成教学院高等数学课程师资队伍-上海大学

成教学院高等数学课程师资队伍-上海大学
成教学院高等数学课程师资队伍-上海大学

成教学院《高等数学》课程师资队伍上海大学成教学院的所有数学课程由上海大学理学院数学系承担。数学系有3个本科专业,5个硕士专业,2个博士专业,均具有硕士和博士学位授予权,并拥有数学博士后流动站,及上海数学与系统科学研究所、上海市非线性科学活动中心、校非线性科学研究中心和数学基础实验室;其中数学学科为上海市教委重点学科。数学系师资力量强大,教学管理严格,学术梯队合理,与国内外的学术交流广泛,学术气氛浓厚,科研水平与成果在国内外学术界有相当的影响。在教学第一线的,不仅有治学严谨、学术造诣深厚的老教授,还有不少富于创新精神、站在学科前沿的中青年学术带头人和锐意进取、思维活跃的青年教师。在现职的85名专任教师中,有二十多名博士生导师,教授32人、副教授31 人,占教师总数的三分之二以上。他们中不少人在完成日校本科生的教学任务的同时还承担了成教学院的数学教学任务。他们认真备课,教书育人,体现了人民教师的高尚师德。不少教师的课堂教学获得了学生和校教学考评小组的好评。以下是部分在成教学院任教的教师的简介:

俞国胜(男)副教授

1948年出生。1982年毕业于复旦大学数学系,获学士学位。

从事基础课教学工作(包括高职和成人教育),开设课程有:高等数学、概率论与数理统计、线性代数、复变函数与积分变换、数理方程与特殊函数等。

现任上海大学理学院数学系高等数学教研室主任;上海市高职高专数学课程指导小组副组长;2003年9月被上海市教委聘为听课专家组成员。

1998年获上海大学课堂教学一等奖,2002年获理学院课堂教学优秀奖,2003年获上海大学教学名师一等奖。

发表论文:

《一个在多项式时间内可解的公开作业问题》,应用数学学报,V ol.19 No.3;《排序原理在微积分中的一些应用》,应用数学与计算数学学报,V ol.11

No.1:

《浅谈素质教育与能力培养在高等数学命题中的实现》,工科数学,V ol.17:

《积极推进高等数学的教学改革》,高等数学通报,第45期;

参加的科研项目:

《排序论新方向的研究》,93.10-95.12,上海市自然科学基金;

《排序论在成组加工和分批生产中的发展和应用》,95.1-97.12,国家自然科学基金;

《工程数学》,03.2-05.2,上海市教委项目。

石忠锐(男)教授 ( 博导 )

方向:泛函分析及其应用

1955年出生。 1990年获波兰A.Mickiewicza大学博士学位(数学),1995年晋升教授。现为上海大学理学院数学系数学与应用数学教研室主任。1982年起从事泛函分析的研究工作。主持完成有关的国家自然科学基金项目3项,参与完成4项(主要参加者)。主持完成部、省基金各1项,参与完成省基金2项。1995年获机械工业部有突出贡献科技专家称号,1996年被机械工业部任命为跨世纪学科带头人。应邀请,2001, 1998,1996, 1995年分别在美国Princeton大学, Iowa 大学、Texas A&M 大学访问、合作研究。多次在美国、波兰举行的国际会议作学术报告、合作交流。已在美、德、西、捷、波、匈、新、中等国主要学术刊物发表论文近40篇。在Orlicz空间中完成与本项目有关的工作有:空间性质方面:各类凸性质、一致KK性质、一致正规结构、光滑性、全连续性质等。点态性质方面:强暴露点、光滑点、可凹点、非方点等。在部分Banach空间上:一类空间间线性算子的矩阵算子表达及范数计算,Orlicz 可和性定理,Kottmman装球

