反激式开关电源原理与工程设计

反激式开关电源原理与工程设计
反激式开关电源原理与工程设计

反激式开关电源原理与工程设计

一.反激式开关电源的原理分析

二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则

五.变压器的设计

六.反激式开关电源的稳定性问题

反激式开关电源原理与工程设计

一.反激式开关电源的原理分析

1.反激式开关电源电路拓扑

2.为什么是反激式

a.变压器的同名端相反

b.利用了二极管的单向导电特性

3.电感电流的变化为何不是突变

电压加在有电感的闭合回路上,流过电感上电流不是突变

的,而是线性增加。

愣次定律:

a.当电感线圈流过变化的电流时会产生感生电动势,其大

小于与线圈中电流的变化率成正比;

b.感生电动势总是阻碍原电流的变化

4.变压器的主要作用与能量的传递

理想变压器与反激式变压器的区别

反激式变压器的作用

a.电感(储能)作用

遵守的是安匝比守恒(而不是电压比守恒)

储存的能量为1/2×L×Ip2

b.限流的作用

c.变压作用

初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。

d.变压器的气隙作用

扩展磁滞回线,能使变压器更不易饱和

磁饱和的原理

电感值跟导磁率成正比,

导磁率=B/H

B是磁通密度

H是磁场强度

简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/H

B是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦!

电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零

5.开关管漏极电压的组成

a. 高压为基础部分

b. 折射回来的电压部分

c. 漏感产生的尖峰部分

波形

6.反激式拓扑开关电源有两种工作模式:

(1) 完全能量转换,也叫做非连续导通模式。该模式的特点是,变压器在储能周期中储存的所有能量在反激周期都转移到输出端。

(2) 不完全能量转换,也叫做连续导通模式。存储在变压器

中的一部份能量保留到下一个储存周期开始。

工作模式是由初级电流和负载电流决定的

2、结合图1以非连续导通模式为例分析反激式开关电源的工作原理。该模式反激式拓扑开关电源的一个工作周期中有励磁、去磁、非连续导通三个阶段。

(1) 励磁阶段:当开关VT1导通时,变压器初级励磁电感中的电流从零开始上升。由于次级边的二极管具有单向导通性,此时二极管反偏,在次级不导通电流,输出滤波电容C向负载供电。由于此阶段的作用是向初级励磁电感补充能量,以为在下一个阶段向次级绕组转移能量做准备,因此这个阶段被称为励磁阶段。

(2) 去磁阶段:当励磁阶段结束后,VT1停止导通。由于电感电流不能突变,励磁电感电流开始在初级电感上续流,能量通过变压器转移到输出端,在次级边上,二极管正向导通,输出端得到能量。此时,励磁电感上的电压反向,励磁电流开始下降,因此该阶段被称为去磁阶段。

(3) 非连续导通阶段:当励磁电感的电流下降到零时,变压器初级边的能量己经完全转移到次级边,次级边上二极管不再导通。此时反激式拓扑中的初级和次级绕组都不导通电流,等待着下一个周期的到来。在连续导通模式下,不存在这个阶段。7.电流控制模式

电流控制模式特点:有两个反馈环

1. 一个由电流检测电阻输入电压和脉宽调制器组成响应速度快的内环组成

2. 一个由分压电阻、误差放大器组成的响应速度慢的外环

二.反激式开关电源实际电路的主要部件及其作用

1.实际电路(1)

2.我司电路

a. FD9022

b.FD9020

SCHEMATIC1

FD9020DB_DEMO

FD9020

FD9020

三.反激式开关电源各主要器件的参数选择

1.输入电路设计

保险丝最好用延迟型的保险丝,平均电流的5倍

热敏电阻10欧/耐压问题,10mm,14mm,20mm

共模滤波器5倍的平均电流,25—40MH

安规电容交流250V--275V 的X2电容;Y2安规电容交流250V--275V

压敏电阻10mm, 14mm 470V---680V耐压的

2.交流整流管的参数选择整流管选用600V—800V的管子;

额定电流为最大电流3-5倍,习惯选5倍

3.输入滤波电容选择

1W/1.5--2U ,耐压为最高电压+(30—50V)

