世界重大核电事故原因分析

世界重大核电事故原因分析
世界重大核电事故原因分析

世界重大核电事故原因分析

核能属清洁能源,因而被广泛使用,其典型代表就是核电站。核能不同于其它能源,因核原料具有放射性,因此核电事故不仅会造成直接经济损失还会威胁附近居民健康,造成人民的恐慌,故而影响到核电的进一步发展,本文通过对历史上三起重大核电事故的整理、分析,探讨造成核电事故的主要原因。

标签:核电事故原因;重大核电事故;辐射危害

核电站通过对核原料进行可控制的裂变释放热量来制造高温、高压的蒸汽,从而推动发电机发电,发展核电的优点有以下方面。

(1)核原料虽然体积小但蕴含的能量却很大,2400吨标准煤所放出的能量仅需1000克铀裂变即可得到。

(2)核能是清洁能源且属于不常用能源,开采成本不易受国际经济形势的影响。

(3)核电基本不会对附近环境排放有害物质,不会促进温室效应的加重。反应堆外面有多层保障,基本不会排放对环境有害的物质,对外放射性污染一年的量相当于做一次X光透视所受到的照射量。

虽然核能总体利大于弊,但我们也要趋利避害,将核危害降到最低,因为核电一但出现重大事故其影响远比普通电站大,除了会造成直接经济损失,附近居民将会面临不同程度的核辐射威胁。

接下来通过对迄今为止的三起重大核电事故分别分析从而总结引起这些事故的重点因素。

1 美国三里岛核电事故

1979年3月28日4时,美国三里岛核电站由于操作判断失误及机械故障发生5级核电事故。

事故经过:1979年3月28日4时,三里岛核电站2#机组反应堆的二次回路循环水泵发生机械故障温度升高,该回路冷却系统自动运行,由于先前工作人员检修后未能将冷却系统的出口阀门打开,导致二次回路冷却失效。堆内温度、压力上升至危险限值,反应堆自动停止运行,并开启泄压阀进行泄压,堆内压力恢复正常后,泄压阀因为机械故障没有自动归位,导致堆内冷却剂持续流出,反应堆内压力下降到正常水平以下,应急堆芯冷却系统自动投入进行挽救,操作人员在不知道泄压阀没有正常归位的情况下,认为该系统的投入运行是多余的操作,便将其关闭,终止了向堆芯注水的操作。设备故障及操作管理失误致使堆芯温度短时间内过高,46%燃料棒外壳镐及铀燃料熔化,堆芯严重熔毁。

日本核电事故分析报告

日本福岛核电站核事故分析报告近几天因日本福岛核电站多个反应堆因地震而出现运转故障,导致部分放射性物质泄漏蔓延,对日本本土和周边国家形成了较大的影响,就此从时间历程和技术分析2个方面对上述事件进行分析。 一事件回顾 1.1 地震事件 日本最新发生的地震简要信息如下: ·时间:北京时间3月11日13时46分 ·地点:日本东北部宫城县以东太平洋海域 ·震级:里氏9.0级震源深度:10公里 ·余震:11-13日共发生168次5级以上余震 ·伤亡:截至3月17日,已造成5429人遇难9594人失踪 ·核电站事故:日本福岛第一核电站的6个机组当中,1号至4号均发生氢气爆炸。5、 6 号机组正在进行定期维修。 ·火山喷发:新燃岳火山13日下午喷发。 因日本的抗震技术非常发达,日本人民的抗震经验丰富,因此单就地震而言,对日本的损伤是有限的,最不济危害也局限在日本一国,对周边国家和地区没有太大的影响。目前主要的问题纠结在福岛核电站的核泄漏问题上面。 1.2 福岛核电站核泄漏事故 1.2.1 电站简介[1] 福岛核电站(Fukushinia Nuclear Power Plant)位于北纬37度25分14秒,东经141度2分,地处日本福岛工业区。福岛核电站是目前世界世界最大的核电站,由福岛一站(daiichi)、福岛二站(daini)组成,共10台机组(一站6台,二站4台),均为沸水堆。 福岛一站1号机组于1967年9月动工,1970年11月并网,1971年3月投入商业运行,输出电功率净/毛值为439/460兆瓦,负荷因子为49.9%。2号~6号机组分别于1974年7月、1976年3月、1978年10月、1978年4月、1979年10月投入商业运行,输出总功率分别为784、784、784、784、1100兆瓦,负荷因子分别为52.8%、61.2%、72.1%、68.5%和69.7%。福岛二站4台机组的输出电功率净/毛值均为1067/1100兆瓦。二站1号机组于1975年11

核电站安全性分析报告

核电站安全性分析姓名:X X X 学号:0 9 X X X X X X 专业:核工程与核技术 学院:核工程与地球物理学院 指导老师:X X

2012 年06月10 日 核电站安全性分析 东华理工大学核工系XXX 摘要:能源是社会和经济发展的基础,是人类生活和生产的要素。随着社会的发展,能源的需求也在不断扩大。从能源的供应结构来看,目前世界上消耗的能源主要来自煤、石油、天然气三大资源,这三种能源不仅利用率低,而且对生态环境造成严重污染。为了缓解能源矛盾,除了应积极开发太阳能、风能、潮汐能以及生物质能等再生资源外,核能是被公认的唯一实现的可大规模替代常规能源的即清洁又经济的现代能源。核能不仅单位能量大,而且资源丰富。地球蕴藏的铀矿和钍矿资源相当于有机燃料的几十倍。如果进一步实现控核聚变,并在海水中提取氚加以利用,就会从根本上解决能源供应矛盾。然而随着一系列的核事故的发生,核能的安全性再一步受到人们的质疑,本文简要回顾核电的发展,并对其安全性做了分析,指出核电是一种安全的能源。