常数等。最近彻底解决了困扰了20年的公开问题:关于Orlicz范数的Orlicz空间的弱紧集方向一致凸的判据。

邬冬华(男)教授

1960年1月2日出生。现为上海大学数学系教授。1982年毕业于上海科技大学数学系,留校任教。2002年3月在上海大学运筹学与控制论专业获理学博士学位。2002年9月至2003年3月香港中文大学做博士后。2003年3月至今南京大学数学系博士后工作。1982年至1994年从事解析数论研究,1997年至今从事全局最优化和凸规划的多项式算法复杂性研究。在国内外重要刊物上发表四十余篇论文,并出版了《初等数学八讲》(上海远东出版社1986年)、《黎曼猜想》(辽宁教育出版社1987年)、《黎曼猜想》(台湾九章出版社1993年),参与编写了《数论简明教程》(宁夏人民出版社1990年)。其中辽宁出版社出版的《黎曼猜想》一书获1988年全国教育图书壹等奖。一直以来承担了大量的教学与科研工作(包括成教学院),所指导的本科生获教育部主要学科竞赛之一的全国大学生数学模型竞赛壹等奖。

吴东红(女)副教授

1951年出生。留校从教已二十多年,一直在日常教学第一线与成教学院担任《高等数学》与各类工程数学的教学工作,曾获得“教书育人”、“三八红旗积极分子”等奖项。1995年起参加了“超流体动力学完备方程组的稳定性研究”、“一类广义N—S方程的准确解与解空间构造”、“广义Navier—Stokes方程的稳定性与准确解”、“非线性偏微分方程的拓扑几何学理论与方法”、“非静力旋转流体方程组的稳定性及其对参数的依赖”等多项国家与上海市自然科学基金项目的科研工作,发表了多篇科研论文与教学论文。2001年以来开发制作了《高等数学》多媒体教学课件,并成功地在三届学生的教学中进行了应用,获得了学生们的好评。

任亚娣(女)副教授

1951年出生。毕业于华东师大数学系,现任理学院数学系高等数学教研室支部书记、教研室副主任。长期以来在日常教学第一线与成教学院工作。主讲课程:高等数学、工程数学及离散数学等。近年来在各类杂志、刊物上共发表教学论文6篇,集体编写《高等数学》教科书一本。

陈达段(男)副教授博士

1948年出生。1982年起留校任教至今。开讲过的课程有本(专)科生及成教课程的高等数学,线性代数,复变函数与积分变换,微积分(文),概率论。研究生(硕,博)课程:数学物理方程,数学物理方法,泛函分析,近代数学,近世代数。参加“超流体动力学完备方程组的稳定性研究”、“一类广义N—S方程的准确解与解空间构造”、“非线性偏微分方程的拓扑几何学理论与方法”、“非静力旋转流体方程组的稳定性及其对参数的依赖”等多个国家自然科学基金、上海自然科学基金,教委发展基金资助的科研项目(主持其中一项)。参与编写《高等数学》(95重点教材,四校合编)两册。

杨建生(男)副教授博士

1963年出生。1981-1985南京师范大学学习并毕业。1986-1991在华东师范大学学习获硕士和博士学位。1991至今在上海大学理学院数学系从事教学与科研工作, 主讲课程有“高等数学”、“高等代数”、“线性代数”、“解析几何”、“信息论”,“组合数学”,“概率论”等课程。多年担任成教学院的“高等数学”主讲工作。研究领域:图论,编码理论,量子编码理论,量子群。主要成果:已发表论文10多篇。科研项目:2002-2004年国家自然科学基金《小Ramsey数及小Van der Waerden数的研究》。

刘彬清(女)副教授

1946年出生。1968年毕业于华东师范大学数学系。毕业至今一直在日常教育与成人教育第一线从事数学工作,主讲过高等数学、复变函数与积分变换、概率论与数理统计、线性代数、数理方程与特殊函数等。并在各类刊物(包括核心刊物)上发表论文8篇。

