无机化学复习提纲

无机化学复习提纲
无机化学复习提纲

3、状态和状态函数

系统的状态是指系统所处的状况。热力学中用系统的宏观性质如压力()、温度(T)、密度()、体积(V)、物质的量()及热力学能(U)、焓(H)、熵(S)、吉布斯函数(G)等来描述系统的状态。这些描述系统宏观性质的物理量称之为状态函数。

状态函数的最重要特点是它的数值仅仅取决于系统的状态,当系统状态发生变化时,状态函数的数值也随之改变。但状态函数的变化值(增量)只取决于系统的始态与终态,而与系统变化的途径无关。

5、热和功

热和功是系统状态发生变化时与环境之间的两种能量交换形式。

系统与环境之间因存在温度差异而发生的能量交换形式称为热(或热量),量符号为Q;系统与环境之间除热以外的其他各种能量交换形式统称为功,量符号为W。

热力学规定:

系统向环境吸热,Q取正值;系统向环境放热,Q取负值。

环境对系统做功,W取正值;系统对环境做功,W取负值。

由于系统体积变化而与环境产生的功称体积功,用-△V表示;除体积功以外的所有的其他功都称为非体积功Wf(也叫有用功)。

W =-△V+Wf

热和功都不是系统的状态函数,除了与系统的始态、终态有关以外,还与系统状态变化的具体途径有关。

6、热力学能与热力学第一定律

热力学能U是系统内部各种形式能量的总和,是系统的状态函数。

热力学第一定律的数学表达式为

△U=Q+W

1、化学反应热效应

(1)恒容反应热QV

在等温条件下,若系统发生化学反应是在容积恒定的容器中进行,且不做非体积功的过程,则该过程与环境之间交换的能量就是恒容反应热QV。

Q V=△U

(2)恒压反应热Q p与焓变△H

在等温条件下,若系统发生化学反应是在恒定压力下进行,且不做非体积功的过程,则该过程中与环境之间交换的热量就是恒压反应热Q p。

Q p =△U+△V

=U2-U1+(V2-V1)

=(U2+2V2)-(U1+1V1)

定义

H=U+V

H称为焓。

Q p=H2-H1=△H

△H称为焓变,△H>0,表明系统是

吸热的;△H<0,表明系统是放热的。2、盖斯定律

任何一个化学反应,在不做其他功和处于恒压或恒容的情况下,不论该反应是一步完成还是分几步完成的,其化学反应的热效应总值相等。即在不做其他功和恒压或恒容时,化学反应热效应仅与反应的始、终态有关,而与具体途径无关。

盖斯定律的热力学依据是QV=△U和Q p=△H两个关系式,热虽然是一种途径函数,两关系式却表明QV与Q p分别与状态函数增量相等,因此它们的数值就只与系统的始、终状态有关,而与途径无关,即具有状态函数增量的性质。

3、反应焓变的计算

(1)物质的标准态

物质状态时在温度T及标准压力(=100KPa)下的状态,简称标准态。右上标“θ”表示标准态;当系统处于标准态时,指系统诸物质均处于各自的标准态。对具体的物质而言,相应的标准态如下:

①纯理想气体物质的标准态是该气体处于标准压力下

的状态;混合理想气体中任一组分的标准态是该气体组分的分压为

时的状态。

②液体或固体物质的标准态是标准压力下的纯液体或纯固体。

③溶液中溶质的标准态是指标准压力下溶质的浓度为

(=1 mol·L-1)的溶液。

(2)摩尔反应焓变与标准摩尔反应焓变

摩尔反应焓变

当化学反应处于温度T时的标准状态时,该反应的摩尔反应焓

变称为标准摩尔反应焓变(T)。

(3)标准摩尔生成焓

在温度T及标准态下,由参考状态的单质生成物质B的反应,其反应进度为1 mol 且B =1时的标准摩尔反应焓变,即为物质

B在温度T 时的标准摩尔生成焓(B,β,T)。

水合离子标准摩尔生成焓定义为:在温度T及标准状态下,由参考状态纯态单质生成溶于大量水(形成无限稀薄溶液)的水合离子B(aq)的标准摩尔反应焓变,并规定水合氢离子的标准摩尔

生成焓为零,即在298.15K,标准状态时由单质H2(g)生成水合

氢离子的标准摩尔反应焓变为零。

(4)标准摩尔燃烧焓

在温度T及标准态下,物质B完全燃烧(或完全氧化)的化学反应,当反应进度为1mol且B =1时的标准摩尔反应焓变,

为物质B 的标准摩尔燃烧焓。所谓完全燃烧(或完全氧化)是指物质B中的C成为CO2(g),H成为H2O(l),S成为SO2(g),N成为N2(g),Cl2成为HCl(aq)。

三、化学反应的方向与限度

1、熵(S)

S=

熵也是状态函数,系统地混乱度越大,熵值就越大。

摩尔规定熵(B,T)

(B )=(B,T )-*(B,

0K)=(B,T)

在标准状态下的摩尔规定熵称为标准摩尔熵,用(B,T)表示。

水合离子的标准摩尔熵以(H+,aq)=0为基准。

物质的熵值有如下规律:

①物质的熵值与系统的温度、压力有关。温度升高,系统的混乱度增加,熵值增大;压力增大,微粒被限制在较小体积内运动,熵值减小(压力对液体和固体的熵值影响很小)。

②熵与物质的凝聚状态有关。对同一种物质的熵值有

(B,g,T)> (B,l,T)> (B,s,T)③相同状态下,分子结构相似的物质,随相对分子质量的增大,熵值增大;当物质的相对分子质量相近时,分子就够复杂的分子起熵值大于简单分子;当分子结构相似且相对分子质量相近时,熵值相近。

