初三数学几何的动点问题专题练习及答案

初三数学几何的动点问题专题练习及答案
初三数学几何的动点问题专题练习及答案

动点问题专题训练

1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.

①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与

CQP △是否全等,请说明理由;

②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?

(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

2、直线3

64y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,

同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;

(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48

5

S =

时,求出点P 的坐标,并直接写出以点

、、为顶点的平行四边形的第四个顶点M的坐标.

O P Q

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;

(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.

(1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值围);

(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

5在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q 从点A出发沿AB以每秒1个单位长的速度向点B匀

速运动.伴随着P、Q的运动,DE保持垂直平分PQ,

且交PQ于点D,交折线QB-BC-CP于点E.点P、Q

同时出发,当点Q到达点B时停止运动,点P也随之

停止.设点P、Q运动的时间是t秒(t>0).

(1)当t = 2时,AP =,点Q到AC的距离是;

(2)在点P从C向A运动的过程中,求△APQ的

面积S与

t的函数关系式;(不必写出t的取值围)

(3)在点E从B向C运动的过程中,四边形QBED

能否成

为直角梯形?若能,求t的值.若不能,请说明理由;

(4)当DE经过点C时,请直接

..

写出t的值.

A C

B

Q

E

D

图16

6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是

AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.

(1)①当α=度时,四边形EDBC 是等腰梯形,此时AD 的长为;

②当α=度时,四边形EDBC 是直角梯形,此时AD 的长为; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.

7如图,在梯形ABCD 中,354245AD BC AD DC AB B ====?∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向

终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.

(1)求BC 的长.

(2)当MN AB ∥时,求t 的值.

O

E C

D

A

α

l

O

C

A

(备用图)

A

D

C

B

M N

(3)试探究:t 为何值时,MNC △为等腰三角形.

8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =?∠. (1)求点E 到BC 的距离;

(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作

MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.

①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;

②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.

A D E B

F C

A

D E

B F C

A D E

B

F C

图1 图2

A D E

B

F C P

N

M 图3

A D E

B

F

C

P

N

M (第25题)

9如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t

(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2)求正方形边长及顶点C的坐标;

(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与

PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.

10数学课上,老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边

BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .

经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,

写出证明过程;如果不正确,请说明理由.

A

D

F

C

G

E B

图1

A

D

F

C

G

E B

图2 A

D

F

C G

B

图3

11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边

AB 交于点D .

(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;

(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值围;

'∥,求此时点C的坐(Ⅲ)若折叠后点B落在边OA上的点为B',且使B D OB

标.

12问题解决

如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当

12

CE CD =时,求AM

BN 的值.

类比归纳

在图(1)中,若

13CE CD =,则AM BN 的值等于;若14

CE CD =,则AM

BN 的值等于;若1CE CD n

=(n 为整数)

,则AM BN 的值等于.(用含n 的式子表示) 联系拓广

如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设

()111AB CE m BC m CD n

=>=,,

则AM

BN 的值等于.(用含m n ,的式子表示)

方法指导: 为了求得

AM

BN

的值,可先求BN 、AM 的长,不妨设:AB =2 图(2)

N

A

B

C

D E

F M

图(1)

A B C

D

E

F

M

N

1.解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米,

∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.

又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,

∴BPD CQP △≌△. ························· (4分)

②∵P Q v v ≠, ∴BP CQ ≠,

又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4

33

BP t ==秒, ∴515

443

Q CQ v t

=

==厘米/秒. ····················· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15

32104

x x =+?, 解得80

3

x =

秒. ∴点P 共运动了80

3803

?=厘米.