崔洪泉(男)讲师硕士

1963年出生。清华大学研究生毕业。从教至今15多年来,担任了本科及研究生多门课程的教学工作及成人教育工作。研究方向是运筹学,参加和正在参加多项科研工作,主讲过的课程有本科生的:高等数学,线性代数,概率论,概率统计,复变函数与积分变换。研究生(硕,博)课程:运筹学,最优化计算方法等。

王培康(男)讲师

1962年出生。毕业于复旦大学数学系,长期在日常教学与成人教育第一线从事教学工作。曾先后独立主讲《高等数学》、《经济数学》、《离散数学》、《统计学概论》、《应用统计学》、《概率论与数理统计》、《计算方法》、《线性代数》、《复变函数》、《积分变换》、《算法语言》等课程。积累了丰富的教学经验。

在教学上认真负责,精心组织讲稿,重点突出、条理清晰、通俗易懂;按照大纲的要求,注重培养学生的基本技能、基本技巧等思想

方法的训练与提高;强调解题方法、解题思路的分析;注重考试技巧的培养。

曾被评为上海大学年度优秀中青年教师。

目前正在进行的科研项目有:

一、工程数学课程平台建设(教材编写、多媒体光盘开发)—

—上海市教委项目。

二、高等数学多媒体开发——上海大学项目。

俞国胜老师正在利用多媒体课件进行教学

吴东红老师正在利用多媒体课件进行教学

上海大学数学研究分析历年考研真题

上海大学数学分析历年考研真题

————————————————————————————————作者:————————————————————————————————日期:

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +L ,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且 [] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>? =??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim ();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1)t t t t ≤?=? +>? (3) 已知( ) 21 1arctan 2tan 1sin 2 x x ' ??=??+??,求积分2011sin I dx x π=+?.

上海大学-离散数学2-图部分试题

离散数学图论部分综合练习 一、单项选择题 1.设无向图G 的邻接矩阵为 ??????? ? ??? ?? ???010 1010010000 011100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2 E B .deg(V )=E C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . ο ο ο ο ο c a b e d ο f 图一 图二

A.{(a, e)}是割边B.{(a, e)}是边割集 C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集 图三 7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ). 图四 A.(a)是强连通的B.(b)是强连通的 C.(c)是强连通的D.(d)是强连通的 应该填写:D 8.设完全图K n 有n个结点(n≥2),m条边,当()时,K n 中存在欧拉 回路. A.m为奇数B.n为偶数C.n为奇数D.m为偶数9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ). A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+2 10.无向图G存在欧拉通路,当且仅当( ). A.G中所有结点的度数全为偶数 B.G中至多有两个奇数度结点 C.G连通且所有结点的度数全为偶数 D.G连通且至多有两个奇数度结点 11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树. A.1 m n-+B.m n-C.1 m n++D.1 n m -+ 12.无向简单图G是棵树,当且仅当( ). A.G连通且边数比结点数少1 B.G连通且结点数比边数少1

大一第一学期期末高等数学(上)试题及答案

1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) .d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求

(第七题删掉了) 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+3 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422 11、(本小题5分) . 求? π +20 2sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226

14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) . d cos sin 12cos x x x x ? +求 二、解答下列各题 (本大题共2小题,总计14分) 1、(本小题7分) ,,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿 2、(本小题7分) . 823 2体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y == 三、解答下列各题 ( 本 大 题6分 ) 设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230 (答案)

上海大学历年考研真题

2003年传播学理论考研试题 一、解释(3*10=30分) 1.劝服论 2.舆论 3.传播媒介 4.内向传播 5.维模原理 6.知晓权 7.近体 8.沉默的螺旋 9.文化规范论 10.多视觉新闻学 二、简答(5*12=60) 1.传播学包括哪些基本内容? 2.简介传播学4位奠基人的主要理论贡献与论著 3.冷媒介与热媒介 4.简述梁启超的新闻传播思想 5.提高宣传效果应注意的问题 三、论述(60分) 1.联系实际,辨证分析传播的功能(40分) 2.多网络传播的特点及与传统媒体的关系(20分)