3、吉布斯函数与吉布斯函数变

吉布斯函数G为

G=H-TS

G为状态函数。

在恒温恒压非体积功等于零的状态变化中,吉布斯函数变为

△G=G2-G1=△H-T△S

4、化学反应方向的判据

△G可以作为判断化学反应能否自发进行的判据。即

△G<0,自发进行

△G=0,平衡状态

△G>0,不能自发进行(其逆过程是自发的)5、标准摩尔生成吉布斯函数与标准摩尔反应吉布斯函数

在温度T及标准态下,由参考状态的单质生成物质B的反应,其反应进度为1mol且B =1时的标准摩尔反应吉布斯函数变

,即为物质B的标准摩尔生成吉布斯函数

(B,β,T)。

也可从吉布斯函数的定义计算:

当反应温度不在298.15K时

1、可逆反应与化学平衡

(1)可逆反应

可逆反应:在一定的反应条件下,一个化学反应既能从反应物变为生成物,在相同条件下也能由生成物变为反应物,即在同一条件下能同时向正逆两个方向进行的化学反应。习惯上,把从左向右进行的反应称为正反应,把从右向左进行的反应称为逆反应。(2)化学平衡

在恒温恒压且非体积功为零时,化学反应的吉布斯函数变

=0时,反应达到最大限度,系统内物质B的组成不再改变,称该系统达到了热力学平衡态,简称化学平衡。

化学平衡具有以下特征:

①化学平衡时一个动态平衡

②化学平衡是相对的,同时也是有条件的。一旦维持平衡的条件发生了改变(例如温度、压力的变化),系统的宏观性质和物质的组成都将发生变化。原有的平衡将被破坏,代之以新的平衡。

③在一定温度下,化学平衡一旦建立,以化学反应方程式中化学计量数为幂指数的反应方程式中各物种的浓度(或分压)的乘积为一常数,叫平衡常数。

2、平衡常数

(1)实验平衡常数

对任一可逆化学反应

0= B

在一定温度下,达到平衡时,浓度平衡常数K c为

若为气相反应,也可用压力平衡常数表示:

上述浓度平衡常数Kc和压力平衡常数Kp都是根据实验数据计算得到的,所以又称实验平衡常数。实验平衡常数是有单位的,实验平衡常数的单位取决于化学计量方程式中生成物与反应物的单位及相应的化学计量数。

(2)标准平衡常数

在标准平衡常数表达式中,有关组分的浓度(或分压)都必须用相对浓度(或相对分压)来表示,即反应方程式中各物种的浓度

(或分压)均须分别除以其标准态的量,即除以(或)。由于相对浓度(或相对分压)是量纲为一的量,所以标准平衡常数是量纲为一的量,单位为“1”,可省略。

对气相反应

0=B(g)

若为溶液中溶质的反应

0=B(aq)

对于多相反应的标准平衡常数表达式,反应组分中的气体用相对分压()表示;溶液中的溶质用相对浓度()

表示;固体和纯液体为“1”,可省略。

通常如无特殊说明,平衡常数一般均指标准平衡常数。在书写和应用平衡常数表达式时应注意:

①平衡常数表达式中各组分的分压(或浓度)应为平衡状态时的分压(或浓度)。

②由于平衡常数表达式以反应计量方程式中各物种的化学计

量数为幂指数,所以与化学反应方程式有关;同一化学反应,反应方程式不同,其值也不同。

(3)多重平衡规则

一个给定化学反应计量方程式的平衡常数,不取决于反应过程中经历的步骤,无论反应分几步完成,其平衡常数表达式完全相同,这就是多重规则。也就是说,当某总反应为若干个分步反应之和时,则总反应的平衡常数为这若干个分步反应平衡常数的乘积。

多重平衡规则说明值与系统达到平衡的途径无关,仅取决于系统的状态——反应物(始态)和生成物(终态)。

(4)化学反应进行的程度

化学反应达到平衡时,系统中物质B的浓度不再随时间而改变,此时反应物已最大限度地转变为生成物。通过平衡常数可以计算化学反应进行的最大限度,即化学平衡组成。在化工生产中常用转化率(α)来衡量化学反应进行的程度。

某反应物的转化率是指该反应物已转化为生成物的百分数。即

化学反应达到平衡时的转化率称平衡转化率,平衡转化率是理论上该反应的最大转化率。

3、平衡常数与标准摩尔吉布斯函数变

(1)标准平衡常数与标准摩尔吉布斯函数变

在恒温恒压、任意状态下化学反应的与其标准态的关系为

=+RTlnQ

式中Q称为化学反应的反应商,简称反应商。反应商Q的表达式与标准平衡常数的表达式完全一致,不同之处在于Q表达式中的浓度或分压为任意态的(包括平衡态),而表达式中的浓度或分压是平衡态的。

平衡时,=0,则

=-RTln

(2)化学反应等温方程式

化学反应等温式

=-RTln+RTlnQ

(3)反应商判据

化学反应进行方向的反应商判据

Q<<0反应正向进行

Q==0平衡状态

Q>>0反应逆向进行

4、影响化学平衡的因素——平衡移动原理

(1)浓度(或气体分压)对化学平衡的影响

对一个在一定温度下已达化学平衡的反应系统,增加反应物的浓度(或其分压)或降低生成物的浓度(或其分压),化学平衡

向生成物方向移动;反之,若降低反应物浓度(或其分压)或增加生成物浓度(或其分压),则平衡将向反应物方向移动。

(2)压力对化学平衡的影响

对无气体参与的反应,改变压力对平衡影响很小,可以不予考虑。

对有气体参与的反应,若气体化学计量数之和(g)≠0,增加压力,平衡向气体分子数较少的一方移动;降低压力,平衡向气体分子数较多的一方移动。显然,如果反应前后气体分子数没有