例如265 V× 1.4=370V选用400V耐压的电解电容285V×1.4=399V 选用450V耐压的电解电容

4.开关管的选择

a.耐压余量

耐压取理论值加80V,原则上不宜太大,也不宜太小,余量太大,导通电阻大,导通损耗大,

b.电流余量

电流值应取最大电流的3-4倍,注意是100℃时

5.箝位电路参数的选择

a.箝位电容的选择

b.箝位电路电阻的选择

c.箝位电路的阻断二极管的选择

6.输出整流二极管的选择

a.电压余量

耐压的理论计算值=最大交流电压×1.414×N1/N2+V o+尖峰+30V

b.电流余量

流过整流管的电流为输出电流平均值的4倍,因此选择

整流管的额定电流应为输出平均电流的3—5倍

c.输出滤波电容的选择

ESR小的高频电解1A/1000U 反激式电路

耐压30﹪,10V,16V,25V,35V 60V,100V

d.输出滤波电感3UH

四.反激式开关电源pcb排板原则

一般原则:

(反射噪声,串扰,开关噪声,地弹,轨道塌陷,以及辐射)

a.Pcb走线长度减少一半,则其电感也减少一半,但走线宽

度要增加10倍才减少一半

b.电流路径小电流信号尽可能与大电流信号的地回路分

开;高压信号尽可能与低压信号远些;多路输出的地回路有条件尽可能分开

c.减小电感的方法

实际情况

a.初级回路

b.次级回路

c.初次级回路的安全距离

d.典型排板案例

(第一版本)

(第二版本:初级地分开汇总到高压电容,次级地一路汇总到变压器)

(第三版本:次级地12V 5V分开汇总到变压器)

五.变压器的设计

1.实用的工程设计计算

FD9020 5V/2A 12V/0.5A变压器:

输入电压:90V~265Vac

输出功率:16W

效率η=80% 占空比D=0.45 频率F=65K

由于工作在宽电压范围,设计按连续模式计算

1、峰值电流计算(最大峰值电流设在交流电压最低的情况计算)

Po=Pin*η=Udc*Idc*D*ηIdc=(Ip1+Ip2)/ 2

→Ip1+Ip2=2*Po/(Udc*d*η)=2*16/((90*1.414-20)*0.45*0.8)

=2*16/(107*0.45*0.8)

=0.8307A

Ip2=4Ip1→Ip1=0.166A; Ip2=0.664A

△Ip=Ip2-Ip1=0.498A

2、初级电感量计算

L*△Ip=Udc*Ton Ton=D*T=D/F

→L=(Udc*D)/(△Ip*F)=107*0.45/(0.498*65)=1.487mH

3、匝比及各绕组匝数计算

取反射电压Ur=80V D/(1-D)×V(100V)

N=Ur/(Uout+0.5)=80/5.5=14.5

查表知EE22 Ae为36.7mm2 取△B为0.25

Np=(Udc*D)/(△B*Ae*F)=(107*0.45*1000)/(0.25*36.7*65)=80.74匝Ns=Np/N=80.74/14.5=5.568 取整数6匝

反推原边Np=Ns*N=6*14.5=87 取87匝

次级12V路:N12V=Ns/Uout*U12v=6/5 *12=14.4 取14匝

辅助绕组:Na=Ns/Uout*Ua=6/5 *17=20.4 取20匝

各绕组匝数匝比:

原:辅:5V:12V = 87:20:6:14

4、各绕组线径计算

初级电流Irms=Ip*√D÷3= 0.8307*√0.45÷3=0.1857A

取5A/mm

初级:πR^2=0.1857÷5→D=2*R=0.2175mm,取D=0.23mm 5V输出:3*πR^2=2÷5→D=2*R=0.412mm,取D=0.45mm 12V输出:πR^2=0.5÷5→D=2*R=0.3568mm,取D=0.35mm 辅助路输出:电流较小,为配线方便取D=0.23mm

综上:初级Np = 87匝线径0.23mm*1

5V路Ns = 6匝线径0.45mm*3

12V路N12V = 14匝线径0.35mm*1

辅助Na=20匝线径0.23mm*1

Lp=1.487mH

5、CS电阻计算

R= 0.8V/Ip2 = 0.8/0.664 = 1.2R 保留一点裕量取1R电阻

2. 传统的Ap

3. 变压器的工艺问题 (三明治,分层,绕向,磁路,磁材形状)