关键词:能源核电安全 Nuclear power plant safety analysis East China University of Technology Nuclear Engineering XXX Abstract: Energy is the basis of the social and economic development, the elements of human life and production. With the social development, energy demand is also expanding. From the structure of energy supply, energy consumption in the world from the three resources of coal, oil, natural gas, three energy is not only a low utilization rate, and cause serious pollution to the ecological environment. In order to alleviate the energy contradictions, should actively develop solar, wind, tidal energy and biomass energy renewable resources, nuclear energy is recognized only can achieve large-scale alternative to conventional energy, clean and modern energy economy. Nuclear power units of energy, but also rich in natural resources. Global reserves of uranium and thorium mineral resources is equivalent to several times of the organic fuel. Further to achieve controlled nuclear fusion, and be used to extract tritium in seawater, will fundamentally solve the contradictions among the energy supply. However, with a series of nuclear accidents, the safety of nuclear energy and then step been questioned, briefly reviewed the development of nuclear power, and its

从福岛核电站事故分析看安全文化(最新版)

从福岛核电站事故分析看安全 文化(最新版) The core of safety culture is people-oriented, which requires the implementation of safety responsibilities in the specific work of all employees. ( 安全文化) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

从福岛核电站事故分析看安全文化(最新 版) 日本正遭遇二战以来最大的灾难,这次地震由于其史无前例的强烈震级和同时伴随的强次生灾害揪住了全球民众的心。这其中,福岛第一核电站事故1、2、3、4号机组所发生的事故,由于其可能对周边产生的恶劣影响和对人心理产生的恐慌,引起了越来越强烈的关注。根据诸多业内人士对核电站事故以及事故应急处理的分析,我们看到:福岛第一核电站事故看起来是天灾(地震引发海啸造成装置失效),但其实也有许多人为因素,也就是说,还是有人做了不应该做的事情,有人没做应该做的事情。 下面我结合专业人士eagle506的技术分析谈一谈这其中的

文化因素。 1、关于应急处置 2011年3月11日下午,地震发生,反应堆安全停堆,按理应该马上向堆芯补水,保证堆芯冷却防止超压,但地震摧毁了电网,厂外电源不可用,这时应该发动应急柴油机,但海啸来了,柴油机房被淹,不过核电厂还备有蓄电池,虽然容量较小,但是在事故后8小时内还是为压力容器的冷却做了一些贡献的。电池眼看就要耗尽,为了保住压力容器,必须要卸压,防止压力容器超压爆炸。而且操作员也确实是这样做的。 但是,12日早,日本首相菅直人要来视察。 如果卸压,环境中的放射性会升高,虽然菅直人是空中视察,但这对没有穿防护服的日本首相来说仍然不是什么好事,所以,根据日本某些论坛的说法(没有得到官方证实),卸压的事由于此次视察暂时中断。但余热不等人,安全壳内温度压力仍在上升。 菅直人走后,操作员开始继续释放压力容器内部的压力。此时压力容器内的温度约为550摄氏度,堆芯已经裸露并产生大