变化,(g)=0,则改变总压对化学平衡没有影响。

(3)温度对化学平衡的影响

在不改变浓度、压力的条件下,升高平衡系统的温度时,平衡向着吸热反应的方向移动;反之,降低温度时,平衡向着放热反应的方向移动。

(4)勒夏特列原理

勒夏特列原理:如果改变平衡系统的条件之一(如浓度、压力或温度),平衡就向着能减弱这个改变的方向移动。即如果对平衡系统施加外力,则平衡将沿着减小外力影响的方向移动。

必须注意,勒夏特列原理只适用于已经处于平衡状态的系统,而对于未达平衡状态的系统则不适用。

1、化学反应速率的概念

对任一化学反应

0= B

其化学反应速率为

即反应速率为反应进度随时间的变化率。

对恒容反应,例如密闭反应器中的反应,或液相反应,体积值不变,所以反应速率(基于浓度的速率)的定义为

若反应过程体积不变,则有式中对某一指定的反应物来说,它是该反应物的消耗速率;对某一指定的生成物来说是该生成物的生成速率,一般提到的反应速率多为此速率。

2、反应历程与基元反应

为基元反应,则该基元反应的速率方程式为

(3)反应级数

基元反应速率方程式中各浓度项的幂次分别称为反应组分的反应级数。该反应总的反应级数则是各反应组分的级数之和,即

对于基元反应,反应级数与它们的化学计量数是一致的。而对于非基元反应,速率方程式中的级数一般不等于

()

(4)反应速率常数

反应速率方程式中的比例系数称为反应速率常数。不同的反应有不同的值。值与反应物的浓度无关,而与温度的关系较

大。温度一定,速率常数为定值。速率常数表示反应速率方程式中各有关浓度项均为单位浓度时的反应速率。同一温度、相同浓度下

不同化学反应的值可以反映出反应进行的相对快慢。

书写速率方程时还须注意:对于稀溶液中溶剂、固体或纯液体参加的化学反应,其速率方程式的数学表达式中不必列出它们的浓度项。

3、反应速率理论

(1)碰撞理论

能量因素碰撞理论把那些能够发生反应的碰撞称为有效碰撞,能够发生有效碰撞的分子称为活化分子。要使普通分子(即具有平均能量的分子)成为活化分子所需的最小能量称为活化能,用E a表示。在一定温度下,反应的活化能越大,其活化分子百分数越小,反应速率就越小;反之,反应的活化能越小,其活化分子百分数就越大,反应则越快。

考研无机化学_知识点总结

第一章物质存在的状态………………………………………………………………2 一、气体 .......................................................................................................... 2 二、液体 .......................................................................................................... 3 ①溶液与蒸汽压 ................................................................................................ 3 ②溶液的沸点升高和凝固点的下降 ................................................................... 3 ③渗透压 .......................................................................................................... 4 ④非电解质稀溶液的依数性 .............................................................................. 4 三、胶体 .......................................................................................................... 4 第二章 化学动力学初步……………………………………………………………5 一、化学反应速率 ............................................................................................ 5 二、化学反应速率理论 ..................................................................................... 6 三、影响化学反应速率的因素 .......................................................................... 6 2、温度 ............................................................................................................ 7 第三章 化学热力学初步……………………………………………………………8 一、热力学定律及基本定律 .............................................................................. 8 二、化学热力学四个重要的状态函数 ................................................................ 9 4、自由能 ....................................................................................................... 10 ①吉布斯自由能 .............................................................................................. 10 ②自由能G ——反应自发性的判据 .................................................................. 11 ③标准摩尔生成自由能θ m f G ? (11)

无机化学读书笔记

无机化学读书笔记 【篇一:无机化学学习心得】 《普通化学》培训总结 本人作为化学专业的一名普通老师,有幸参加了高等学校教师网络 在线培训课程,同济大学吴庆生教授主讲的《普通化学》生动形象,他渊博的知识、严谨的态度、丰富的经验以及独特的教学艺术,给 我留下深刻的印象,使我受益良多。 本门课程的培训视频以在校的普通化学及其相关课程的授课老师为 对象,主要介绍了普通化学的课程定位、课时安排、教学理念、难 重点教学设计、主要的教学方法、示范教学、考核与评价、教学前 沿等内容。通过主讲教师对其多年课程教学经验的分享,经过面对 面交流,为我们指点迷津,提高了我们对本门课程教学能力。 我作为一名老师队伍当中的新人,需要从学生的学习思维模式和立 场迅速切换到老师的授课思维状态,经过本门课程的学习,使我有 了一定的感悟。我初步明白,作为一名老师,要竭尽所能的将知识 传授给学生,但用何种教学方式才能更好地激发学生的学习热情与 潜能,这是我目前以至于以后都要不断思考、总结的问题。经过此 次的培训,给我提供了一些思路,我打算从以下几方面着手: 第一,丰富教学形式。以丰富多样的课堂教学模式,充分结合当代 学生的性格特点,不拘泥于枯燥的理论教学,而要采用富有激情、 生动形象、理论结合实际的教学方式,把理论化学与生活中的化学 结合在一起,使学生能更好地运用到生活的方方面面,做到理论与 实践完美结合。当然,除了课堂教学之外,还要适当增加实践教学,激发学生的学习热情。 第二,充分利用多媒体教学与板书教学相结合的方式。对一些无机 化学当中抽象的内容,要采用动画的方式,具象地展现在学生面前,以便于他们更好地理解。 第三,教学要详略得当,对于重难点问题,要深入解析,以具体的 教学案例深入分析问题,使学生更好地掌握所学内容和解决问题的 方法,同时,要将所学内容完美结合,前后串起来,在学习新知识 的同时,复习旧知识,而且便于更好地理解所学内容。 以上就是我本次学习的心得体会,我非常感谢吴教授的精彩授课, 同时非常荣幸有这次机会可以跟吴教授面对面交流学习,使我我受 益匪浅,希望以后还有更多的交流、学习和提升的机会。