减少漏感的工艺 安全工艺 改善辐射工艺 降低成本工艺

六. 反激式开关电源的稳定性问题

七. 关键器件的特性

功率VDMOS 场效应晶体管具有双极型功率晶体管不具备的许多独特优点:

1、开关速度非常快

功率VDMOS 场效应晶体管是多数载流子器件,具有非常快的开关速度,不存在双极型功率晶体管的少数载流子存贮效应,没有存贮时间。开关时间可达几ns 至数十ns 。一般低压器件开关时间为10ns 数量级,高压器件位100ns 数量级。特别适合于制作高频开关,可以大大减小电抗元件的损耗、尺寸和重量。

功率VDMOS 器件的开关速度主要决定于器件的内部电容的充、放电,并与工作温度无关。

2、高输入阻低和低驱动电流

功率VDMOS 器件的栅极以二氧化硅作为电介质绝缘层,其直流电阻在40M Ω以上,因而它的输入阻抗极高,是一种理想的电压控制器件,其驱动线路简单,可以直接被C-MOS 、TTL 、IC 驱动。直流驱动电流很小,在100nA 数量级,大大降低了系统的功率损耗。 3、安全工作区大

功率VDMOS 器件与双极型功率晶体管的明显区别之一是没有二次击穿。安全工作区由器件的峰值电流、击穿电压的额定值和功率容量来决定,无需增加保护线路和装置就可以保证器件安全可靠地工作。 4、漏极电流为负的温度系数有良好的热稳定性

功率VDMOS 器件的最小导通电压由导通电阻)(DS on r 决定。对于低压器件,

)(DS V on 是很小的,但是随着器件的电压增加,导通电阻也增加。)(DS on r 有正温度

系数特性,也就是说漏极电流有负温度系数,有自动调节能力,器件有均匀的温度分布。而双极型器件会由于电流集中而形成局部热点,进而引起热电恶性循环。功率VDMOS器件可以简单地并联,以增加其电流容量。而双极型晶体管并联使用需要镇流电阻、内部网络匹配以及其它额外的保护装置。

5、跨导高度线性、放大失真小

功率VDMOS场效应晶体管是一种短沟道器件,当栅源电压GS

V上升到一定值后,跨导基本是一恒定值,跨导高度线性,在线性电路中应用会带来了相当大的好处。

八.反激式开关电源技术发展方向

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

反激式开关电源原理

反激式开关电源原理 反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源. "反激"(FL Y BACK)的具体所指是当输入为高电平(开关管接通)时输出线路中串联的电感为放电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为充电状态. 与之相对的是"正激"(FORWARD)式开关电源,当输入为高电平(开关管接通)时输出线路中串联的电感为充电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为放电状态,以此驱动负载. 电机配导线(电机一个千瓦大约2A) "1.5加二,2.5加三" "4后加四,6后加六" "25后加五,50后递增减五" "百二导线,配百数" 该口诀是按三相380V交流电动机容量直接选配导线的。"1.5加二"表示1.5mm2的铜芯塑料线,能配3.5kW的及以下的电动机。由于4kW 电动机接近3.5kW的选取用范围,而且该口诀又有一定的余量,所以在速查表中4kW以下的电动机所选导线皆取1.5mm2。"2.5加三"、"4后加四",表示2.5mm2及4mm2的铜芯塑料线分别能配5.5kW、8kW电动机。"6后加六",是说从6mm2的开始,能配"加大六"kW的电动机。即6mm2的可配12kW,选相近规格即配1lkW电动机。10mm2可配16kW,选相近规格即配15kW电动机。16mm2可配22kW电动机。这中间还有18.5kW电动机,亦选16mm2的铜芯塑料线。"25后加五",是说从25mm2开始,加数由六改为五了。即25mm2可配30kW的电动机。35mm2可配40kW,选相近规格即配37kW电动机。"50后递增减五",是说从50mm2开始,由加大变成减少了,而且是逐级递增减五的。即50mm2可配制45kW电动机(50-5)。70mm2可配60kW(70-10),选相近规格即配备55kW 电动机。95mm2可配80kW(95-15),选相近规格即配75kW电动机。"百二导线,配百数",是说120mm2的铜芯塑料线可配1OOkW电动机,选相规格即90kW 电动机。2.电动机配用导线的对表速查例如一台Y180L-4、22kW电动机,从速查表查得应配BV型16mm2的铜芯塑料线。七、有关使用速查表的几项说明1.表中所列电动机为Y系列380V/50Hz三相异步电动机,对于其它系列电动机,只要额定电压和频率相符,额定电流相接近,也可参考使用。2.选用的BV型铜芯塑料线截面,是以水泥厂供用电距离在200m及以下,年运行时问7000~8000h,以降低线路损耗节电效益显著等条件考虑的。如果供电距离大于200m,则需要按常规的导线选用设计条件(如发热条件、电压损耗条件、经济电流密度、机械强度),另行设计计算。如果采用BLV型塑料铝芯线,其规格要降一级选用。即2.5mm2铝芯线可代替1.5mm2铜芯线,4mm2铝芯线可代替2.5mm2铜芯线……,其它依此类推。 热继电器配置 一般情况下,可选用两相结构热继电器,但当三相电压的均衡性较差,工作环境恶劣或无人看管的电动机,宜选用三相结构的热继电器。对于三角形接线的电动机,应该选用带断相保护装置的热继电器。 2、热继电器额定电流选择。