切尔诺贝利核电站爆炸事故分析

切尔诺贝利核电站爆炸事故分析 事故经过 1986年4月26日,切尔诺贝利核电站的4号反应堆发生爆炸,死16.7万人,损失120亿美元,是世界上最严重的核电站事故。 切尔诺贝利核电站建于基辅市以北130千米,4台机组,总装机400万千瓦,是原苏联最大核电站。1970年切尔诺贝利开始修建第一座核反应堆,但总工程师只有建设火电站的经验,整个设计由乌拉尔电力公司设计院进行。后来由莫斯科Zukh水电设计院接手该项目的设计,该设计院主要是水电设计。因为物质缺乏,几乎不太可能找到设计人员设计的某些特殊部件,因此设计者真好将就使用他们自己制造的部件。 1977年第一座反应堆投入运行,与原定计划推迟了两年。管理人员和操作工并不知道1 975年在列宁格勒与此相同的反应堆发生了熔化事故。对有关规定也进行了修改,因为它们对实际情况不适合,特别是经常移出比规定多的控制棒。操作工还发现当输出功率很低时反应堆极不稳定。 20世纪80年代初,另外两个反应堆投入运行。1982年第三座核反应堆活性区发生爆炸并将放射性物质释放到核电站区域,因为对这次事故保密,其他反应堆的操作人员并不知道此次事故的发生。这期间在整个前苏联的ЯBMK型反应堆还发生了几起类似的事故。1980年在Kursk发生的事故引起了原子能委员会的注意:因为停电导致无动力驱动控制棒和水泵,40秒后才启动备用电源,在此次事故中因:为冷却水的自然循环量较大才避免了严重破坏。 1983年末,估计切尔诺贝利4号反应堆关闭后透平机还能为反应堆水泵提供一定时间的应急电源,曾建议对该系统进行测试,但因为装置到1983年底前未获授权,因此对该系统的测试延期进行。在负责ЯBMK型反应堆的部长处还有其他的事故记录——设计的控制棒因为有裂纹当插入反应堆时引起输出功率剧烈波动,但在操作工的操作记录上没有记录。1984年3月27日,4号反应堆正式投入商业运行。 1985年报纸上出现了对核电站的批评,能源部命令总工程师替换易燃的遮蔽材料和电缆。但是因为无不易燃的材料供应,这项计划被搁置。高层管理人员的注意力集中在应付商业压力,而让总工程师负责装置的操作。 1986年4月,4号反应堆停车检修,并且安排了一系列的测试计划,包括应急电源延迟测试。但仍然不知道当透平的动量下降后是否能产生足够的电能驱动水泵达40秒。测试由装置的制造者进行,他们的测试计划与3号和4号反应堆的总工程师讨论了15分钟后即获同意,并没有征求安全检查员的意见,负责反应堆的总工程师也没有到场,正式的批准文件也没有征求核专家的意见。 13时反应堆的输出功率减为一半,两台发电机一台停车。14时对另一台发电机的测试准备就绪。为了避免被联锁,紧急反应堆活性区冷却系统断开。开始准备测试时,Kiev的电力调度员请求供电到23时。23时重新开始根据拟定的计划对透平机的作用进行测试。控制棒的自动控制系统被断开,输出功率降低,下降到30MW。到这一步就没有按照测试的标准规程进行(按标准规程应该放弃试验>,工程师就下一步如何进行没有形成统一的意见。继续移出控制棒,4月26日1时输出功率稳定在200MW,但这仍然低于推荐的最小功率水平,但是被认为可以继续进行测试。 1时过后,另一台冷却泵很快加入该系统,这就需要移出更多的控制棒。大量的水进入反应堆引起蒸汽压力降低。为了避免因为蒸汽压力低导致反应堆关闭,操作人员切断了联锁信号。1时22分,实验刚刚开始,计算机打印结果表明反应性只有最小保留值的一半。1时23分透平发电机的紧急调节阀门关闭,透平机无蒸汽,计算机显示反应器功率急剧上升,

PCTran压水堆核电站事故仿真实验报告

PCTran压水堆核电站事故仿真实验报告 一、预习报告 实验名称:压水堆核电站事故PCTRAN仿真模拟 实验目的:1、熟悉PCTRAN软件的使用; 2、利用PCTRAN软件模拟核电站的工作、事故工况和事故现象; 3、结合仿真软件深入了解核电站事故的发生原因、现象、后果。 实验仪器设备: 电脑、仿真软件 实验内容: 1、启动电脑,打开PCTRAN仿真软件,熟悉操作界面和 方法。 2、加载运行工况,然后加载事故工况。 3、在事故工况稳定之后,导出事故流程记录,并对事故 中产生响应的参数进行图表记录。 实验原理和背景材料: PCTRAN是基于PC的核能仿真软件包尤其针对核电站运行和事故反应的培训。如堆芯熔化,安全壳失效和放射性物质释放等严重事故也包含在它的范围内。从1985引入以来,PCTRAN 已经成为全世界安装在核电站和研究机构中最成功的培训仿真软件。从1996年起,PCTRAN被国际原子能机构(IAEA)选为年度先进反应堆仿真专题研讨会培训软件。相当多的大学用PCTRAN教授核能技术并用作硕士和博士的论文开发平台。 在核电站模拟方面,提供了正常运行时的仪表和控制显示。另外还提供了反应对冷却剂边界泄露或者安全壳失效的图标。组

合的放射物释放形成了应急计划区的放射性剂量分布。PCTRAN 可以为核电站的工作人员提供真实的培训和练习。模拟程序延展到可以根据现实的气象条件提供区域的剂量预测。它的运行可以是真实的速度也可以是数倍于真实的速度。它的图形用户界面使操作起来十分方便。所有的图标,文本信息和数据都是通过Microsoft Office Suite传递。 PCTRAN现有的模型: · GE BWR 2 (Oyster Creek), 4 (Peach Bottom), 5 (La Salle), 6 (River Bend) and ABWR (Lungmen) with Mark I, II, III or advanced containment · GE ABWR and ESBWR · Westinghouse 2-loop Chasma (300 Mwe) 与秦山一期同型, 600 MW Point Beach与秦山二期同型, and 4-loop (Salem) PWR dry containment or ice condenser containment (Sequoyah) · Westinghouse AP1000 三门或海阳 · Korean Standard Nuclear Plant OPR1000 and APR1400 · B&W (now Areva) PWR’s of once through steam generators (TMI)· Framatome PWR’s 3-loop大亚湾或岭澳, Areva EPR 1600, ATMEA PWR 3-loop, Mitsubishi APWR · ABB BWR’s (TVO) · Russian VVER 1000 田湾, 第三代 AES92