无机化学心得

姓名: 班级: 学号:

无机及分析化学心得 经过一个学期对《无机及分析化学》这门课程的学习,我的感触颇多。因为我是一名转专业的学生,所以在大二的时候才开始上这门课。从一开始的自我想象容易,到自我感觉良好,到有点小小的紧张,再到立志要开始认真的学习,到感觉状态有所好转,再到充满自信。这其中的纠结、艰辛和自豪,不是一两句话就可以描述清楚的。再加上因为我想要获得保研的资格,因此我对于将这门课学好是持着一种前所未有的坚定心情。下面我就将会将我这一学期所收获的一一讲来。 从一开始的自我想象容易,这其中的莫名的自信感来自于因为我在高中的时候是一名理科生,当时的化学成绩自我感觉还行吧,所以在开学的时候说实话根本就没把《无机及分析化学》这门课当做我所学的重点去认真的准备。到后来在开学的第四周的时候开始上无机化学的第一节课,那节课老师在无心之间问了一句:“同学们,现在这个班上有多少人在高中的时候是学的文科啊?”当时我们就只看见前后左右的人都举手了,还认识到只有我们极少数的人是大二的师兄师姐,所以在当时出于身为少数理科生的骄傲和一点点身为师姐的骄傲对这门课的自信又多了一层(虽然其中没有什么联系,但在当时我还真就这么想了,现在想想当时还真幼稚)。在上了3、4 节课的时候吧,紧张感开始出现了,在当时老师其实讲课是讲的很慢的,而我们差不多学到了胶体溶液那一节,当时在听胶团结构的时候,真的就只感觉眼前是一个个熟悉又陌生的字符在眼前飞舞,脑袋中是一片空白,感觉平时都听得懂得字怎么现在就不明白了呢?直到后来在课下复习的时候才渐渐的弄明白。比如:AgNO3 溶液与过量的KI 溶液反应制备AgI 溶胶,其反应的方程式为: AgNO3+KI=AgI+KNO3 又因为过量的KI 溶液和固体AgI 粒子在溶液中选择吸附了与自身组成相关的I -,因此胶粒带负电。而此时形成的AgI 溶胶的胶团结构 - + x- + 为:【(Agl) m? nI ?( n-x)K 】?XK 此时,(AgI) m为胶核,I-为电位离子,一部分K+为反离子,而且电位离子和反离子一起形成吸附层,吸附层与胶核一起组成胶粒。由于胶粒中反离子数比电位离子少,故胶粒所带电荷与电位离子符号相同,为负电荷。其余的反离子则分散在溶液中,形成扩散层,胶 粒与扩散层的整体成为胶团,胶团内反离子和电位离子的电荷总数

大学无机化学知识点总结.

无机化学,有机化学,物理化学,分析化学 无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学 普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学 化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。

无机化学 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函 数的变化量只与始终态有关,与系统状态的变化途径无关。 3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部 分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 4、 化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度νξ0 )·(n n sai k e t -==化学计量数 反应前反应后-,单位:mol 第二节:热力学第一定律 0、 系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温 物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、 系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对系统做功, W>O ;系统对环境做功,W<0。 2、 体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 3、 热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之 和称为热力学能,又叫内能。 4、 气体的标准状态—纯理想气体的标准状态是指其处于标准压力θ P 下的状态,混合气体 中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。

大学无机化学知识点总结

无机化学,有机化学,物理化学,分析化学无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学 普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学 化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。

无机化学 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为 R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同, 将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量 称为状态函数。状态函数的变化量只与始终态有关,与系统状态

无机化学总结

无机化学总结 在学习方法上要求: 一、要掌握基本概念、基础知识 1 基础知识,例如元素名称,符号,周期表,重要的方程式,重要单质的制备、 性质及用途,重要化合物的制备、性质及用途; 例如:重要的氧化剂:KMnO4、K2Cr2O7、PbO2、H2O2、Cl2、NaClO、KClO3等 还原剂:SnCl2、H2C2O4、Na2SO3、H2S、KI、 沉淀剂:C2O42-、CrO42-、S2-、CO32-、OH- 配合剂:NH3、H2O 、CN-、SCN-、S2O32- 显色剂等; 2、一些重要的基本理论:如:化学键理论: ①VBT:经典的价键理论、价层电子对互斥理论、杂化理论、 ②CFT: ③MOT: 原子结构理论 酸碱理论 氧化还原理论 3、各种概念的具体定义,来源,使用范围;各种定律、定理、规则及使用条件 等;例如:PV=nRT 使用条件为高温低压;配合物的定义、K稳的定义等。 镧系收缩、 4、一些伟大科学家的重要贡献; 例如:1893年瑞士年仅26岁的化学家维尔纳(Wrener,A)提出PV=nRT 使用条件为高温低压理论,成为化学的奠基人。 Pauling 阿累尼乌斯(Arrhenius,S.) 5、一些科学方法,例如测定分子量的方法(四种)、测定原子量的方法;使自己 在科学思维能力,科学方法上得到提高。特别是实验方法,动手操作能力上得到提高。 6、掌握学习方法。例如:演绎法,归纳法。 按照自己的习惯,建立一套适应自己的学习方法。 二、要系统总结所学过的知识 1、整个无机化学:一个气体定律(四个定律)两个基础知识(热力学、动力学)三个结构(原子结构、分子结构和晶体结构)四大平衡(酸碱平衡、沉淀溶解平衡、氧化还原平衡和配合平衡)及各种元素的性质。