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

开关电源的基本原理与分类方法

开关电源的基本原理与分类方法 开关电源是指调整功率管以开关方式进行工作的稳压电源。缩写为SPS(Switching Power Supply),开关电源的核心部分是一个直流变换器。目前开关电源向着高频、高可靠性、低功耗、低噪声、抗干扰和模 块化方向发展。开关电源现在在社会上应用越来越广泛,需求也越来越大。 电源在一个典型系统中或者在一台机器中担当十分重要的角色,电源给系统的电路提供持续、稳定的 能量,使得系统或者机器能够正常地工作。电源的好坏直接影响了系统能否正常工作。随着电源的应用和 需求越来越广泛,人们对于电源的要求也越来越高。人们对电源的效率、体积、重量、稳定性和可靠性等 方面都有了更高的要求。 开关电源正是以其效率高、体积小、重量轻、稳定性高、零负载消耗低等多方面的优势逐步取代了效 率低、又笨又重的线性电源。现在社会上出现的需要应用开关电源的仪器、机器越来越多;利用开关电源作为驱动电源的产品也层出不穷,例如LED驱动开关电源的需求量越来越多。而现代电力电子技术的发展, 特别是大功率器件IGBT和MOSFET、各类电源芯片的迅速发展,将开关电源的工作频率提高到相当高的水平,使得开关电源的转换效率不断提高。人们对于转换效率的不断要求也促使开关电源的开发技术将越来 越高。 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输 出短路保护电路等部分构成。 开关带能源的工作原理: 首先是将交流输入电源经整流滤波成脉动直流;然后通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;接着开关变压器次级感应出高频电压,经整流滤波供给负载;最后,输出 部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。 常见的开关电源的分类方法有下列几种: 1.按激励方式的不同可以划分为他激式和自激式。他激式开关电源电路中专设激励信号振荡器;自激式开关功率管兼作振荡管。该形式的开关电源电路结构简单, 元器件少, 可以做成低成本的开关电源。 2.按调制方式的不同可以划分为脉宽调制型、频率调整型和混合调整型。脉宽调制型保持振荡频率保 持不变, 通过调节脉冲宽度来改变输出电压的大小;频率调整型保持占空比保持不变(脉冲宽度保持不变) , 通过改变振荡频率来改变输出电压大小;混合调整型是脉冲宽度和振荡频率均可进行调节的开关电源。 3.按开关管电流的工作方式的不同可以划分为开关型和谐振型。开关型用开关晶体管把直流变成高频 标准方波, 其电路形式类似于他激式;谐振型用开关晶体管与LC谐振回路将直流变成标准正弦波, 其电路 形式类似于自激式开关电源。 4.按开关晶体管的类型的不同可以划分为晶体管型和可控硅型。晶体管型采用晶体管(包括场效应管) 作为开关功率管;可控硅型采用可控硅作为开关功率管。这种电路的特点是直接输入交流电压, 不需要一次整流部分。