2003年传播学研究方法考研试题 一、名词解释(4*10) 1.定量研究 2.经验社会学 3.连续变量 4.抽样 5.名目尺度 6.多因素设计 7.个案研究 8.抽样误差 9.信度 10.相关分析 二、简答题(60分) 1.实地访问的重要类型 2.内容分析的方**原则 3.实验的控制主要应把握的两个方面 三、论述题(50分) 问卷的结构分析 2004年试题 R检验 描述性统计分析 定量

简单随机抽样 内容分析 经济传播 信息污染 文化分层 议程设置 铅版 定量与定性的区别和联系(论述)上大05年传播学理论试题 一、名词解释 1.莱温 2.传播者 3.媒介情景非真实化 4.内向传播 5.新闻 6.文化传播的“维模”原理 7.知晓权 8.集权主义理论 9.申报 二、简答题 1.结构功能理论 2.宣伟伯模式

3.议程设计理论 三、论述题 1.麦克鲁汉的媒介理论 2.陈独秀的新闻思想 2005年传播学研究方法 一、名词解释(8*5) 1.信度、效度 2.内容分析 3.分层抽样 4.个案研究 5.控制实验 6.R检验 7.假设 8.答案的穷尽性 二、简答题(4*15) 1.问卷设计中常见的错误有哪些? 2.定量研究方法的具体步骤并图示 3.科学的研究设计包括哪几项? 4.问题设计的原则 三、论传播学研究的交叉性(50)

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且 [] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>? =??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1)t t t t ≤? =? +> ? (3) 已知) 211sin x x ' ?=?+?,求积分2011sin I dx x π=+?.

(完整)上海师范大学高数试题(9)

《微积分下》作业1答案 学院 专业 年级班级 姓名 学号 一、单选题(20×3) 1. =-? dx x 2 1 ( B ) A. ? ?-+-1 2 1 )1()1(dx x dx x B. ?? -+-10 2 1)1()1(dx x dx x C. ? ?-+-1 2 1 )1()1(dx x dx x D. ? ?-+-1 2 1 )1()1(dx x dx x 2.下列各式中积分值为零的是( B ) A.dx x ?-1 1 2 B.dx x x ?-1 1 C.dx x ?-1 121 D. dx x ?-+1 1241 3. ? =π (sin xdx x A ) A.π B.π- C.π2 D.π2- ? =π sin xdx x ?-π 0cos x xd ?+-=π π 0cos 0cos xdx x x =ππ π=+0 sin x 4.下列不等式中正确的是( B ) A.dx x dx x ? ? ≤ 1 1 32 B. dx x dx x ? ? ≥ 1 1 32 C. dx x dx x ? ? ≤ 2 1 2 123 D. dx x xdx ? ? ≥ 2 1 21 2 在]1,0[上3 2 x x ≥∴dx x dx x ? ? ≥ 1 1 32 5.若='=?-)(()(x a dt te x a x t ??为常数),则( A ) A.x xe -- B. x xe - C. a x ae e --+- D. a x ae e --- dt te dt te x x a t a x t ??---==)(? x xe x --=')(? 6. =?dx x x e )sin(ln 1 1( C ) A.1sin 1- B.11sin - C.1cos 1- D.11cos - =? dx x x e )sin(ln 1 1 )(ln )sin(ln 1 ?e x d x =11cos 1)cos(ln +-=-e x 7.下列广义积分 dx xe x ? +∞ -0 的值是( A )

高等数学常用公式 上海大学

高等数学公式 From:上海大学通信与信息工程学院 导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 2 2 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-= -+=++-=++=+=+-=? ?? ?????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 2 2 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 0ππ