无机化学_知识点总结

无机化学(上) 知识点总结 第一章 物质存在的状态 一、气体 1、气体分子运动论的基本理论 ①气体由分子组成,分子之间的距离>>分子直径; ②气体分子处于永恒无规则运动状态; ③气体分子之间相互作用可忽略,除相互碰撞时; ④气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。碰撞时总动能保持不变,没有能量损失。 ⑤分子的平均动能与热力学温度成正比。 2、理想气体状态方程 ①假定前提:a 、分子不占体积;b 、分子间作用力忽略 ②表达式:pV=nRT ;R ≈8.314kPa 2L 2mol 1-2K 1- ③适用条件:温度较高、压力较低使得稀薄气体 ④具体应用:a 、已知三个量,可求第四个; b 、测量气体的分子量:pV=M W RT (n=M W ) c 、已知气体的状态求其密度ρ:pV=M W RT →p=MV WRT →ρMV RT =p 3、混合气体的分压定律 ①混合气体的四个概念 a 、分压:相同温度下,某组分气体与混合气体具有相同体积时的压力; b 、分体积:相同温度下,某组分气体与混合气体具有相同压力时的体积 c 、体积分数:φ= 2 1 v v d 、摩尔分数:xi= 总 n n i ②混合气体的分压定律 a 、定律:混合气体总压力等于组分气体压力之和; 某组分气体压力的大小和它在混合气体中体积分数或摩尔数成正比 b 、适用范围:理想气体及可以看作理想气体的实际气体 c 、应用:已知分压求总压或由总压和体积分数或摩尔分数求分压、 4、气体扩散定律 ①定律:T 、p 相同时,各种不同气体的扩散速率与气体密度的平方根成反比: 2 1 u u =21p p =2 1 M M (p 表示密度) ②用途:a 、测定气体的相对分子质量;b 、同位素分离 二、液体

大学无机化学方程式整理

第一章氢及稀有气体 1.氢气的制备 实验室:Zn+2HCl=ZnCl2+H2↑ 军事上:CaH2 +2H2O → Ca(OH)2 + 2H2↑ 2.稀有气体化合物 ①第一个稀有气体化合物:Xe + PtF6 → Xe+[ PtF6] (无色)(红色)(橙黄色) ②氙的氟化物水解: 2XeF2+2H2O →2Xe↑+4HF+ O2↑ 6XeF4 + 12H2O == 2XeO3 + 4Xe↑+3O2↑ +24HF XeF6+3H2O →XeO3+6HF ③氙的氟化物为强氧化剂: XeF2 + H2─→ Xe + 2HF XeF2 + H2O2─→ Xe + 2HF + O2↑ 第二章碱金属与碱土金属元素 一、碱金属与碱土金属(铍、镁除外)元素溶于液氨, 生成溶剂合电子和阳离子成具有导电性的深蓝色溶液。 碱金属M(S) + (x+y)NH3 M+(NH3)x + e-(NH3)y

碱土金属M(S) + (x+2y)NH3 M2+(NH3)x + 2e-(NH3)y 二、氢化物 氢化物共分为离子型、共价型、过渡型 离子型氢化物是极强的还原剂:TiCl4+4NaH Ti+ 4NaCl+2H2↑ LiH能在乙醚中同B3+Al3+Ga3+等的无水氯化物结 合成复合氢化物,如氢化铝锂的生成。 4LiH + AlCl3乙醚Li[AlH4] + 3LiCl 氢化铝锂遇水发生猛烈反应Li[AlH4]+4H2O=LiOH↓+Al(OH)3↓+4H2↑ 三、氧化物 1、正常氧化物 碱金属中的锂和所有碱土金属在空气中燃烧时,分 别生成正常氧化物Li2O和MO。其他碱金属正常的氧 化物是用金属与他们的过氧化物或硝酸盐相作用制 得。 Na2O2+2Na=2Na2O 2KNO3+10K=6K20+N2↑

无机化学总结笔记

《无机化学》各章小结 第一章绪论 平衡理论:四大平衡 理论部分原子结构1.无机化学结构理论:,分子结构, 晶体结构 元素化合物 2.基本概念:体系,环境,焓变,热化学方程式,标准态 古代化学 3.化学发展史:近代化学 现代化学 第二章化学反应速率和化学平衡 1.化学反应速率 υ=Δc(A)Δt 2.质量作用定律 元反应aA + Bb Yy + Zz υ = k c (A) c (B) a b 3.影响化学反应速率的因素: 温度, 浓度, 催化剂, 其它. 温度是影响反应速率的重要因素之一。温度升高会加速反应的进行;温度降低又会减慢反应的进行。 浓度对反应速率的影响是增加反应物浓度或减少生成物浓度,都会影响反应速率。 催化剂可以改变反应速率。 其他因素,如相接触面等。在非均匀系统中进行的反应,如固体和液体,固体和气体或液体和气体的反应等,除了上述的几种因素外,还与反应物的接触面的大小和接触机会有关。超声波、紫外线、激光和高能射线等会对某些反应的速率产生影响 4.化学反应理论: 碰撞理论, 过渡态理论 碰撞理论有两个要点:恰当取向,足够的能量。 过渡态理论主要应用于有机化学。