反激开关电源原理

星期一, 05/11/2009 - 09:42 —陶显芳 1-7.反激式变压器开关电源 反激式变压器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用最广泛。 1-7-1.反激式变压器开关电源工作原理 所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。 图1-19-a是反激式变压器开关电源的简单工作原理图,图1-19-a中,Ui是开关电源的输入电压,T是开关变压器,K是控制开关,C是储能滤波电容,R是负载电阻。图1-19-b是反激式变压器开关电源的电压输出波形。 把图1-19-a与图1-16-a进行比较,如果我们把图1-16-a中开关变压器次级线圈的同名端对调一下,原来变压器输出电压的正、负极性就会完全颠倒过来,图1-19-b所示的电压输出波形基本上就是从图1-16-b的波形颠倒过来的。不过,因为图1-16-b的波形对应的是纯电阻负载,而图1-19-b的负载是一个储能滤波电容和一个电阻并联。由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,图1-16-b中输出电压uo的脉冲尖峰完全被削除,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。

下面我们来详细分析反激式变压器开关电源的工作过程(参考图1-20)。 图1-19-a中,在控制开关K接通的Ton期间,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,但由于整流二极管的作用,没有产生回路电流。相当于变压器次级线圈开路,变压器次级线圈相当于一个电感。因此,流过变压器初级线圈N1绕组的电流就是变压器的励磁电流,变压器初级线圈N1绕组两端产生自感电动势可由下式表示: e1 = L1di/dt = Ui —— K接通期间(1-98) 或 e1 = N1dф/dt = Ui —— K接通期间(1-99) 上式中,e1为变压器初级线圈N1绕组产生的自感电动势,L1是变压器初级线圈N1绕组的电感,N1为变压器初级线圈N1绕组线圈绕组的匝数,ф为变压器铁心中的磁通。对(1-98)和(1-99)式进行积分,由此可求得: i1 =Ui*t/L1 +i(0) —— K接通期间(1-100) ф=Ui*t/N1 +ф (0) —— K关断瞬间(1-101) 上式中,i1是流过变压器初级线圈N1绕组的电流,ф为变压器铁心中的磁通;i1(0)为变压器初级线圈中的初始电流,即:控制开关刚接通瞬间流过变压器初级线圈N1绕组的电流;ф(0)为初始磁通,即:控制开关刚接通瞬间变压器铁心中的磁通。当开关电源工作于输出临界连续电流状态时,这里的i1(0)正好0,而ф(0)正好等于剩磁通S?Br。当控制开关K将要关断,且开关电源工作于输出电流临界连续状态时,i1和均达到最大值: i1m =Ui*Ton/L1 —— K关断瞬间(1-102)