上海大学2009年数学分析考研试题

上海大学2009年度研究生入学考试题 数学分析 1. 1222lim 0,lim 0n n n n a a na a n →∞→∞++== 求 2.叙述一致连续定义。问()22cos cos g x x x =+是否是周期函数?证之 3. ()f x 在[)1,+∞可导,()()() 22111,f f x x f x ′==+且证()lim x f x →+∞存在且极限小于14π + 41 2 0sin ,x I dx x = ∫误差<0.0005 5.()()(0,)13,,0, f x C f x y ∈+∞ = >当()()()111,xy y x f t dt x f t dt y f t dt =+∫∫∫()f x 求 6. ()f x 在[],a b 可积. ()[][]0,,,b a f x dx a b αβ≠ ?∫是否存在,[](),f x αβ 使上为恒正或者恒负。证之 7. }{()1lim 01n n n n n n x x x ∞→+∞== ?∑在的条件下,试问收敛吗?证之 8. ()f x 在[)1,+∞单减连续可微,()lim 0,x f x →+∞ = ()()1lim 0x xf x dx xf x +∞→∞ =∫证明:当收敛,则 9.证明: ()1,2n n f x x n = =,,…在[)0,1非一致收敛,但()()[)S 1,20,1n n g x x x n = =,,…在上一致收敛,其中()S x 在[)0,1上连续且()S 1=0 10()[]01f x C ∈ ,,证明:()()()10lim 11n x n x f x dx f →+∞+=∫ 11a>>>任取一点做切平面,求该切平面截三坐标轴所得三线段长度之和 13.中心在原点的2222221Ax By Cz Dxy Eyz Fxz +++++=的长半轴l 是下行列式的最大

上海海洋大学高数下册测试题

题目部分,(卷面共有100题,分,各大题标有题量和总分) 一、选择 (16小题,共分) (2分)[1] (3分)[2]二重积分D xydxdy ?? (其中D :0≤y ≤x 2 ,0≤x ≤1)的值为 (A ) 16 (B )112 (C )12 (D )1 4 答 ( ) (3分)[3]若区域D 为0≤y ≤x 2 ,|x |≤2,则2 D xy dxdy =??= (A )0; (B ) 323 (C )64 3 (D )256 答 ( ) (3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分 22(,)D f x y dxdy =??__________1 22 (,)D f x y dxdy ?? (A )2 (B )4 (C )8 (D ) 1 2 答 ( ) (3分)[5]设f (x ,y ) 是连续函数,则二次积分0 1 1 (,)x dx f x y dy -+? = (A)11 2 11 1 (,)(,)y dy f x y dx dy f x y dx ---+?? ? (B)1 1 1 (,)y dy f x y dx --? ? (C)11 1 1 1 (,)(,)y dy f x y dx f x y dx ---+?? ? (D) 2 1 (,)dy f x y dx -? ? 答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2 ≤-x ,y ≥x 2 上连续,则二重积分(,)D f x y dxdy ??可化累次积分为 (A) 20 1 (,)x dx f x y dy -? (B)2 1 (,)x dx f x y dy -??

大一第一学期期末高等数学(上)试题及答案.docx

第一学期期末高等数学试卷 一、解答下列各题 (本大题共 16 小题,总计 80 分 ) 1、 (本小题 5 分 ) 求极限 lim x 3 12 x 16 3 9x 2 12x 4 x 2 2x 2、 (本小题 5 分 ) 求 x x 2 ) 2 dx. (1 3、 (本小题 5 分 ) 求极限 limarctan x arcsin 1 x x 4、 (本小题 5 分 ) 求 x d x. 1 x 5、 (本小题 5 分 ) 求 d dx x 2 1 t 2 dt . 6、 (本小题 5 分 ) 求 cot 6 x csc 4 x d x. 7、 (本小题 5 分 ) 2 cos 1 dx . 求 1 12 x x 8、 (本小题 5 分 ) 设 x e t cost 2 确定了函数 y y( x), 求 dy . y e 2t sin t dx 9、 (本小题 5 分 ) 3 求 x 1 x dx . 10、 (本小题 5 分 ) 求函数 y 4 2 x x 2 的单调区间 Y 11、 (本小题 5 分 ) 求 2 sin x . 8 sin 2 dx x 12、 (本小题 5 分 ) 设 x t ) e kt (3cos t 4 sin t ,求 dx . ( ) 13、 (本小题 5 分 ) 设函数 y y x 由方程 y 2 ln y 2 x 6 所确定 , 求 dy . ( ) dx 14、 (本小题 5 分 ) 求函数 y e x e x 的极值 2 15、 (本小题 5 分 ) 求极限 lim ( x 1)2 (2x 1)2 ( 3x 1) 2 (10x 1)2 x (10x 1)(11x 1) 16、 (本小题 5 分 )