∵8022824=?+,

∴点P 、点Q 在AB 边上相遇, ∴经过

80

3

秒点P 与点Q 第一次在边AB 上相遇. ············· (12分) 2.解(1)A (8,0)B (0,6) ···· 1分 (2)86OA OB ==, 10AB ∴=

点Q 由O 到A 的时间是

8

81

=(秒) ∴点P 的速度是

610

28

+=(单位/秒) 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,

2S t = ·································· 1分

当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由

PD AP BO AB =

,得4865

t

PD -=, ········· 1分 21324

255

S OQ PD t t ∴=?=-+ ······················ 1分

(自变量取值围写对给1分,否则不给分.)

(3)82455P ?? ???

, ······························ 1分

12382412241224555555I M M 2??????-- ? ? ??????

?,,,,, ················ 3分

3.解:(1)⊙P与x轴相切.

∵直线y=-2x-8与x轴交于A(4,0),

与y轴交于B(0,-8),

∴OA=4,OB=8.

由题意,OP=-k,

∴PB=PA=8+k.

在Rt△AOP中,k2+42=(8+k)2,

∴k=-3,∴OP等于⊙P的半径,

∴⊙P与x轴相切.

(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P 在线段OB上时,作PE⊥CD于E.

∵△PCD为正三角形,∴DE=1

2CD=3

2

,PD=3,

∴PE33.

∵∠AOB=∠PEB=90°,∠ABO=∠PBE,∴△AOB∽△PEB,

33

2

,

45

AO PE

AB PB PB

=即,

∴315

PB=

∴315

8

PO BO PB

=-=

∴3158)

P-,

∴3158

k=-.

当圆心P在线段OB延长线上时,同理可得P(0,315-8),

∴k=315-8,

∴当k315-8或k=315-8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

4.

5.解:(1)1,8

5

(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC

,4BC =, 得

45QF t =.∴4

5

QF t =. ∴14(3)25

S t t =-?, 即22655

S t t =-+. (3)能.

①当DE ∥QB 时,如图4.

∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP

AC AB

=

, 即33

5t t -=. 解得9

8

t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°.

由△AQP ∽△ABC ,得 AQ AP

AB AC

=

, 即353t t -=

. 解得15

8

t =.

(4)52t =或45

14

t =.

①点P

由C 向A 运动,DE 经过点C . 连接QC ,作QG ⊥BC 于点G ,如图6.

PC t =,222QC QG CG =+2234

[(5)][4(5)]55

t t =-+--.

由22PC QC =,得2223

4[(5)][4(5)]55t t t =-+--,解得52

t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.

22234

(6)[(5)][4(5)]55t t t -=-+--,4514t =】

6.解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=900

时,四边形EDBC 是菱形.

P

图4

P

图5

∵∠α=∠ACB=900

,∴BC //ED .

∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900

,∠B =600

,BC =2,

∴∠A =300.

∴AB =4,AC

∴AO =

1

2

AC

. ……………………8分 在Rt △AOD 中,∠A =300

,∴AD =2. ∴BD =2. ∴BD =BC .

又∵四边形EDBC 是平行四边形,

∴四边形EDBC 是菱形 ……………………10分

7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形

∴3KH AD ==.

·························· 1分 在Rt ABK △中,sin 4542

AK AB =?==.

2

cos 4542

42

BK AB =?==

·················· 2分 在Rt CDH △中,由勾股定理得,3HC ==

∴43310BC BK KH HC =++=++= ··············· 3分

(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD ==

∴1037GC =-= ························· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥

(图①) A D C B K H (图②) A D C B G M N

∴NMC DGC =∠∠ 又C C =∠∠

∴MNC GDC △∽△

CN CM

CD CG =

··························· 5分 即10257

t t -= 解得,50

17

t = ··························· 6分

(3)分三种情况讨论:

①当NC MC =时,如图③,即102t t =- ∴10

3

t =

····························· 7分

②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:

由等腰三角形三线合一性质得()11

102522

EC MC t t =

=-=- 在Rt CEN △中,5cos EC t

c NC t -==

又在Rt DHC △中,3

cos 5

CH c CD ==

∴535

t t -=

解得25

8

t = ···························· 8分

解法二:

∵90C C DHC NEC =∠=∠=?∠∠, ∴NEC DHC △∽△

NC EC

DC HC =

即553t t -= ∴258

t = ····························· 8分

③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.11

22

FC NC t ==

解法一:(方法同②中解法一)

A D

C

B M N (图③) (图④) A D C

B M N

H E

132cos 1025t

FC C MC t ===- 解得60

17

t =

解法二:

∵90C C MFC DHC =∠=∠=?∠∠, ∴MFC DHC △∽△ ∴

FC MC

HC DC =

即1102235t

t

-=

∴6017

t =

综上所述,当103

t =、258t =或60

17t =时,MNC △为等腰三角形 ···· 9分

8.解(1)如图1,过点E 作EG BC ⊥于点G . ······ 1分

∵E 为AB 的中点,

∴1

22

BE AB ==.

在Rt EBG △中,60B =?∠,∴30BEG =?∠. ··· 2分

∴1

12

BG BE EG ====, 即点E 到BC

··········· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.

∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =

,PM EG ==

同理4MN AB ==. ·························· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==?=?∠∠,∠.

∴12PH PM =

= ∴3

cos302

MH PM =?=.

则35

422

NH MN MH =-=-=.

在Rt PNH △

中,PN === ∴PMN △的周长

=4PM PN MN ++=. ············ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角

(图⑤)

A

D

C

B

H N M

F

图1

A D

E

B F

C G

图2

A D E

B

F C

P

N

M

G H

形.

当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.

类似①,3

2

MR =. ∴23MN MR ==.

··························· 7分 ∵MNC △是等边三角形,∴3MC MN ==.

此时,6132x EP GM BC BG MC ===--=--=. ··········· 8分

当MP MN =时,如图4

,这时MC MN MP ===

此时,615x EP GM ===-=-

当NP NM =时,如图5,30NPM PMN ==?∠∠. 则120PMN =?∠,又60MNC =?∠, ∴180PNM MNC +=?∠∠.

因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =?=.

此时,6114x EP GM ===--=.

综上所述,当2x =或4

或(5时,PMN △为等腰三角形. ······ 10分 9解:(1)Q (1,0) ··························· 1分 点P 运动速度每秒钟1个单位长度. ····················· 2分 (2)过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.

在Rt △AFB

中,10AB == 3分

过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=?=∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.

∴所求C 点的坐标为(14,12).4分

(3)过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==.1068

t AM MP

∴==. 图3

A D E B

F

C

P

N M

图4

A D E

B

F C

P M

N 图5

A D E

B

F (P )

C

M

N G

G

R

G

∴3455AM t PM t ==,.∴34

10,55

PN OM t ON PM t ==-==.

设△OPQ 的面积为S (平方单位)

∴213473

(10)(1)5251010

S t t t t =?-+=+-(0≤t ≤10) ··············· 5分

说明:未注明自变量的取值围不扣分. ∵3

10a =-

<0 ∴当474710

362()10

t =-=

?-时,△OPQ 的面积最大. ········· 6分 此时P 的坐标为(

9415,5310

). ························ 7分 (4)当53t =或295

13

t =时, OP 与PQ 相等. ················· 9分

10.解:(1)正确. ··············· (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分) BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.

CF 是外角平分线,

45DCF ∴∠=°,

135ECF ∴∠=°.

AME ECF ∴∠=∠.

90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.

AME BCF ∴△≌△(ASA )

. ······················ (5分) AE EF ∴=. ···························· (6分) (2)正确. ················· (7分) 证明:在BA 的延长线上取一点N .

使AN CE =,连接NE . ·········· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.

DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.

ANE ECF ∴△≌△(ASA )

. ······················ (10分) AE EF ∴=. (11分)

11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.

设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.