第三章 核电厂事故分析基本知识

第3章核电厂事故分析的基本知识 3.1 核电厂事故分析的作用 事故分析是研究核电厂可能发生事故的种类及发生频率,确定事故发生后系统的响应及预计事故的进程,评价各种安全设施及安全屏障的有效性,研究各项因素及操纵员干预对事故进程的影响,估计事故情况下核电厂的放射性释放量及计算工作人员与居民所受的辐射剂量。 在核电厂设计过程中,事故分析用于选取停堆保护信号,确定停堆参数整定值和停堆延迟时间,确定缓解事故的专设安全设施的参数。 对于设计基准事件的分析是核电厂安全分析报告中必要的一章。分析的目的在于表明该核电厂设计足以控制这些事件的后果,使工作人员、公众和环境不至于受到不适当的放射性风险。 通过严重事故分析,可以找到核电厂的薄弱环节,有助于提高核电厂的安全性。严重事故分析,还可作为制定应急计划的依据。 3.2核电厂事故分析的方法 事故分析采用确定论及概率论方法,这两种方法相辅相成。设计基准事件的分析,以确定论方法为主;严重事故的分析,两种方法并用,侧重于概率论方法。 3.2.1确定论安全分析 从系统及部件失效和损坏,或人员失误的角度,假定事故确定地发生,按照分析问题的要求,选用保守或现实模型以及一系列规则和假设,分析计算整个核电厂系统的响应,直至得到该事故的放射性后果。 保守模型 又称评价模型。在分析中采用的初始条件及各项参数,均须从不利方面加上不确定性。要选用保守的各种关系式及标准,此外还必须考虑四项基本假设。保守模型一般用于核电厂安全审批过程,在该模型中考虑了最不利的情况,得出的是事故后果的极限值,给核电厂留有相当大的安全裕度。其缺点是分析所得的事故过程,有时与真实情况相差较远,使工作人员不能了解过程的实际变化。 现实模型 又称最佳估算模型。在分析中采用核电厂的运行参数或参数的平均值,尽量选用接近真实情况的关系式及标准,不考虑不合实际的保守假设。因而所得结果能接近真实情况。现实模型经常用于核电厂操作规程的制定和严重事故分析。作为一种尝试,目前正在研究使用现实模型分析,在其结果上加上适当裕度,作为代替保守模型或平行于保守模型的一种方法。 在用确定论方法进行事故分析中,所涉及的事故分析程序大致可分成以下六种。 (1)系统分析程序 可以模拟核电厂的一、二回路系统以及稳压器、蒸汽发生器、泵、阀门、燃料元件等设备。具有能计及各种反应性反馈的点堆或一维中子动力学模型,一般在流体力学上是一维的,有些程序堆芯是三维的,程序的规模大,一般有数万至20余万行。总体上分析核电厂在失水事故及各种瞬变过程中系统的响应,是事故分析中最主要的程序,如RETRAN,RELAP5,TRAC等。 (2)堆芯分析程序 或可称之为子通道分析程序,它以系统程序计算的结果作为边界条件,考虑堆芯内各处

事故案例分析:刀闸误合出事故

事故案例分析:刀闸误合出事故 一、事故经过 1996年1月31日上午,在某热电厂高压配电室检修508号油开关过程中,电工曲某下蹲时,臀部无意中碰到了508号油开关上面编号为5081的隔离刀闸的传力拐臂杆,导致5081隔离刀闸动、静触头接触,刀闸被误合,使该工厂电力系统502、500油开关由于“过流保护”装置动作而跳闸,6kV高压二段母线和部分380V母线均失电,2号、3号锅炉停止工作40多分钟,1号发电机停止工作1小时。 二、原因分析 油开关检修时断路器必须是断开的,油开关上面的隔离刀闸是拉开的,还必须在油开关与隔离刀闸之间的部件上可靠连接接地保护短路线,要求隔离刀闸的传力拐臂杆上插入插销,而且要加锁(防止被误动)。 造成这起事故的原因是,工作人员违反规定没有装入插销,更不用说上锁,所以曲某臀部无意之中碰上了5081隔离刀闸的传力拐臂杆,导致5081隔离刀闸动、静触头接触,静触头与母线连接带电,于是,强大的电流通过隔离刀闸动、静触头,再流经接地保护短路线,输入大地,形成短路放电,导致该电气系列的502、500油开关由于“过流保护”装置动作而跳闸。 好在由于接地保护短路线质量好,所以,误合刀闸后没有造成人身伤害,但是,造成的经济损失巨大。 “阴差阳错”带负荷拉刀闸 一、事故经过 1995年6月17日上午8时40分,四川某厂空气压缩机值班员何某接分厂调度员指令:启动4#机组;停运1#机组或5#机组中的一组。何某到电气值班室,与电气值班员王某(副班长)和吴某商定:启动4#机组后停运1#或5#中的一组。王某就随何某去现场操作,吴某留守监盘。9时,4#机组被现场启动,然后5#机组现场停运。这时,配电室发出油开关跳闸的声音。 电气值班室的吴某判断5#机组已经停运,于是,独自去高压配电室打算拉开5#油开关上方的隔离刀闸。但是,她错误地拉开了正在运行的1#机组的隔离刀闸,“嘭”的一声巨响,隔离刀闸处弧光短路,使得314线路全线停电。 二、原因分析 造成这起误操作事故的原因首先是违反“监护制”。电气值班室的吴某在无人批准的情况下,擅自离开监盘岗位,违反“一人操作、一人监护”的规定,独自一人去高压配电室操作,没有看清楚动力柜编号,没有查看动力柜现场指示信号,也没有按照规程进行检查,就错误地拉开了正在运行的1#机组的隔离刀闸,是事故的直接原因。 间接原因是副班长王某的组织工作有疏漏。 1.商定“启动4#机组后停运1#或5#中的一组”,其实没有定。应该明确,到底是1#还是5#,使得在场人员都心中有数。 2.负责人王某离开监盘岗位去现场,没有把吴某的工作职责作出明确交代,在现场操作后又没有及时通知吴某,负有领导责任。 3.事故发生是平时管理不严、劳动纪律松弛、执行安全操作规程不严格、值班人员素质差等原因的必然结果。 【