上海大学插班生高等数学a基本要求

上海大学插班生高等数学A基本要求 上海大学插班生高等数学A基本要求 1、函数、极限、连续 (1)、理解函数的概念,掌握函数的表示方法 (2)了解函数的奇偶性、单调性、周期性和有界性 (3)理解复合函数的概念,了解反函数及隐函数的概念。会建立简单函数关系式 (4)掌握基本初等函数的性质和图形 (5)理解极限的概念,了解分段函数的极限 (6)掌握极限四则运算法则,掌握利用两个重要极限求极限的方法。 (7)掌握极限存在的二个准则,并会利用它们求极限 (8)理解无穷小、无穷大以及无穷小的阶的概念,会利用等价无穷小求极限1 (9)理解函数连续性的概念,会判断函数间断点的类型 (10)了解初等函数的连续性和闭区间上的连续函数的性质,并会应用这些性质 2、导数与微分 (1)理解导数的概念导数的几何意义和物理意义,函数的可导性与连续性之间的关系 (2)掌握导数的四则元算法则和复合函数的求导法,掌握基本初等函数的导数公式。会求分段函数的一阶二阶导数 (3)了解高阶函数的概念,会求简单的函数的n阶导数,掌握初等函数的二阶导数的求法 (4)会求隐函数和参数方程所确定的函数的一、二阶导数。 (5)了解微分的概念和四则运算 (6)会用导数描述一些简单的物理量 3、中值定理与导数的应用 (1)理解并会应用罗尔定理、拉格朗日定理,利用定理能求方程的根、证明不等式。了解柯西定理(2)理解函数的极值概念,掌握用导数判别函数的单调性和求函数极值的方法(3)会用导数描绘图形(4)会求MAX、MIN的应用问题 (5)掌握洛必达法则求未定式极限的方法 (6)了解曲率,曲率半径的概念,并会计算 (7)了解求方程近似解的二分法和切线法 4、不定积分 (1)理解原函数的概念,理解不定积分的概念及性质 (2)掌握不定积分的基本公式、换元法、分部积分法 5、定积分及其应用 (1)理解定积分的基本概念,定积分的中值定理 (2)理解变限函数及其求导定理,掌握牛顿—莱布尼兹公式 (3)掌握定积分的性质及换元积分法和分部积分法 (4)了解定积分的近似计算方法 (5)掌握定积分在几何上的应用,和物理上的应用