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

反激式开关电源设计

基于U C3845的反激式开关电源设计 时间:2011-10-2821:40:13来源:作者: 引言 反激式开关电源以其结构简单、元器件少等优点在自动控制及智能仪表的电源中得到广泛的应用。开关电源的调节部分通常采用脉宽调制(PWM)技术,即在主变换器周期不变的情况下,根据输入电压或负载的变化来调节功率MOSFET管导通的占空比,从而使输出电压稳定。脉宽调制的方法很多,本文中所介绍的是一种高性能的固定频率电流型脉宽集成控制芯片UC3845。该芯片是专为离线的直流至直流变换器应用而设计的。其主要特点是具有内部振荡器、高精度误差比较器、逐周电流取样比较、启动电流小、大电流图腾柱输出等,是驱动MOSFET的理想器件。 1UC3845简介 UC3845芯片为SO8或SO14管脚塑料表贴元件。专为低压应用设计。其欠压锁定门限为8.5v(通),7.6V(断);电流模式工作达500千赫输出开关频率;在反激式应用中最大占空比为0.5;输出静区时间从50%~70%可调;自动前馈补偿;锁存脉宽调制,用于逐周期限流;内部微调的参考源;带欠压锁定;大电流图腾柱输出;输入欠压锁定,带滞后;启动及工作电流低。 芯片管脚图及管脚功能如图1所示。 图1UC3845芯片管脚图 1脚:输出/补偿,内部误差放大器的输出端。通常此脚与脚2之间接有反馈网络,以确定误差放大器的增益和频响。 2脚:电压反馈输入端。此脚与内部误差放大器同向输入端的基准电压(2.5V)进行比较,调整脉宽。 3脚:电流取样输入端。 4脚:RT/CT振荡器的外接电容C和电阻R的公共端。通过一个电阻接Vref通过一个电阻接地。 5脚:接地。 6脚:图腾柱式PWM输出,驱动能力为土1A. 7脚:正电源脚。 8脚:Vref,5V基准电压,输出电流可达50mA. 2设计方法 如图2为基于UC3845反激式开关电源的电路图,虚线框内为UC3845内部简化方框图。 1)启动电压和电容的选择 交流电源115VAC经整流、滤波后为一个纹波非常小的直流高压Udc,该电压根据交流电源范围往往可得到一个最大Udcmax,一和最小电压Udcmin。 当直流输入电压大于144V以上时,UC3845应启动开始工作,启动电阻应由线路直流电压和启动所需电流来确定。 根据UC3845的参数分析可知,当启动电压低于8.5V时,UC3845的整个电路仅消耗lmA的电流,即UC3845的典型启动电压为8.5V,电流为1mA.加上外围电路损耗约0.5mA,即整个电路损耗约1.5mA.在输入直流电压为最小电压Ddcmmn时,启动电阻Rin的计算如下: 图2基于UC3845反激式开关电源的电路图 启动过程完成后,UC3845的消耗电流会随着MOSFET管的开通增至100mA左右。该电流由启动电容在启动时储存的电荷量来提供。此时,启动电容上的电压会发生跌落到7.6V以上,要使UC3845fj~

开关电源基本电路及原理介绍

开关电源可分为直流开关电源和交流开关电源,是按输出来区分的,交流开关电源输出的是交流电,而直流开关电源输出的是直流电,这里介绍的是直流开关电源。随着相关元器件的发展,直流开关电源以其高效率在很多场合代替线性电源而获得广泛应用。 直流开关电源与线性电源相比一般成本较高,但在有些特别场合却更简单和便宜,甚至几乎只能用开关电源,如升压和极性反转等。直流开关电源还可分为隔离的和不隔离的两种,隔离的是采用变压器来实现输入与输出间的电气隔离,变压器还便于实现多路不同电压或多路相同电压的输出。直流开关电源结构复杂,设计和分析都有较特别的一套理论和方法,这里主要介绍6种基本的不隔离的直流开关电源结构形式和其特点,便于依据应用场合来选择使用。 理想假定:为便于分析,常假定存在如下理想状态 1. 电子器件理想:电子开关管Q和D的导通和关断时间为零,通态电压为零,断态漏电流为零 2. 电感和电容均为无损耗的理想储能元件,且开关频率高于LC的谐振频率 3. 在一个开关周期内,输入电压Vin保持不变 4. 在一个开关周期内,输出电压有很小的纹波,但可认为基本保持不变,其值为Vo 5. 不计线路阻抗 6. 变换器效率为100% 一、Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 Buck变换器有两种基本工作方式: CCM(Continuous current mode):电感电流连续模式,输出滤波电感Lf的电流总是大于零DCM(Discontinuous current mode):电感电流断续模式,在开关管关断期间有一段时间Lf 的电流为零 CCM时的基本关系:

反激式开关电源设计资料.doc

反激式开关电源设计资料 前言 反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。 单端反激式开关稳压电源的基本工作原理如下: D1 T R L 图1 反激式开关电源原理图 当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。因单端反激式电源只是在原边开关管到同期间存储能

量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。因此又称单端反激式变换器是一种“电感储能式变换器”。 学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章 电源参数的计算 第一步,确定系统的参数。我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。先要确定这些相关因素,才能更好的设计出符合标准的电源。我们在第二章会详细介绍如何利用这些参数设计电源。 输入电压范围(V line min 和V line max ); 输入电压频率(f L ); 输出电压(V O ); 输出电流(I O ); 最大输出功率 (P 0)。 效率估计(E ff ):需要估计功率转换效率以计算最大输入功率。如果没有参考数据可供使用,则对于低电压输出应用和高电压输出应用,应分别将E ff 设定为0.8~0.85。 利用估计效率,可由式(1-1)求出最大输入功率。 O IN ff P P E = (1-1) 第二步:确定输入整流滤波电容(C DC )和DC 电压范围。 最大DC 电压纹波计算: max DC V ?= (1-2) 式(1-2)中,D ch 为规定的输入整流滤波电容的充电占空比。其 典型值为0.2。对于通用型输入(85~265Vrms ),一般将max V DC ?设定为