5.化学平衡: 标准平衡常数, 多重平衡规则, 化学平衡移动及其影响因素 (1)平衡常数为一可逆反应的特征常数,是一定条件下可逆反应进行程度的标度。对同类反应而言,K值越大,反应朝正向进行的程度越大,反应进行的越完全 (2)书写和应用平衡常数须注意以下几点 a. 写入平衡常数表达式中各物质的浓度或分压,必须是在系统达到平衡状态时相应的值。生成物为分子项,反应物为分母项,式中各物质浓度或分压的指数,就是反应方程式中相应的化学计量数。气体只可以用分压表示,而不能用浓度表示,这与气体规定的标准状态有关。 b.平衡常数表达式必须与计量方程式相对应,同一化学反应以不同计量方程 式表示时,平衡常数表达式不同,其数值也不同。 c.反应式中若有纯故态、纯液态,他们的浓度在平衡常数表达式中不必列出。在稀溶液中进行的反应,如反应有水参加,由于作用掉的水分子数与总的水分子数相比微不足道,故水的浓度可视为常数,合并入平衡常数,不必出现在平衡关系式中。 由于化学反应平衡常数随温度而改变,使用是须注意相应的温度 (3)平衡移动原理如以某种形式改变一个平衡系统的条件(如浓度、压力、温度),平衡就会向着减弱这个改变的方向移动。 a 浓度对化学平衡的影响 增大反应物的浓度或减小生成物的浓度,平衡向右移动,减小反应物的浓度或增大生成物的浓度,平衡逆向移动。 b 压力对化学平衡的影响 压力变化只对反应前后气体分子数有变化的反应平衡系统有影响 在恒温下增大压力,平衡向气体分子数减少的方向移动;减小压力,平衡向气体分子数的方向移动 c 温度对化学平衡的影响 温度变化时,主要改变了平衡常数,从而导致平衡的移动。 对于放热反应,升高温度,会使平衡常数变小。此时,反应商大于平衡常数,平衡将向左移动。反之,对于吸热反应,升高温度,平衡常数增大。此时,反应商小于平衡常数,平衡将向右移动。 d 催化剂能够降低反应的活化能,加快反应速率,缩短达到平衡的时间。由

大学无机化学知识点总结

大学无机化学知识点总结 无机化学,有机化学,物理化学,分析化学无机化学元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。 无机化学 第一章:气体 第一节:理想气态方程

1、气体具有两个基本特性:扩散性和可压缩性。主要表现在:⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:为气体摩尔常数,数值为= 8、314 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273、15K STP下压强为101、325KPa =760mmHg =76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为:⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。

大学无机化学实验报告

大学无机化学实验报告 篇一:大学化学1实验报告 贵州大学 《大学化学》实验报告册 实验报告的基本内容及要求 实验报告应体现预习、实验记录和实验报告,要求这三个过程在一个实验报告中完成。 1、实验预习 在实验前每位同学都需要对本次实验进行认真的预习,并写好预习报告,在预习报告中要写出实验目的、要求,需要用到的仪器设备、物品资料以及简要的实验步骤,形成一个操作提纲。对实验中的安全注意事项及可能出现的现象等做到心中有数,但这些不要求写在预习报告中。 设计性实验要求进入实验室前写出实验方案。 2、实验记录 学生开始实验时,应该将记录本放在近旁,将实验中所做的每一个词组、观察到的现象和所测得的数据及相关条件如实地记录下来。实验记录中应有指导教师的签名。 3、实验总结 主要内容包括对实验数据、实验中的特殊学校、实验操

作的成败、实验的关键点等内容进行整理、解释、分析自己,回答思考题,提出实验结论或提出自己的看法等。 具体说明 1、实验报告册是由贵州大学化学与化工学院“大学化学”教学与实验中心《大学化学》教学小组设计,供全校开设《大学化学》实验的学生使 用。 2、“报告册”中的实验内容主要参考了华东理工大学无机化学教研组编《无机化学》实验、天津大学无机化学教研组编《无机化学实验》、贵 州工业大学无机化学教研组编《无机化学与普通化学实验》等实验指导书自编而成。实验前请参阅这些实验书。 3、“报告册”中“实验目的”、“实验原理”、制备实验中的“实验操作过程”和“产品纯度(或性能)检验”、实验中的“混合离子分离鉴定示 意图”要求学生在实验前的预习阶段完成,并写于报告中。 4、“报告册”中“实验内容”栏有若干空格,是留给学生自行设计的实验、要求学生在实验预习阶段自行设计出

无机化学总结 硼族元素

一硼单质及其化合物 制作成员:摆宫泽贾震韦仕富 (1) 硼单质 硼单质可以分为晶体与无定形两大类。 晶体硼呈灰黑色,硬度极高,导电性差,但它的电导率却随着温度的升高而增大,从而显示出与金属导体的不同。 不太纯的无定形硼为棕色粉末。 晶体硼单质的化学反应活性较低,无定形硼相对活泼。 ①硼单质的晶体结构 晶体硼单质基本结构单元为正二十面体,12个硼原子占据着多面体的顶点。 α—菱形硼:B12结构单元间的硼硼化学键属于三中心二电子键。由片层间B12结构单元按面心立方最密堆积方式形成晶体,其中所以硼原子间均形成共价键,使单质硬度大,导热能力强,导电能力弱。 β—菱形硼:结构更复杂,其中含B84结构单元。 ②硼单质的化学性质 1 常温下与F2化合:2B+3F2=2BF3 2 在空气中燃烧,放出大量热:4B+3O2=2B2O3 3 由于硼氢键的键能很大,所以硼能从许多稳定的氧化物如SiO2,P2O5中夺取氧。硼在炼钢过程中可以作为去氧剂。 4 赤热下,无定形硼与水蒸气反应:2B+6H2O(g)=2B(OH)3+2H2 5 在高温下硼能同N2,S,X2等非金属单质反应 2B+N2=2BN 2B+3Cl2=2BCl2 2B+3S=B2S3 6 在高温下硼也能同金属反应生成金属硼化物,如NbB4,ZrB2,LaB6等。硼化物一般具有高硬度高熔点。

