计流过的水流量。其计量腔原理图如下: 活塞内外壁将计量腔分成内外两个计量腔,隔板又将计量腔分成高压部分(接进口)和低压部分(接出口)。在此压差下,每个计量部分的容积随着活塞的运动周期地变化,完成进、排水的计量工作。 二、活塞的运动分析 由计量机构的工作过程可以看出,活塞运动可简化为曲柄滑块机构。假设活塞壁厚为零,质量为零的理想环,水为理想流体,则水流经计量腔时仅受导向作用,无容积排挤效应,进出水口的平均流速不受影响。因而在此情况下,如果管道中的流动是稳定的,则活塞转动也是匀速的。 从以上分析可知,在理想情况下,活塞的运动是曲柄连杆机构中,曲柄匀速转动时的连杆的运动. 但实际上活塞总有一定的壁厚和质量,水也不是理想的流体,因而导致活塞运动呈周期变化,这是有待进一步研究的课题。 三、水表转速与计量腔尺寸的关系 1.计量腔的尺寸匹配 图1为计量腔横截面示图,各尺寸关系为 r1=r0+r2① R2=R1-r0 ② δ=R1-r2-2r0 ③ 单位高度容积为V =πR12-πR22+πr12-πr22 =2πR1r0+2πr2r0≤2πR1r0+πr22+πr02 设定Vm=2πR1r0+2πr22 (r0=r2时取极值) 在此条件下(r0=r2),将③代入上式得

Vm= 8π R12 - 24π R1δ+ 2πδ2 9 9 9 此函数的曲线如右图2 实际情况要求0≤δ≤R 1 所以当δ=0时,Vm取得最大值Vmax: Vmax= 8π R12 9 又∵当δ=0时,8π R12 =πR12–πR22 9 ∴r2=1/3R1 由以上分析可知,当r2=1/3R1,δ=0时,计量腔容积最大。 2.水表传动比与活塞高度b以及计量腔外壁半径R1的关系: (1)在理想情况下,Vmax= 8/9πR12b(b为活塞的高度),此值也等于单位转数的流量。 则首位指针前的传动比 i= 0.001 8/ 9πR1 2b (2)实际上,活塞体积和间隙的泄漏都不能忽视,故引入排挤系数和泄漏系数 排挤系数ξ= 活塞体积泄漏系数f= 实际流过体积 活塞腔容积理论体积 则i= 0.001 整理成 i= 0.001 . 1 8/ 9πR12b(1- ξ)f 8/ 9π(1- ξ)f R1 2b 令K= 0.001 8/ 9π(1-ξ)f 得i=K 1 R12b 上式称为活塞表基本关系式,实践证明,系数K是一个常数,它的值大约在 0.000466~~0.00053之间,我们称K为活塞表的结构常数。 3.活塞高度b和计量腔外壁半径R1的关系: 活塞高度的确定应以活塞腔纵切面过流面接近正方形为原则,即b≈R1-r2

活塞设计

活塞课程设计说明书 一.设计题目:活塞组设计 二.设计参数:195柴油机,Pe=8.82kw,n=2000r/min,水冷,Pme=650.4kpa,连杆重心位置LB/LA=0.3909(其中LB指重心到连杆大头中心的距离,LA指重心到连杆小头中心的距离)。 三.设计要求: 1.用计算机绘制活塞(A1),活塞销(A3)各一张。 2. 设计说明书一份(包括零件图分析、定位方案确定、定位误差计算等内容;最好能写出整个工艺过程)。 目录 前言 1 1活塞的概述 2 1.1活塞的功用及工作条件 2 1.2活塞的材料 2 1.3活塞结构 2 1.3.1活塞顶部 2 1.3.2活塞头部 3 1.3.3活塞裙部 3 2活塞的结构参数 4 3活塞最大爆发压力的计算 5 3.1热力过程计算 5 3.2柴油机的指示参数 8 3.3柴油机有效效率 10 4活塞销的受力分析 11 5活塞的加工工艺 14 参考文献: 15 前言