反激式开关电源原理与工程设计

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则 五.变压器的设计 六.反激式开关电源的稳定性问题

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 1.反激式开关电源电路拓扑 2.为什么是反激式 a.变压器的同名端相反 b.利用了二极管的单向导电特性 3.电感电流的变化为何不是突变 电压加在有电感的闭合回路上,流过电感上电流不是突变

的,而是线性增加。 愣次定律: a.当电感线圈流过变化的电流时会产生感生电动势,其大 小于与线圈中电流的变化率成正比; b.感生电动势总是阻碍原电流的变化 4.变压器的主要作用与能量的传递 理想变压器与反激式变压器的区别 反激式变压器的作用 a.电感(储能)作用 遵守的是安匝比守恒(而不是电压比守恒) 储存的能量为1/2×L×Ip2

b.限流的作用 c.变压作用 初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。 d.变压器的气隙作用 扩展磁滞回线,能使变压器更不易饱和 磁饱和的原理 图 电感值跟导磁率成正比,

导磁率=B/H B是磁通密度 H是磁场强度 简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/H B是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦! 电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零 5.开关管漏极电压的组成 a. 高压为基础部分 b. 折射回来的电压部分 c. 漏感产生的尖峰部分 波形

反激开关电源主电路工作原理

反激开关电源 一.定义: 直流电压正好激励变压器的初级线圈时,变压器的次级线圈并没有向负载提供输出功率,而是仅在关断变压器初级线圈的激励电压后,才对负载提供输出功率。 二.反激开关电源的主电路 开关管导通时,反激开关电源将电能转化为磁能,存储在变压器中; 开关管关断时,发激开关电源再将存储的磁能转化为电能传送给负载。 电路特点: 1. 结构简单,效率高,体积小,造价低 2. 输出纹波电压比较大 3. 输出功率一般在150W 一下,经常作为辅助电源应用在控制系统中 4. 适合多输出小功率场合 三.反激开关电源原理分析 CCM 模式 1. 开关管T 导通 电源电压in V 加在变压器的初级绕组1N 上,在次级绕组2N 上产生感应电压 221 N in N u V N =- ,初级绕组电流线性增加,in P P V di dt L =,电流P i 最大值

max min in P P P V I I DT L --=+ ,变压器铁心被磁化,磁通线性增加,()1 in V DT N +?Φ=。 2. 开关管T 关断 初级绕组开路,次级绕组工作,次级绕组电压2N o u V =,次级绕组电流线性下降, S o S di V dt L =,电流S i 最小值min m (1)o S S ax S V I I D T L --=--,变压器铁心去磁,磁通 线性减小,()2 (1)o V D T N -?Φ= -。 3. 基本关系:()()+-?Φ=?Φ? 211(1)(1)o in V N D D V N D n D =?=?--,其中12N n N = 开关管T 电压应力:1 21in T in o V N V V V N D =+ =- 二极管D 的电压应力:2 1o D o in V N V V V N D =+ = 此时,负载电流o I 等于二极管电流的平均值,即min m 1 ()(1)2 o S S ax I I I D --=+- 由变压器工作原理 1min 2min 1max 2m P S P S ax N I N I N I N I ----== 可得 2max 11 12in P o P V N I I DT N D L -= +- 11m max 22112in S ax P o P V N N I I I DT N D N L --= =+- 临界模式 此时有min 0P I -=且min 0S I -=,则有下列式子成立: 初级绕组最大电流:max in P P V I DT L -= 次级绕组最大电流:1max 2in S P V N I DT N L -= 负载电流:m 1 (1)2 o S ax I I D -= -