7 无定形硼不与非氧化性酸作用,但可以与热浓H2SO4,热的HNO3反应: B+3HNO3(浓)=B(OH)3+3NO2↑ 2B+3H2SO4(浓)=2B(OH)3+3SO2↑ 8 有氧化剂存在时,硼与强碱共熔可得到偏硼酸盐: 2B+2NaOH+3KNO3=2NaBO2+3KNO2+H2O ③硼单质的制备 工业上用碱法分解硼镁矿制取单质硼。 Mg2B2O5?H2O+2NaBO2=2NaBO2+2Mg(OH)2 4NaBO2+CO2+10H2O=NaB4O7?10H2O+Na2CO3 NaB4O7+H2SO4+5H2O=4H3BO3+Na2SO4 2H3BO3=B2O3+3H2O B2O3+Mg=2B+3MgO 用硫酸与硼镁矿反应一步制得硼酸: Mg2B2O5?H2O+2H2SO4=2H3BO3+2MgSO4 (2) 硼氢化合物 称为硼烷,已知的有:B2H6,B4H10,B5H9,B8H16,B8H18等,BnHn+4与BnHn+6共20 多种。硼烷中常出现五种类型的化学键,其中有包括氢桥键,硼桥键与闭合式硼键的三种缺电子的三中心二电子键与两种一般的化学键——硼氢键 B-H、硼硼键 B-B。 ①乙硼烷 B2H6就是最简单的硼烷。BH3不存在就是由于B的价轨道没有被充分利用,且配位数未达到饱与,又不能形成稳定sp2 杂化态的离域π键。 乙硼烷的结构: 每个硼原子均采取sp3 杂化,4个杂化轨道中有3个单电子轨道与一个空轨道。上方氢原子的有1个电子的1s轨道与两个硼原子的共含1个电子的两个sp3 杂化轨道三者互相成键。这种键称为三中心二电子键,同时由于其类似一座桥,故称为氢桥键。

大学无机化学知识点总结

大学无机化学知识点总结 无机化学,有机化学,物理化学,分析化学 无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学 普通有机化学、有机合成化学、金属与非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学 化学分析、仪器与新技术分析。包括性能测定、监控、各种光谱与光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像与形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能与生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。

大学无机化学知识点总结 无机化学 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性与可压缩性。主要表现在: ⑴气体没有固定的体积与形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体就是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8、31411--??K mol J 3、只有在高温低压条件下气体才能近似瞧成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之与。 3、(0℃=273、15K STP 下压强为101、325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语与基本概念 1、 系统与环境之间可能会有物质与能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态就是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态 函数的变化量只与始终态有关,与系统状态的变化途径无关。 3、 系统中物理性质与化学性质完全相同而与其她部分有明确界面分隔开来的任何均匀部 分叫做相。相可以由纯物质或均匀混合物组成,可以就是气、液、固等不同的聚集状态。 4、 化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度νξ0 )·(n n sai k e t -==化学计量数 反应前反应后-,单位:mol 第二节:热力学第一定律 0、 系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温 物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、 系统与环境之间除热以外其她的能量传递形式,称为功,用W 表示。环境对系统做功,W>O; 系统对环境做功,W<0。 2、 体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其她形式的功称为非体积功。 3、 热力学能:在不考虑系统整体动能与势能的情况下,系统内所有微观粒子的全部能量之 与称为热力学能,又叫内能。 4、 气体的标准状态—纯理想气体的标准状态就是指其处于标准压力θP 下的状态,混合气 体中某组分气体的标准状态就是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T,压力为θ P 时的状态。 液体溶液中溶剂或溶质的标准状态—溶液中溶剂可近似瞧成纯物质的标准态。在溶液中,溶质的标准态就是指压力θP P =,质量摩尔浓度θb b =,标准质量摩尔浓度

无机化学心得体会

无 机 及 分 析 化 学 心 得 姓名:班级: 学号:

无机及分析化学心得 经过一个学期对《无机及分析化学》这门课程的学习,我的感触颇多。因为我是一名转专业的学生,所以在大二的时候才开始上这门课。从一开始的自我想象容易,到自我感觉良好,到有点小小的紧张,再到立志要开始认真的学习,到感觉状态有所好转,再到充满自信。这其中的纠结、艰辛和自豪,不是一两句话就可以描述清楚的。再加上因为我想要获得保研的资格,因此我对于将这门课学好是持着一种前所未有的坚定心情。下面我就将会将我这一学期所收获的一一讲来。 从一开始的自我想象容易,这其中的莫名的自信感来自于因为我在高中的时候是一名理科生,当时的化学成绩自我感觉还行吧,所以在开学的时候说实话根本就没把《无机及分析化学》这门课当做我所学的重点去认真的准备。到后来在开学的第四周的时候开始上无机化学的第一节课,那节课老师在无心之间问了一句:“同学们,现在这个班上有多少人在高中的时候是学的文科啊?”当时我们就只看见前后左右的人都举手了,还认识到只有我们极少数的人是大二的师兄师姐,所以在当时出于身为少数理科生的骄傲和一点点身为师姐的骄傲对这门课的自信又多了一层(虽然其中没有什么联系,但在当时我还真就这么想了,现在想想当时还真幼稚)。在上了3、4节课的时候吧,紧张感开始出现了,在当时老师其实讲课是讲的很慢的,而我们差不多学到了胶体溶液那一节,当时在听胶团结构的时候,真的就只感觉眼前是一个个熟悉又陌生的字符在眼前飞舞,脑袋中是一片空白,感觉平时都听得懂得字怎么现在就不明白了呢?直到后来在课下复习的时候才渐渐的弄明白。比如: AgNO 3 溶液与过量的KI 溶液反应制备AgI 溶胶,其反应的方程式为:AgNO 3+KI=AgI+KNO 3 又因为过量的KI 溶液和固体AgI 粒子在溶液中选择吸附了与自身组成相关的I -,因此胶粒带负电。而此时形成的AgI 溶胶的胶团结构 -+x-+为: 【(AgI)m ·nI ·(n-x)K 】·xK 此时,(AgI)m 为胶核,I -为电位离子,一部分K +为反离子,而且电位离子和反离子一起形成吸附层,吸附层与胶核一起组成胶粒。由于胶粒中反离子数比电位离子少,故胶粒所带电荷与电位离子符号相同,为负电荷。其余的反离子则分散在溶液中,形成扩散层,胶