A D F C G E

B M A D F G

E B N

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

圆的动点问题--经典习题及答案

圆的动点问题 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:在Rt ABC △中,∠ACB =90°,BC =6,AC =8,过点A 作直线MN ⊥AC ,点E 是直线 MN 上的一个动点, (1)如图1,如果点E 是射线AM 上的一个动点(不与点A 重合),联结CE 交AB 于点P .若 AE 为x ,AP 为y ,求y 关于x 的函数解析式,并写出它的定义域; (2) 在射线AM 上是否存在一点E ,使以点E 、A 、P 组成的三角形与△ABC 相似,若存在求 AE 的长,若不存在,请说明理由; (3)如图2,过点B 作BD ⊥MN ,垂足为D ,以点C 为圆心,若以AC 为半径的⊙C 与以ED 为半径的⊙E 相切,求⊙E 的半径. A B C P E M 第25题图1 D A B C M 第25题图2 N

25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. A B E F C D O A B E F C D O

25.如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与OB的延长线相交于点D,设AC=x,BD=y. (1)求y关于x的函数解析式,并写出它的定义域; (2)如果⊙O1与⊙O相交于点A、C,且⊙O1与⊙O的圆心距为2,当BD=OB时,求⊙O1 的半径; (3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.

初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF, AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中, PQ 的中点O所经过的路径的长。

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

动点问题-圆(含答案)初三数学

2.如图7,梯形中,,,,,,点 为线段上一动点(不与点重合),关于的轴对称图 形为,连接,设,的面积为, 的面积为. (1)当点落在梯形的中位线上时,求的值;(全等) (2)试用表示,并写出的取值范围;(相似) (3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相似)【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有: 在中,有 在中, 又 解得: (2)如图2,交于点,与关于对称, 则有:, 又 又与关于对称, (3)如图3,当的外接圆与相切时,则为切点. 的圆心落在的中点,设为

则有,过点作, 连接,得 则 又 解得:(舍去) ① ② ③ 3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y 轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0) (1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等) (2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的 值;若不存在,请说明理由.(讨论对称轴+全等+相似) 【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,

(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解, (3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t. 【解答】: 证明:(1)如图,连接PM,PN, ∵⊙P与x轴,y轴分别相切于点M和点N, ∴PM⊥MF,PN⊥ON且PM=PN, ∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE, 在△PMF和△PNE中,,∴△PMF≌△PNE(ASA), ∴PE=PF, (2)解:①当t>1时,点E在y轴的负半轴上,如图, 由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1, ∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a, ②0<t≤1时,如图2,点E在y轴的正半轴或原点上, 同理可证△PMF≌△PNE, ∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t, ∴b+a=1+t+1﹣t=2, ∴b=2﹣a, (3)如图3,(Ⅰ)当1<t<2时, ∵F(1+t,0),F和F′关于点M对称, ∴F′(1﹣t,0) ∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q, ∴Q(1﹣t,0)∴OQ=1﹣t, 由(1)得△PMF≌△PNE [来源:学,科,网] ∴NE=MF=t,∴OE=t﹣1

初三数学动点问题总结

动点问题 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm, 动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB 边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 分析: (1)四边形PQCD为平行四边形时PD=CQ. (2)四边形PQCD为等腰梯形时QC-PD=2CE. (3)四边形PQCD为直角梯形时QC-PD=EC. 所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可. 解答: 解:(1)∵四边形PQCD平行为四边形 ∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形. (2)过D作DE⊥BC于E 则四边形ABED为矩形 ∴BE=AD=24cm ∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形 ∴QC-PD=2CE 即3t-(24-t)=4 解得:t=7(s)