AP1000核电厂大量放射性释放源项分析_张琨

第46卷第9期原子能科学技术 Vol.46,No.9 2 012年9月Atomic Energy Science and Technology  Sep. 2012AP1000核电厂大量放射性释放源项分析 张 琨 (上海核工程研究设计院,上海 200233 )摘要:在AP1000核电厂的某些严重事故情景中,安全壳可能发生失效或旁通,导致大量放射性物质释放到环境中, 造成严重的放射性污染。针对大量放射性释放频率贡献最大的3种释放类别(安全壳旁通、安全壳早期失效和安全壳隔离失效),分别选取典型的严重事故序列(蒸汽发生器传热管破裂、自动卸压系统阀门误开启和压力容器破裂),使用MAAP程序计算分析了释放到环境中的裂变产物源项。该分析结果为量化AP1000核电厂的放射性释放后果和厂外剂量分析提供了必要的输入。关键词:AP1000; 大量放射性释放;严重事故;源项收稿日期:2011-04-14;修回日期:2011-10- 08作者简介:张 琨(1981—) ,男,山东潍坊人,工程师,博士,核能科学与工程专业中图分类号:TL364.4 文献标志码:A 文章编号:1000-6931(2012)09-1107- 05Analysis of Larg e Release Source Termsin AP1000Nuclear Power  PlantZHANG  Kun(Shanghai Nuclear Engineering Research &Design Institute,Shang hai 200233,China)Abstract: In some severe accident scenarios of AP1000nuclear power p lant,a breach orbypass of the containment will lead to large release to environment,which causes severeradioactive pollution of environment.Three release categories(bypass,early  contain-ment failure and containment isolation failure)have the largest contribution to largerelease frequency.Three typical severe accidents(steam generator tube rupture,spuri-ously  open of automatic depressurization system valves and reactor pressure vessel rup-ture)were selected as typical cases corresponding to the three release categories and thefission-product source terms released to environment were calculated using MAAP code.The analysis results are provided as essential input data for quantifying the release ofAP1000nuclear power p lant and the offsite dose analysis.Key words:AP1000;large release;severe accident;source term A P1000核电厂的设计特点,如自动卸压系统(ADS)、堆腔淹没、氢气点火器和非能动安全壳冷却系统(PCS) 等,可有效保持安全壳完整性,使严重事故中裂变产物从安全壳泄漏到 环境的可能性很小[ 1] 。但在某些严重事故中,裂变产物仍有可能通过安全壳正常泄漏、安全

国内外核事故与放射事故案例解析

国内外核事故与放射事故案例 (辐射安全和防护专题资料) 前言 放射性同位素、射线装置和核技术的广泛应用,在给人类带来巨大利益的同时,也会因为某些人为的和技术的原因,发生危及人类生命和财产的放射性事故和核事故。 放射事故与其它事故一样,会带来经济损失,人员健康损害,甚至造成一定程度的社会动荡,是我们所不愿看到的;但是,从事故中总结和吸取经验教训是我们必须认真做的。人们应该从以往事故中找到防止类似事故发生的措施,记取教训,不再重犯。 每一起事故资料既是一份很好的历史记录,同时又是我们一份宝贵的财富,是一本很好的教科书。“前车之鉴,后事之师”,通过对事故的研究,可以为今后的核技术应用和放射性有关的工作创造更高的安全率。 国内外核事故与放射事故简介 根据国际原子能机构(IAEA)公布的1945~1997年间,世界范围内发生的较重大的核事故或放射事故135起(不完全的统计),使669人受到显著照射,87人死亡。 所公布事故只是一些造成人员受到较大剂量照射的核事故和放射事故,而一些较为著名的核事故,如英国温茨凯尔军用核反应堆事故和美国三哩岛核电厂事故等,由于处理得当,未造成人员伤亡,并未罗列在内。 公布的这些事故主要发生在美国、前苏联和英国等核能和放射性同位素应用较发达的国家,其中涉及到中国的放射事故为10起,受照人员47人,6人因受照死亡。我国的核能起步较晚,到目前为止,还没有核事故发生,导致人员受超剂量照射的事故主要来自于辐照装置、加速器和放射治疗等领域。

我国有文字记载的最早一次放射事故是发生在1954年,福州协和医院的一名护士用血管钳夹持镭针进行穿线时,不慎将一支1.22×108Bq的镭针掉到地上,当时护士用肉眼寻找未果,10年后,该省成立放射防护机构后再找,也未找到。 从全国来看,上个世纪50年代我国核技术应用刚刚起步,事故不多。1958~1978年的20年中,我国核技术的生产和应用由发展走向低谷,时起时伏,事故也经常在每年25起左右。70年代末期至80年代,全国核技术的发展与日俱增,例如辐照装置全国除西藏和青海两地区尚未建立外,其它地区都有。