无机化学知识点归纳

第一篇:化学反应原理 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气 体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函 数的变化量只与始终态有关,与系统状态的变化途径无关。 3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部 分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 4、 化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度νξ0 )·(n n sai k e t -==化学计量数 反应前反应后-,单位:mol 第二节:热力学第一定律 0、 系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温 物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、 系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对系统做功, W>O ;系统对环境做功,W<0。 2、 体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 3、 热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之 和称为热力学能,又叫内能。 4、 气体的标准状态—纯理想气体的标准状态是指其处于标准压力θ P 下的状态,混合气体 中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。

无机及分析化学复习知识点---大一要点

无机化学及分析化学总结 第一章绪论 ●系统误差:由固定因素引起的误差,具有单向性、重现性、 可校正 ●偶然误差:随机的偶然因素引起的误差,大小正负难以 确定,不可校正,无法避免,服从统计规律 (1)绝对值相同的正负误差出现的概率相等 (2)大误差出现的概率小,小误差出现的概率大。 ●准确度: 在一定测量精度的条件下分析结果与真值的接 近程度,用误差衡量 ●精密度(precision):多次重复测定某一量时所得测量值的 离散程度。用偏差衡量 ●准确度与精密度的关系:精密度好是准确度好的前提;精 密度好不一定准确度高 ●测定结果的数据处理 (1)对于偏差较大的可疑数据按Q检验法进行检验,决定其取舍; (2) 计算出数据的平均值、平均偏差与标准偏差等;复习p12例题 ●有效数字及其计算规则 有效数字:实际能测得的数据,其最后一位是可疑的。对于可疑数字一般认为有±1的误差

例:滴定管读数21.09 mL 分析天平读数0.2080 g 最后一位为可疑值 注意: (1) “0”的作用:有效数字(在数字的中间或后面)定位 作用(在数字的前面) (2)对数值(pH、pOH、pM、pK等)有效数字的位数取决 于小数部分的位数。 计算规则:(1) 加减法:计算结果小数点后的位数与小数点后 位数最少的数据一样。 (2)乘除法(乘方、开方、对数)计算结果的有效位数与有效 位数最少的数据一样。 第三章化学热力学初步 基本概念:化学反应进度、体系与环境、状态与状态函数(状 态函数的特征)、热与功(热与功的符号、体积功的计算W p V)、内能和热力学第一定律(热力学定律第一定律数=-?? 学表达式ΔU = Q + W) ?r Hθm的计算 △r H m:摩尔反应焓变,对于给定的化学反应,反应进度为1mol 时的反应热 ?rHθm:化学反应中,任何物质均处于标准状态下,该反应 的摩尔反应焓变 ?f Hθm:在温度T及标准态下,由参考状态单质生成1mol物

初中化学 无机化学知识点总结

无机化学知识点总结 1、熟悉元素周期表和元素周期律(电子排布和周期表的关系,化合价和最外层电子数、元素所在的族序数的关系 (包括数的奇偶性),微粒的半径大小和元素周期表的关系,非金属氢化物的稳定性、酸性和元素周期表的关系)。 熟悉常见的分子或单质、化合物的物质结构(水、氨气、二氧化碳、金刚石、二氧化硅的结构特点,相同电子数的微粒(10电子,18电子,H2O2和H2S,CO、N2、C2H4,O2、CH4))。 2、知道典型的溶解性特征 ①加入过量硝酸从溶液中析出的白色沉淀:AgCl,原来溶液是Ag(NH3)2Cl;后者是硅酸沉淀,原来的溶液 是可溶解的硅酸盐溶液。生成淡黄的沉淀,原来的溶液中可能含有S2-,或者是S2O32- ②加入过量的硝酸不能观察到沉淀溶解的有AgCl,BaSO4;BaSO3由于转化成为BaSO4而不能观察到沉淀的溶 解。AgBr,AgI,也不溶解,但是沉淀的颜色是黄色。 ③能够和盐反应生成强酸和沉淀的极有可能是H2S气体和铅、银、铜、汞的盐溶液反应。: ④沉淀先生成后溶解的:CO2和Ca(OH)2,Al3+和氢氧化钠,AlO2-和盐酸,氨水和硝酸银 3、操作不同现象不同的反应: Na2CO3和盐酸;AlCl3和NaOH,NaAlO2和盐酸;AgNO3和氨水;FeCl3和Na2S;H3PO4 和Ca(OH)2反应。 4、先沉淀后澄清的反应: AlCl3溶液中加入NaOH溶液,生成沉淀,继续滴加沉淀溶解: ; AgNO3溶液中滴加稀氨水,先沉淀后澄清: ; NaAlO2溶液中滴加盐酸,也是先沉淀后澄清: ; 澄清石灰水通入二氧化碳,先沉淀后澄清:; 次氯酸钙溶液中通入二氧化碳,先沉淀后澄清:; KAl(SO4)2与NaOH溶液:; 5、通入二氧化碳气体最终能生成沉淀的物质:苯酚钠溶液、硅酸钠溶液、偏铝酸钠溶液(这三种都可以与少量硝 酸反应产生沉淀)、饱和碳酸钠溶液。 苯酚钠溶液:; 硅酸钠溶液:; 饱和碳酸钠溶液:; 偏铝酸钠溶液:; 6、能生成两种气体的反应: HNO3的分解:; Mg与NH4Cl溶液的反应:; 电解饱和食盐水:; C与浓HNO3加热时反应:; C与浓H2SO4加热时反应:; 7、:型的反应: 8、两种单质反应生成黑色固体:Fe与O2、Fe与S、Cu与O2 9、同种元素的气态氢化物与气态氧化物可以发生反应生成该元素的单质的是:S、N元素 H2S+SO2——;

相关文档
最新文档