反激式开关电源的设计方法

1 设计步骤: 1.1 产品规格书制作 1.2 设计线路图、零件选用. 1.3 PCB Layout. 1.4 变压器、电感等计算. 1.5 设计验证. 2 设计流程介绍: 2.1 产品规格书制作 依据客户的要求,制作产品规格书。做为设计开发、品质检验、生产测试等的依据。 2.2 设计线路图、零件选用。 2.3 PCB Layout. 外形尺寸、接口定义,散热方式等。 2.4 变压器、电感等计算. 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的, 2.4.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考 虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的 power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心 因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以 做较大瓦数的Power 。 2.4.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 2.4.3 决定变压器线径及线数: 变压器的选择实际中一般根据经验,依据电源的体积、工作频率,

总结:开关电源设计心得

总结:开关电源设计心得 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外。 下面谈一谈印制板布线的一些原则 线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。 最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。

开关电源工作原理

开关电源工作原理 目前常见的电源在主要有两种电源类型:线性电源(linear)和开关电源(switching)。 一、线性电源 线性电源主要包括工频变压器、输出整流滤波器、控制电路、保护电路等。 工作过程:先将220 V市电通过变压器转为低压交流电,比如说12V,然后再通过一系列的二极管或整流桥堆进行整流,将低压AC交流电转化为脉动电压(配图1和2中的“3”);再通过电容对脉动电压进行滤波,经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),要想得到高精度的稳定的直流电压,还需要稳压二极管或者电压反馈电路调整输出电压。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2 中的“5”)。 配图1:标准的线性电源设计图 配图2:线性电源的波形

线性电源的优点:纹波小,调整率好,对外干扰小。适合用于模拟电路,各类放大器等低功耗设备。 线性电源的缺点:体积大,笨重,效率低、发热量也大。需要庞大而笨重的变压器,所需的滤波电容的体积和重量也相当大,线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。对于高功耗设备而言,线性电源将会力不从心。 二、开关电源 开关电源是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关电源的工作原理,简单的说是将交流电先整流成直流电,再将直流逆变成交流电,再整流输出成所需要的直流电压。 ①交流电源经整流滤波成直流; ②通过高频PWM(脉冲宽度调制)信号控制开关管进行高速的导通与截止,将直流电转化为高频率的交流电提供给开关变压器进行变压; ③开关变压器次级感应出高频交流电压,经整流滤波变成直流电供给负载; ④输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。 开关电源的主要优点:体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压围宽、模块化。 开关电源的主要缺点: 由于逆变电路中会产生高频电压,对周围设备有一定的干扰。需要良好的屏蔽及接地。

基于UC2844的单端反激电源原理及波形

单端反激拓扑的基本电路 单端反激拓扑的基本电路 (b)为Q1电流,(c)为次级整流二极管电流,(d)为Q1的Vce电压 工作原理如下:当Q1导通时,所有的次级侧整流二极管都反向截止,输出电容(Co、C1)给负载供电。T1相当于一个纯电感,流过Np的电流线性上升,达到峰值Ip。当Q1关断时,所有绕组电压反向,次级侧整流二极管导通,同时初级侧线圈储存的能量传递到次级,提供负载电流,同时给输出电容充电。若次级侧电流在下一周期Q1导通前下降到零,则电路工作于断续模式(DCM),波形如上图(b)(c)(d),反之则处于连续模式(CCM)

电流模式控制芯片UC2844/3844内部框图如下 工作时序图如下

开关电源启动时输出时序不正确的案例: 电动汽车驱动板有两路开关电源,如下图 开关电源1的UC2844启动电路,其输出包含VDD5 开关电源2的UC2844启动电路,其输出包含+5V电路 尽管两路开关电源的启动电路中电容都是200uF,充电电阻是30kΩ,但由于开关电源2中D26的存在,使得开关电源2充电快,先开始工作,导致光耦U24的副边电源+5V比原边电源先建立。

当光耦U24的副边电源比原边电源先建立时,光耦会输出负压(V out+相对于V out-的电压),如下图。 CH1:VDD5电压CH2:+5V电压CH3:U31 pin6CH4:U31 Pin7 光耦的负压会让运放U20输出一段600mV的负压,如下图 U20 Pin1电压 这段负压输入到控制板的比较器U5反向输入端,此时GENERATRIX信号的电压为-470mV,这个电压已经超过了比较器允许的最大负压(器件资料规定输入负压不得大于0.3V),在环境温度超过73℃时,-470mV的电压会导致比较器U5输出异常。

相关文档
最新文档