即当t=7(s)时,四边形PQCD为等腰梯形. (3)由题意知:QC-PD=EC时, 四边形PQCD为直角梯形即3t-(24-t)=2 解得:t=6.5(s) 即当t=6.5(s)时,四边形PQCD为直角梯形. 点评: 此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中. 2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 分析: (1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO. (2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形. (3)利用已知条件及正方形的性质解答. 解答: 解:(1)∵CE平分∠ACB, ∴∠ACE=∠BCE, ∵MN∥BC, ∴∠OEC=∠ECB, ∴∠OEC=∠OCE, ∴OE=OC, 同理,OC=OF, ∴OE=OF. (2)当点O运动到AC中点处时,四边形AECF是矩形. 如图AO=CO,EO=FO, ∴四边形AECF为平行四边形, ∵CE平分∠ACB, ∴∠ACE= ∠ACB, 同理,∠ACF= ∠ACG,

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

中考数学动点问题(含答案)

中考数学之 动点问题 一、选择题: 1. 如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( ) 9 4x y O P D A 、10 B 、16 C 、18 D 、20 二、填空题: 1. 如上右图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°. 恒成立的结论有_______________________(把你认为正确的序号都填上)。 三、解答题: 1.(2008年大连)如图12,直角梯形ABCD 中,AB ∥CD ,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C 作CH ⊥AB ,垂足为H .点P 为线段AD 上一动点,直线PM ∥AB ,交BC 、C H 于点M 、Q .以PM 为斜边向右作等腰Rt △PMN ,直线MN 交直线AB 于点E ,直线PN 交直线A B 于点F .设PD 的长为x , EF 的长为y . ⑴求PM 的长(用x 表示); ⑵求y 与x 的函数关系式及自变量x 的取值范围(图13为备用图); ⑶当点E 在线段AH 上时,求x 的取值范围(图14为备用图). Q P O B E D C A

图 13 图 14 图 12 A H B C D A H B C D H M Q P D C B A 2.(2008年福建宁德)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全 程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒()80 <x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米. ⑴求y 1与x 的函数关系,并在图2中画出y 1的图象; ⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长; ⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y 2于点E 、F . ①说出线段EF 的长在图1中所表示的实际意义; ②当0<x <6时,求线段EF 长的最大值.

(完整)初三数学几何的动点问题专题练习及答案

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发,同时到达A点,运动停止.点 Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求出S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标. 3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k) 是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出 自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC 所夹锐角的正切值. A Q C D B P x A O Q P B y

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

中考复习全国通用版中考数学9:圆中的动点问题—解析版

2020武汉市中考专题1:圆中的动点问题 1. 如图,已知⊙O 的半径为10,A 、B 是⊙O 上的两点,∠AOB =90°,C 是OB 上一个动点, 连结AC 并延长交⊙O 于点D ,过点D 作DE ⊥OD 交OB 的延长线于点E .当∠A 从30°增大到60°时,弦AD 在圆内扫过的面积是( ) A . 1002533π- B .503π C .641633π- D .502533 π - 【答案】B 【解析】过点D 作AO 的垂线,交AO 的延长于F . 当30A ∠=?时,60DOF ∠=?,sin 60453DF OD =?==, 2120101100 105325336023 ABD S ππ?=-??=-弓形, 当60A ∠=?时,60DOF ∠=?,53DF =, 26010150 105325336023ABD S ππ??=-??=-弓形, 1005050253(253)333 S πππ∴=---=. 2. 如图,点D 在半圆O 上,AB=2AD ,点C 在弧BD 上移动,连接AC , H 是AC 上一点,∠DHC =90°,若点C 运动2π长度,则点H 运动的路径长度为( ) A.2π B.1.5π C.π D.2 【答案】B 3. 如图,在矩形ABCD 中,AD =80cm ,AB =40cm ,半径为8cm 的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切,此时⊙O 移动了( )cm .