先进压水堆核电厂运行及典型事故仿真实验

(申报2018国家级虚拟仿真实验项目) 先进压水堆核电厂运行及典型事故仿真实验 Virtual Reality for Operation and Typical Accidents of Advanced Pressurized Water Reactor 实验指导书 (在线实验版) Experiment Manual(online) 简介 先进压水堆是当前我国核电技术发展应用的主流。本实验基于工业级的全范围多功能核电厂压水堆模拟机开发。实验内容为正常运行工况下触发的典型事故(冷段破口失水事故、蒸汽发生器传热管断裂事故、控制棒弹棒事故等)的演化瞬态过程及干预操作,也包含反应堆原理演示等。实验形式生动,支持远程运行。

实验分步指导 请在项目主页面点击“我要做试验”,或直接输入虚拟仿真实验项目网址:https://www.360docs.net/doc/3912681032.html,/virexp/hdc,该页面包含了相关的实验资料,并可下载本实验指导书。点击“操作实验”进入在线实验页面。 注意,本实验支持IE内核的浏览器(如果是Windows 10内置Microsoft Edge 浏览器,打开后请中请点击菜单栏右上角的省略号“…”,在下拉菜单中选择“使用Internet Explorer打开”),推荐使用360极速浏览器。进入实验页面后,请按提示下载安装插件(UnityWebPlayer)。 插件下载完毕后,显示如下界面,进行在线实验的装载。 装载完毕后,显示实验开始界面。 点击开始后,进入在线实验界面。分为实验预备和正式实验两个环节。

实验预备:基础知识与实验原理回顾 在实验预备环节,可以选择如下动态观察和交互式操作,进行基础知识与实验原理的温习回顾,为正式实验做准备。 (1)基于核反应堆基本原理展示系统,观看压水堆部件结构动画演示; 图 核电站原理展示系统 (2)在核电站运行原理模拟机上,通过按钮进行交互式模拟核电站的各种操 作,包括启动、升功率、降功率、喷淋、停堆等关键操作。 图核电站运行原理模拟机界面

秦山二期核电厂严重事故下安全壳内氢气浓度分布及风险初步分析

核 动 力 工 程 Nuclear Power Engineering 第29卷 第2期 2 0 0 8 年4月 V ol. 29. No.2 Apr. 2 0 0 8 文章编号:0258-0926(2008)02-0078-07 秦山二期核电厂严重事故下安全壳内 氢气浓度分布及风险初步分析 邓 坚,曹学武 (上海交通大学核科学与工程学院,上海,200240) 摘要:采用模块化严重事故计算工具,对秦山二期核电厂大破口失水事故(LB-LOCA)、小破口失水事故(LB-LOCA)和全厂断电(SBO)诱发的严重事故序列以及安全壳内的氢气浓度分布进行了计算分析。在此基础之上,参考美国联邦法规10CFR 关于氢气控制和风险分析的标准,对安全壳的氢气燃烧风险进行了初步研究。分析结果表明:大破口严重事故导致的安全壳内的平均氢气浓度接近10%,具有一定的整体性氢气燃烧风险,小破口失水和全厂断电严重事故可能不会导致此类风险,但仍然存在局部氢气燃烧的可能。 关键词:严重事故;安全壳;氢气浓度分布;氢气风险 中图分类号:TL364+. 4 文献标识码:A 1 引 言 在轻水堆核电厂严重事故进程中,锆合金包 壳与水或水蒸汽产生大量的氢气,并通过反应堆冷却剂系统(RCS)压力边界或压力容器破口释放 到安全壳中[1, 2]。如果压力容器下封头被熔穿,堆芯熔融物又会与安全壳堆腔内水或混凝土接 触反应,释放出大量氢气和少量其他易燃易爆气体[3]。释放的氢气在安全壳内扩散流动,与水蒸气、空气混合,形成可燃混合气体。当氢气的浓度超过可燃浓度限值4%时[4],则可能发生燃烧,甚至爆炸。这将会引起安全壳超压和温度升高,从而对安全壳的完整性构成威胁,放射性裂变产物因此可能释放到环境中,造成严重后果。 针对严重事故下安全壳内的可燃气体控制,我国最新颁布的《核动力厂设计安全规定》(HAF102)明确要求:“必须充分考虑在严重事故下控制可能产生或释放的裂变产物、氢和其他物质的措施”。另外,参考美国联邦法规10CFR 规定:①必须提供氢气控制系统以安全地容纳相当于100%燃料包壳金属-水反应产生的氢气;②在事故期间及以后,相当于100%燃料包壳金属-水反应产生的氢气均匀分布时的浓度小于10%。因此,对核电厂进行严重事故下安全壳内氢气浓度 分布的计算分析,根据计算结果确定有效的氢气控制措施,对于满足我国核安全法规要求,具有现实的工程意义。 氢气导致的安全壳失效风险与具体的严重事故序列、安全壳类型、体积和隔间结构等许多因素相关。本文以秦山二期核电厂为分析对象,使用模块化严重事故计算工具——MAAP 程序,对比分析了典型严重事故工况下的氢气产生以及氢气在安全壳内的流动分布情况。并参考法规要求,初步分析了该核电厂的氢气燃烧风险。这些分析工作,可为秦山二期核电厂的氢气控制和严重事故管理工作提供一些参考。 2 计算程序 本文使用模块化严重事故计算工具(MAAP4程序)对秦山二期核电厂不同严重事故条件下的安全壳内的氢气浓度分布进行了计算分析。MAAP 程序耦合了热工水力学计算以及裂变产物释放和迁移计算,可以模拟严重事故的进程现象,从初始事件开始,既可以向安全、稳定、可冷却的反应堆状态发展,也可以向安全壳结构失效最终导致裂变产物向环境释放的事故状态发展。MAAP 程序长期作为压水堆核电站严重事故 收稿日期:2007-03-30;修回日期:2007-09-10