上海大学_王培康_数值分析大作业

数值分析大作业(2013年5月) 金洋洋(12721512),机自系 1.下列各数都是经过四舍五入得到的近似值,试分别指出它 们的绝对误差限, 相对误差限和有效数字的位数。 X1 =5.420, x 2 =0.5420, x 3=0.00542, x 4 =6000, x 5=50.610? 解:根据定义:如果*x 的绝对误差限 不超过x 的某个数位的半个单位,则从*x 的首位非零数字到该位都是有效数字。 显然根据四舍五入原则得到的近视值,全部都是有效数字。 因而在这里有:n1=4, n2=4, n3=3, n4=4, n5=1 (n 表示x 有效数字的位数) 对x1:有a1=5, m1=1 (其中a1表示x 的首位非零数字,m1表示x1的整数位数) 所以有绝对误差限 143 11 (1)101022 x ε--≤ ?=? 相对误差限 31() 0.510(1)0.00923%5.4201 r x x x εε-?= == 对x2:有a2=5, m2=0 所以有绝对误差限 044 11 (2)101022 x ε--≤ ?=? 相对误差限 42() 0.510(2)0.00923%0.54202 r x x x εε-?= == 对x3:有a3=5, m3=-2 所以有绝对误差限 235 11 (3)101022 x ε---≤ ?=? 相对误差限 53() 0.510(3)0.0923%0.005423 r x x x εε-?= == 对x4:有a4=0, m4=4 所以有绝对误差限 4411(4)1022 x ε-≤?= 相对误差限 4() 0.5 (4)0.0083%6000 4 r x x x εε= = = 对x5:有a5=6, m5=5 所以有绝对误差限 514 11(5)101022 x ε-≤ ?=? 相对误差限 45() 0.510(5)8.3%600005 r x x x εε?= ==

高等数学_大一_上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB = (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论m n a x b x --+++++11结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为αβ. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小.

推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设~,~α αββ'', 且lim βα''存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123; (2)lim lim n n n n y z a →∞→∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 10lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型.

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且 [] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>? =??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim ();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1) t t t t ≤ ?=? +> ? (3) 已知) 211sin x x ' ?=?+?,求积分2011sin I dx x π=+?. (4) 计算()()2222 2 ()0x y z t f t xyz dxdydz t ++≤= >???的导数()f t '(只需写出()f t '的积分表达

高数 大一 上学期知识要点

总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB = (除法运算) ()0,lim () f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论 结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞=) 则称()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1βα =, 则称α 与β是等价无穷小, 记为αβ . ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小.

推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设~,~ααββ'', 且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~ ,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123 ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 sin lim 1x x x →= 1 lim (1)x x x e →+= 1lim (1)x x e x →∞+ = 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型.

上海大学高等代数历年考研真题

2000上海大学 高等代数 (一) 计算行列式:a c c c b a c c b b a c b b b a ????????? (二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方 和. (三) B A ,分别为m n ?和m n ?矩阵, n I 表示n n ?单位矩阵.证明: m n ?阶矩阵 n A I X B ?? = ??? 可逆当且仅当B A 可逆,可逆时求出X 的逆. (四) 设12,n e e e ???是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ???n V ∈,证明: 存在唯一的线性变换A ,使得(),1,2i i A e a i n ==?? (五) 设A 是n 维线性空间V 的线性变换,求证: 1 (0)V A V A -=⊕当且仅当若12,r a a a ???为A V 的一组基则12,r A a A a A a ???是2 ()A V 的一组基. (六) 设A 为2级实方阵,适合2100 1A -??= ?-??,求证:A 相似于011 0-?? ??? . (七) 已知,f g 均为线性空间V 上线性变换,满足2 2 ,f f g g ==试证: (1)f 与g 有相同的值域?,fg g g f f ==. (2)f 与g 有相同的核?,fg f g f g ==. 2001上海大学 高等代数 (一)计算行列式:231 21 21 2 3 n n n x a a a a x a a a a x a a a a x (二)设A 为3阶非零方阵,且2 0A =.

上海师范大学高数试题 (10)

《微积分下》作业2 学院 专业 年级班级 姓名 学号 一、单选题(5×4) 1.由曲线2x y =及122+=x y 所围成的平面图形的面积为( D ) A.23 B.25 C.21 D.3 2 dx x x s ]2 1 [221 02-+=? dx x )2 21(22 1 0- =? 3 201]62[23=-=x x 3 2 ,则c 的取值为( B ) A.1 B.21 C.3 1 D.2 ???==32cx y x y ??? ???==c x x 1 0 dx cx x s c )(1 32? -= 0]4 131[143c cx x -= 32 1213 == c 21=c y 3 cx y =