初中数学动点问题例题集

动点问题专题训练 1、如图,已知A B C △中,10A B A C ==厘米,8B C =厘米,点D 为A B 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿A B C △三边运动,求经过多长时间点P 与点Q 第一次在A B C △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10A B =厘米,点D 为A B 的中点, ∴5B D =厘米. 又∵厘米, ∴835P C =-=厘米8PC BC BP BC =-=,, ∴P C B D =. 又∵A B A C =, ∴B C ∠=∠, ∴BPD CQP △≌△. ························································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433 B P t ==秒, ∴51544 3Q C Q v t = ==厘米/秒. ············································································ (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得 1532104 x x =+?, P

初三 圆中动点问题

初三圆中动点问题 年级:九年级任课教师: 授课时间:xx 年春季班 第2周教学课题圆中动点问题教学目标 1、熟悉圆的基础知识和常用证明技巧。 2、运用圆的知识解圆中动点问题。教学重难点圆中动点问题教学过程相切问题例 1、已知如图,在平面直角坐标系中,直线与轴、轴分别交于A,B两点,P是直线AB上一动点,⊙的半径为 1、(1)判断原点O与⊙的位置关系,并说明理由;(2)当⊙过点B时,求⊙被轴所截得的劣弧的长;(3)当⊙与轴相切时,求出切点的坐标、BPOyxA图15-1练习1:平面上,矩形ABCD与直径为QP的半圆K如图15-1摆放,分别延长DA和QP交于点O,且∠DOQ=60,OQ=OD=3,OP=2, OA=AB=1,让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为、发现:(1)当,即初始位置时,点P 直线AB上、(填“在”或“不在”)求当是多少时,OQ经过点B?(2)在OQ旋转过程中,简要说明是多少时,点P,A间的距离最小?并指出这个最小值;图15-2(3) 如图15-2,当点P恰好落在BC边上时,求及、拓展:如图15-3,当线段OQ与CB边交于点M,与BA边交于点N时,设

BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围、图15-3备用图探究:当半圆K与矩形ABCD的边相切时,求sin 的值、练习2:如图1,已知点A(8,4),点B(0,4),线段CD的长为3,点C与原点O重合,点D在x轴正半轴上、线段CD 沿x轴正方向以每秒1个单位长度的速度向右平移,过点D作x 轴的垂线交线段AB于点E,交OA于点G,连接CE交OA于点F (如图2),设运动时间为t、当E点与A点重合时停止运动、(1)求线段CE的长;(2)记△CDE与△ABO公共部分的面积为S,求S关于t的函数关系式;(3)如图2,连接DF、①当t取何值时,以 C、F、D为顶点的三角形为等腰三角形?②△CDF的外接圆能否与OA相切?如果能,直接写出此时t的值;如果不能,请说明理由。ABOExDyG图1(C) CABOExDyGF图2最值问题例 2、如图,在△ACE中,CA=CE,∠CAE=30,⊙O经过点C,且圆的直径AB在线段AE上、(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长、练习1:在△中,,将△绕点顺时针旋转,得到△、⑴、如图①,当点在线段延长线上时、①、求证:;②、求△的面积;⑵、如图②,点是上的中点,点为线段上的动点,在△绕点顺时针旋转过程中,点

初中数学动点题型汇总

初中数学动点集 一、线段和、差中的动点 (一)利用垂线段最短的性质解决最大(小)值的问题 1.如下图所示,△ABC 是以AB 为斜边的直角三角形,AC=4,BC=3,P 为AB 上的一动点,且PE⊥AC 于E,PF ⊥BC 于F,则线段EF 长度的最小值是。 2.如图所示,在菱形ABCD 中,过A 作AE⊥BC 于E,P 为AB 上一动点,已知 13 5 AB BE ,EC=8,则线段PE 的长度最小值为。 3.如图所示,等边△ABC 的边长为1,D、E 两点分别在边AB、AC 上,CE=DE,则线段CE 的最小值为。 4.如右图所示,点A 的坐标为(0,22-),点B 在直线y=x 上运动,当线段AB 最短时, 点B 的坐标为。