核电厂安全题库与答案

1、按照反应堆堆芯体不同,核反应堆分为哪几种类型?(老师提 示7种) 压水堆、沸水堆、重水堆、石墨水冷堆、石墨气冷堆、高温气冷堆、快中子增殖堆、 2、压水堆核电站有什么优点? ①压水堆以轻水作慢化剂及冷却剂,反应堆体积小,技术十分成熟 ②压水堆采用低富集度铀作燃料,铀浓缩技术已经过关 ③压水堆核电厂有放射性的一回路系统和二回路系统分开,放射性冷却剂不会进入二回路而污染汽轮机,运行、维护方便;需要处理的放射性废气、废水及其他废物量较少 3、按照相关规定,核电厂应该设置哪几道安全屏障? 由燃料棒包壳构成的第一道屏障、由一回路压力边界构成的第二道屏障、安全壳及其辅助边界构成的第三道屏障 4、核反应堆第一道安全屏障由哪些部件构成? 燃料芯块、带压金属合金包壳及相关元件 5、核反应堆第二道安全屏障由哪些部件构成? 压力壳及其顶盖,蒸汽发生器一次侧,主泵(包括它们的第一道轴封),稳压器及其与一回路的连管、安全阀和卸压阀,一回路管道、蒸汽发生器和主泵、冷却环路的总成,压力壳内操作控制棒的机械装置,辅助系统(由与其相连的环路开始,到第二道隔离装置) 6、核反应堆第三道安全屏障由哪些部件构成? 反应堆厂房或安全壳、构成安全壳延伸的某些管道、安全壳隔离系统

管道、其他 7、如何保证安全壳的完整性? 可以通过改进安全系统以减轻施加在安全壳上的载荷,以及加强安全壳结构,使放射性物质的释放量减小到最低程度;加强其在设计、建造、运行和监督等环节的安全质量把关工作 8、核电厂一般设置哪几级防御?(5级) ①核电厂的设计、建造应考虑防止事故的发生,采取各种有效措施,在运行中提供必须的监督,把事故发生的概率降到最低程度,以达到预期安全运行 ②在满足第一级防御的各项要求之外,谨慎估计发生事故、影响安全的可能性及其对策问题 ③主要考虑如发生设计基准事故,而一些保护系统又同时失效时,必须有另外的专设安全设施投入工作,以防止燃料熔化和限制裂变产物释放 ④为防止和缓解核电厂的严重事故而采取的对策 ⑤以核电厂发生严重事故的应急对策为主要内容,以适时采取应急防护措施保护公众 9、核反应堆电厂核岛系统有哪些设备? 核蒸汽供应系统 ①压水堆及一回路主系统和设备 ②三个辅助系统:化学和容积控制系统、余热排出系统和安全注射系统

从福岛核电站事故分析看安全文化

从福岛核电站事故分析看安全文化 日本正遭遇二战以来最大的灾难,这次地震由于其史无前例的强烈震级和同时伴随的强次生灾害揪住了全球民众的心。这其中,福岛第一核电站事故1、2、3、4号机组所发生的事故,由于其可能对周边产生的恶劣影响和对人心理产生的恐慌,引起了越来越强烈的关注。根据诸多业内人士对核电站事故以及事故应急处理的分析,我们看到:福岛第一核电站事故看起来是天灾(地震引发海啸造成装置失效),但其实也有许多人为因素,也就是说,还是有人做了不应该做的事情,有人没做应该做的事情。 下面我结合专业人士eagle506的技术分析谈一谈这其中的文化因素。 1、关于应急处置 2011年3月11日下午,地震发生,反应堆安全停堆,按理应该马上向堆芯补水,保证堆芯冷却防止超压,但地震摧毁了电网,厂外电源不可用,这时应该发动应急柴油机,但海啸来了,柴油机房被淹,不过核电厂还备有蓄电池,虽然容量较小,但是在事故后8小时内还是为压力容器的冷却做了一些贡献的。电池眼看就要耗尽,为了保住压力容器,必须要卸压,防止压力容器超压爆炸。而且操作员也确实是这样做的。 但是,12日早,日本首相菅直人要来视察。 如果卸压,环境中的放射性会升高,虽然菅直人是空中视察,但这对没有穿防护服的日本首相来说仍然不是什么好事,所以,根据日本某