内燃机的不断发展,是建立在主要零部件性能和寿命不断改进和提高的基础上的,尤其是随着发动机强化程度的提高、功率的增大和转速的增加,零部件尤其是直喷式柴油机活塞的工作环境变得更加恶劣了。活塞的结构直接影响活塞的温度分布和热应力分布,因此就有必要对活塞的结构和性能作出预测和评价。 活塞是内燃机上最关键的运动件,它在高温高压下承受反复交变载荷,被称为内燃机的心脏,特别是坦克、舰艇和军用车船用内燃机活塞则要求更高,它已成为制约内燃机发展的一个突出问题。 本次课程设计的题目是发动机铝活塞的结构及工艺设计,选择利用合适的机床加工发动机活塞,通过这次课程设计,要求熟练掌握并能在实际问题中进行创新和优化其加工工艺过程。 1活塞的概述 1.1活塞的功用及工作条件 活塞是曲柄连杆机构的重要零件煤气主要功用是承受燃烧气体压力和惯性力,并将燃烧气体压力通过活塞销传给连杆,推动曲轴旋转对外作功。此外,活塞又是燃烧室的组成部分。 活塞是内燃机中工作条件最严酷的零件。作用于活塞上的气体压力和惯性力都是周期变化的,燃烧瞬时作用于活塞上的气体压力很高,如增压内燃机的最高燃烧压力可达14—16MPa。而且活塞还要承受在连杆倾斜位置时侧压力的周期性冲击作用,在气体压力、往复惯性力和侧压力的共同作用下,可能引起活塞变形,活塞销座开裂,活塞侧部磨损等。由此可见,活塞应有足够的强度和刚度,而且质量要轻。 活塞顶部直接与高温燃气接触,活塞顶部的温度很高,各部的温差很大,柴油机活塞顶部常布置有凹坑状燃烧室,使顶部实际受热面积加大,热负荷更加严重。高温必然会引起活塞材料的强度下降,活塞的热膨胀量增加,破坏活塞与气缸壁的正常间隙。另外,由于冷热不均匀所产生的热应力容易使活塞顶部出现疲劳热裂现象。所以要求活塞应有足够的耐热性和良好的导热 性,小的线膨胀系数。同时在结构上采取适当的措施,防止过大的热变形。 活塞运动速度和工作温度高,润滑条件差,因此摩擦损失大,磨损严重。要求应具良好的减摩性或采取特殊的表面处理。 1.2活塞的材料 现代内燃机广泛使用铝合金活塞。铝合金导热性好(比铸铁大3-4倍),密度小(约为铸铁的1/3)。因此铝活塞惯性力小,工作温度低,温度分布均匀,对改善工作条件减少热应力延缓机油变质有利。目前铝活塞广泛采用含硅12%左右的共晶铝硅合金制造,外加铜和镍,以提高热稳定性和高温机械性能。铝活塞毛胚可采用金属模铸造,锻造和液压模锻等方法生产。 为了提高铝活塞的强度和硬度,并稳定形状尺寸,必须对活塞进行淬火和时效热处理。 1.3活塞结构 活塞按部位不同,分为顶部,头部和裙部三部分。 1.3.1活塞顶部 活塞顶部是燃烧室的组成部分,其形状与燃烧室形状和压缩比有关,一般有平顶,凸顶和凹顶三种。 1.3.2活塞头部

传感器的参数静态特性技术指标

1.线性度(Linearity) 传感器的输出输入关系或多或少地存在非线性。在不考虑迟滞、蠕变、不稳定性等因素的情况下,其静态特性可用下列多项式代数方程表示: 式中:y—输出量;x—输入量;a0—零点输出; a1—理论灵敏度;a2、a3、… 、a n—非线性项系数。 各项系数不同,决定了特性曲线的具体形式。 静态特性曲线可实际测试获得。在获得特性曲线之后,可以说问题已经得到解决。但是为了标定和数据处理的方便,希望得到线性关系。这时可采用各种方法,其中也包括硬件或软件补偿,进行线性化处理。 一般来说,这些办法都比较复杂。所以在非线性误差不太大的情况下,总是采用直线拟合的办法来线性化。 在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲线之间的最大偏差,就称为非线性误差或线性度。 通常用相对误差 L表示: ΔLmax一最大非线性误差;y FS—满量程输出。 非线性偏差的大小是以一定的拟合直线为基准直线而得出来的。拟合直线不同,非线性误差也不同。所以,选择拟合直线的主要出发点,应是获得最小的非线性误差。另外,还应考虑使用是否方便,计算是否简便。 ①理论拟合;②端点连线平移拟合;③端点连线拟合;④过零旋转拟合;⑤最小二乘拟合;⑥最小包容拟合

2.迟滞(Hysteresis) 传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。迟滞特性如图所示,它一般是由实验方法测得。迟滞误差一般以满量程输出的百分数表示,即 式中△ Hmax —正反行程间输出的最大差值。 迟滞误差的另一名称叫回程误差。回程误差常用绝对误差表示。检测回程误差时,可选择几个测试点。对应于每一输入信号,传感器正行程及反行程中输出信号差值的最大者即为回程误差。 3.重复性(Repeatability) 重复性是指传感器在输入按同一方向连续多次变动时所得特性曲线不一致的程度。 重复性误差可用正、反行程的最大偏差表示,即 △Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。 重复性误差也常用绝对误差表示。检测时也可选取几个测试点,对应每一点多次从同一方向趋近,获得输出值系列y i1,y i2,y i3,…,y in ,算出最大值与最小值之差或3σ作为重复性偏差ΔRi ,在几个ΔRi 中取出最大值ΔRmax 作为重复性误差。 ()% 100/max ??±=FS R R y δ()%100/)3~2(?±=FS R y σδ

课程设计参数选择说明

单向板的课设 表7-1各题号的设计条件 柱网L1×L2/mm 可变荷载标准值/(KN/m2 5.0 5.5 6.0 6.5 7.0 7.5 8.0 6000×6600 42 41 40 39 38 37 36 6600×6900 35 34 33 32 31 30 29 6600×7200 28 27 26 25 24 23 22 6600×7500 21 20 19 18 17 16 15 6900×7200 14 13 12 11 10 9 8 6900×7500 7 6 5 4 3 2 1 单向板的课设每个同学选择的荷载和柱网都不同,例如1号,每个号数选自己所对应行与 列的荷载。

单层厂房课设 表7-3 各题号的设计条件 厂房跨度/m18 21 24 30 起重量/t16 20 25 32 16 20 25 32 162025162025 轨顶高度/m 8.4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 9.6 15 16 17 18 19 20 21 22 23 24 25 26 27 28 10. 2 29 30 31 32 33 34 35 36 37 38 39 40 41 42 11. 4 43 44 45 46 47 48 49 50 51 52 53 54 55 56 12. 57 58 59 —60 61 62 —63 64 65 66 67 68 风荷载 /kN/m2 0. 7 0. 6 0. 5 0. 4 0. 7 0. 6 0. 5 0. 4 0.7 0.6 0.5 0.6 0.5 0.4 单层厂房没个同学所选择的参数都不同,每个号数所对应自己所在的行与列的参数。例如25号

相关文档
最新文档