5.在平面直角坐标系xoy中,直线y=2x+m与y轴交于点A,与直线y=-x+4交于点B(3,n),p为直线y=-x+4上一动点。 (1)求m,n的值 (2)当线段AP最短时,求点p的坐标。 2。 6.已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=30 试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的值最短,则此时AM+NB=。 (二)利用三点共线的特征解决最大(小)值的问题 1.如图所示,四边形ABCD是正方形,边长是4,E是BC上一点,且BE=1,P是对角线AC上任意一点,则 PE+PB的最小值是。 2.如图所示,点P是边长为1的菱形ABCD对角线AC上的一个动点,M、N分别是AB,BC边上的中点,PM+PN 的最小值是。

3.如图所示,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是。 4.如图1所示,F,E分别是正方形ABCD的边CD、DA上两个动点(不与C、D、A重合),满足DF=AE。直线BE、AF相交于点G,则有BE=AF,BE⊥AF;如图2所示,F,E分别是正方形ABCD的边CD、DA延长线上的两个动点(不与D、A重合),依然有BE=AF,BE⊥AF; 若在上述的图1与图2中,正方形ABCD的边长为4,随着动点F、E的移动,线段DG的长也随之变化。在变化过程中,线段DG的长是否存在最大值或最小值?若存在,求出这个最大值或最小值,若不存在,请说明理由。(要求:分别就图1、图2直接写出结论,再选择其中一个图形说明理由)

初中数学动点问题及练习题附参考答案

例1.如图,已知在矩形ABCD 中,AD =8,CD =4,点E 从点D 出发,沿线段DA 以每秒1 个单位长的速度向点A 方向移动,同时点F 从点C 出发,沿射线CD 方向以每秒2个单位长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为t (秒). (1)求当t 为何值时,两点同时停止运动; (2)设四边形BCFE 的面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围; (3)求当t 为何值时,以E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当t 为何值时,∠BEC =∠BFC . 例2. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点, 当M 点在 BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△; (2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求此时x 的值. 例3.如图,在梯形ABCD 中,3545AD BC AD DC AB B ====?∥,,,. 动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (09年济南中考) (1)求BC 的长。 (2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形. 例1. 解:(1)当B ,E ,F 三点共线时,两点同时停止运动,如图2所示.………(1分) 由题意可知:ED =t ,BC =8,FD = 2t -4,FC = 2t . ∵ED ∥BC ,∴△FED ∽△FBC .∴ FD ED FC BC =. ∴ 2428 t t t -=.解得t =4. A B C D E F O C D M A B C N 图2 A B C D E F

(完整)初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双 (多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1. 某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P 为线段AB 上的一个动点,分别以AP 、BP 为边在同侧作正方形APDC 与正方形PBFE. (1)在点P 运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD 、DF 、AF , AF 交DP 于点A ,当点P 运动时,在△APK 、△ADK 、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB 为边作正方形ABCD ,动点P 、Q 在正方形ABCD 的边上运动,且PQ=8.若点P 从点A 出发,沿A→B→C→D 的线路,向D 点运动,求点P 从A 到D 的运动过程中, PQ 的中点O 所经过的路径的长。 图1 F E D C A B P

中考数学动点问题专题练习

中考动点专题 一、应用勾股定理建立函数解析式 例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F. (1)求证: △ADE ∽△AEP. (2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP 的长. 三、应用求图形面积的方法建立函数关系式 例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . A 3(1)

2018中考数学动点问题专题复习(含答案)