些论坛的说法(没有得到官方证实),卸压的事由于此次视察暂时中断。但余热不等人,安全壳内温度压力仍在上升。 菅直人走后,操作员开始继续释放压力容器内部的压力。此时压力容器内的温度约为550 摄氏度,堆芯已经裸露并产生大量氢气。所以,含有氢气的蒸汽,通过卸压水箱简单的降温和过滤就被排放到厂房大气中。 下午三点左右,随着一声巨响,反应堆厂房顶盖被爆炸完全摧毁,只剩下钢结构。。。 这是很典型的一个例子。起初是低估了事故的后果,后来关键时刻,没有恪守安全第一的原则,由于首相的视察中断了正在进行的卸压操作,最终导致了反应堆厂房爆炸。如果时光可以倒流,我们知道,应该本着“以人为本,安全第一”的原则,作最坏的打算,做最周全的准备,而在应急处置的关键时刻,应该拒绝首相的视察,全力以赴投入到抢险工作中。但是很遗憾,时光不能重来。 2、关于采取何种措施的问题 在整个过程中,操作员一直在采取比较保守的冷却方式。虽然有机会,但是直到爆炸发生也没有向堆芯内注入硼水,而是用清水代替。一方面是不希望反应堆就此报废,一方面是对反应堆的承受能力抱有侥幸心理。客观的说,操作人员在最大限度的保护反应堆,但是没有在最大限度上保护公众的安全。 我们知道:安全文化最核心的理念就是“以人为本,安全第一”、“安全

安全壳微小通道内气溶胶沉积模型综述

Nuclear Science and Technology 核科学与技术, 2020, 8(3), 123-129 Published Online July 2020 in Hans. https://www.360docs.net/doc/3912681032.html,/journal/nst https://https://www.360docs.net/doc/3912681032.html,/10.12677/nst.2020.83014 Summary of Aerosol Deposition Models within Micro Channels of Containment Hongchun Ding, Yaru Fu, Qiliang Mei Shanghai Nuclear Engineering Research & Design Institute Co. Ltd., Shanghai Received: Jun. 5th, 2020; accepted: Jun. 30th, 2020; published: Jul. 7th, 2020 Abstract During a severe accident in a nuclear power plant (NPP), even if the containment does not fail or destroy seriously, the radioactive fission product aerosols will still leak into the environment through these potential micro channels within containment. At present, many countries still esti-mate the leakage rate of aerosol particles from these micro channels in the same way as ordinary gases, that is to say, aerosol particles can pass through these micro channels without any loss. However, many experiments have observed that when aerosol particles pass through these micro channels, deposition occurs through a variety of deposition mechanisms. If the deposition of aerosol particles in these micro channels is taken into account, the conservativeness of source term assess-ment of severe accidents can be reduced. In this paper, severe representative models for studying the deposition effects of aerosol particles in micro channels are introduced through a large number of literature reviews. The advantages and disadvantages of these models are compared and sum-marized, which will provide a reference for the subsequent model study of aerosol deposition within micro channels. Keywords Source Term, Aerosol Particles, Micro Channel, Containment, Nuclear Power Plant, Severe Accident 安全壳微小通道内气溶胶沉积模型综述 丁宏春,付亚茹,梅其良 上海核工程研究设计院有限公司,上海 收稿日期:2020年6月5日;录用日期:2020年6月30日;发布日期:2020年7月7日

三代核电厂提升严重事故应对能力安全技术研发及应用-华南理工大学

附件4: 2018年度广东省科学技术奖公示表 项目名称三代核电厂提升严重事故应对能力安全技术研发及应用 主要完成单位中山大学 中广核研究院有限公司中广核工程有限公司华南理工大学 主要完成人(职称、完成单位、工作单位)1. 陈鹏(高级工程师、中广核研究院有限公司、中广核研究院有限公司) 2. 张小英(教授、中山大学、中山大学) 3. 展德奎(高级工程师、中广核研究院有限公司、中广核研究院有限公司) 4. 刘东杰(高级工程师、中广核工程有限公司、中广核工程有限公司) 5. 杨方青(工程师、中广核研究院有限公司、中广核研究院有限公司) 6. 张雷(工程师、中广核研究院有限公司、中广核研究院有限公司) 7. 梁峻铭(工程师、中广核研究院有限公司、中广核研究院有限公司) 8. 李华(实验师、华南理工大学、华南理工大学) 9. 王春发(工程师、中广核工程有限公司、中广核工程有限公司) 10. 王彪(教授、中山大学、中山大学) 11.林继铭(高级工程师,中广核研究院有限公司、中广核研究院有限公司) 12.张会勇(高级工程师,中广核研究院有限公司、中广核研究院有限公司) 13.冉小兵(研究员级高级工程师,中广核工程有限公司、中广核工程有限公司) 14.杨志飞(高级工程师,中广核研究院有限公司、中广核研究院有限公司)15.段承杰(高级工程师,中广核研究院有限公司、中广核研究院有限公司) 项目简介 项目面向自主三代核电厂严重事故应对能力安全技术提升,成功提出了一回路系统分析内耦合高精度和高稳定性的安全分析程序,三维堆芯熔化进程模拟程序;形成自主化的三代压水堆堆芯熔融物冷却滞留系统,形成完整的核电厂金属保温层工程设计、制造、施工工艺体系以及严重事故诊断响应支持系统,对于自主三代核电堆型“华龙一号”安全水平提升具有重大意义。主要技术创新包括: 1.提出了自主第三代大型压水堆堆芯与蒸汽发生器的直接耦合分析理论和高精度快速求解算法,实现全范围瞬态工况下反应堆一回路的热工水力分析。开发了三维堆芯熔化精细化模拟程序。 2.建设了三维IVR整体试验装置,攻克加热、密封等试验难题,获取国际首套1:5

相关文档
最新文档