2018中考数学动点问题专题复习 1.如图1,在Rt △ABC 中,∠A =90°,AB =6,AC =8,点D 为边BC 的中点,DE ⊥BC 交边AC 于点E ,点P 为射线AB 上的一动点,点Q 为边AC 上的一动点,且∠PDQ =90°. (1)求ED 、EC 的长; (2)若BP =2,求CQ 的长; (3)记线段PQ 与线段DE 的交点为F ,若△PDF 为等腰三角形,求BP 的长. 图1 备用图 解:(1)在Rt △ABC 中, AB =6,AC =8,所以BC =10. 在Rt △CDE 中,CD =5,所以 315tan 544ED CD C =?∠=? =,25 4EC =. (2)如图2,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为M 、N ,那么DM 、DN 是 △ABC 的两条中位线,DM =4,DN =3. 由∠PDQ =90°,∠MDN =90°,可得∠PDM =∠QDN . 因此△PDM ∽△QDN . 所以43PM DM QN DN ==.所以34QN PM =,43PM QN =. 图2 图3 图4 ①如图3,当BP =2,P 在BM 上时,PM =1. 此时 3344QN PM = =.所以319444CQ CN QN =+=+=. ②如图4,当BP =2,P 在MB 的延长线上时,PM =5. 此时 31544QN PM = =.所以1531444CQ CN QN =+=+=. (3)如图5,如图2,在Rt △PDQ 中, 3 tan 4QD DN QPD PD DM ∠= == . 在Rt △ABC 中, 3tan 4BA C CA ∠= = .所以∠QPD =∠C . 由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ . 当△PDF 是等腰三角形时,△CDQ 也是等腰三角形. ①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时 4433PM QN ==.所以45 333BP BM PM =-=-= . ②如图6,当QC =QD 时,由 cos CH C CQ = ,可得5425 258CQ =÷= . 所以QN =CN -CQ = 257488- = (如图2所示). 此时 4736PM QN ==.所以725 366BP BM PM =+=+= . ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示). 图5 图6 2.如图1,抛物线y =ax2+bx +c 经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标; (3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.

初中数学动点专题

动点问题 例题:梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=6cm,BC=24cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以4厘米/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问: (1)t 为何值时,四边形PQCD是平行四边形? (2)在某个时刻,四边形PQCD可能是菱形吗?为什么? (3)t 为何值时,四边形PQCD是直角梯形? (4)在某个时刻,四边形PQCD可能是等腰梯形吗?为什么?

我们来通过这道例题,严格按照上面所讲的步骤尝试一次看看。 1,看要素。其中点P和Q为动点,其余点问固定点。 点P运动的起点为点A,终点为点D,方向为AD方向,速度为1厘米/秒。 点Q运动的起点为点C,终点为点B,方向为CB方向,速度为4厘米/秒。 我们可以看到两点是相向运动,点Q速度要快。另外大家这里要特别注意点的运动范围:点P从A到点D需16s,点Q从点C到点B只需6s,而题目中说“当其中一点到达端点时,另一点也随之停止运动”,所以这道题整个的运动时间最多是6s,也就是说大家解出的答案不能大于6了,这点往往易被大家忽略,也是经常出错的地方。 2,表线段。运动时间为t,则AP=t,CQ=4t,PD=16-t,BQ=24-4t,还可以得到AB=6,CD=10 3,列等式。这里要借助几何图形本身的性质,找出其中的等量关系来列等式。 平行四边形:对边相等。PD=CQ,16-t=4t,t=3.2 菱形:四边都相等。PD=CD=CQ=PQ,即t=3.2且PD=12.8,但PD=CD=10,矛盾,不可能形成菱形。 直角梯形:借助四边形APQB是矩形,矩形对边也相等。AP=BQ,t=24-4t,t=4.8 等腰梯形:作等腰梯形的两高,底角的两个三角形全等。过点P,D分别向BC作垂线,垂足为E,F,则QE=CF,t-(24-4t)=24-16,t=6.4 4,查结果。我们发现第四问的结果超过6了,要舍去,所以题目不可能形成等腰梯形。 动点问题常见题型: 一、建立函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系, 1、应用勾股定理建立函数解析式 例1:如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH ⊥OA,垂足为H,△OPH的重心为G. (1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出 这样的线段,并求出相应的长度. (2) 设PH=x,GP=y,求y关于x的函数解析式,并写自变量x的取 值范围(即自变量x的取值范围). (3)如果△PGH是等腰三角形,试求出线段PH的长. 解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH

相关文档
最新文档