3. 由曲线)0(sin 2 3π≤≤=x x y 与x 轴围成的图形绕x 轴旋转所成旋转体的体积为 ( C ) A. 34 B.32 C.π34 D.π3 2 4.抛物线x y 22=与直线4-=x y 所围成的图形的面积为( A ) A.18 B. 58 C.5 18 D.8 5.曲线x y ln =与x 轴及直线e x e x ==,1 所围成的图形的面积是( B ) A.e e 1- B.e 22- C.e e 2- D.e e 1+ 二﹑综合题(2×10) 1.求心形线)0)(cos 1(>+=a a ?ρ与圆a =ρ所围各部分的面积。 解:(1)圆内,心形线内部分1A 221 212()22A d a πππρ??=+?=22 222)cos 1(a d a π??ππ++? = ?? ?π π π d a a ]2 2cos 1cos 21[2 2 2 2? ++ ++ =ππ???π 2 22]2sin 41 sin 223[2+++a a = )24 5(]243[ 2 222-=-+π ππ a a a (2)圆内,心形线外部分2A )4 2(2122 π π- =-=a A a A (3) 圆外,心形线内部分3A ??π d a a A ])cos 1([2 1222220 3 -+=? =???π d a ]1cos cos 21[2 022-++? =???πd a ]cos cos 2[2 22 ? +=)4 2(2π + a 2.设1D 是由抛物线2 2x y =和直线a x =,2=x ,及0=y 所围成的平面区域,2D 是由抛物线 22x y =和直线0=y ,a x =所围成的平面区域,其中20<

上海大学2011年初试考纲613高等数学

考试科目:高等数学 适用专业:系统分析与集成;物理学 一、复习要求: 要求考生掌握高等数学与线性代数的基本知识,基本理论,基本运算和分析方法。 (物理学只要求考高等数学,不含线性代数) 二、主要复习内容: (一)高等数学 1.函数、极限、连续 数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则两个重要极限函数连续的概念函数间断点的类型闭区间上连续函数的性质 2.一元函数的微分学 导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线与法线基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法某些简单函数的n阶导数微分中值定理洛必达法则函数的极值函数单调性函数图形的凹凸性、拐点及渐近线函数的最大值与最小值 3.一元函数的积分学 原函数与不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理变上限定积分定义的函数及其导数牛顿-莱布尼茨公式不定积分和定积分的换元积分法与分部积分法广义积分定积分的应用(几何和物理方面应用) 4.向量代数和空间解析几何

向量的概念向量的线性运算向量的数量积和向量积向量的混合积平面方程直线方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程 5.多元函数微分学 多元函数的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线多元函数极值和条件极值拉格朗日乘数法多元函数的最大值、最小值及其简单应用6.多元函数积分学 二重积分与三重积分的计算和应用两类曲线积分的性质及计算格林公式平面曲线积分与路径无关的条件已知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用。 7.无穷级数 常数项级数的收敛与发散的概念,收敛级数和的概念级数的基本性质与收敛的必要条件几何级数与p-级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛幂级数及其收敛半径、收敛区间、收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶系数与傅里叶级数狄利克雷定理函数在[-l, l]上的傅里叶级数函数在[0, l]上的正弦级数和余弦级数 8.常微分方程 常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程贝努利方程全微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性

上海海事大学高数期末试题高等数学B(B)

第 1 页 共 6 页 上 海 海 事 大 学 试 卷 2009 — 2010 学年第一学期期末考试 《 高等数学B ) 》(B 卷) 班级 学号 姓名 总分 (本大题分4小题, 每小题3分, 共12分)  最小值  最大值 极小值 极大值 处必有在处在点、函数)()()()() (,0)(,0)()(10000D ?C ?B A ??x x f x f x x x f y <''='== []().无关 .充分必要 .必要不充分.充分非必要 条件 上连续是可导的,在、函数)(? ? )()( )()(2D C ?B A ??b a x f 3、 已知函数=-→x f x f x ) 0()3(lim 03,则)(x f 在0=x 处切线的斜率为( ) (A )3 (B) -3 (C )-1 (D )1 4、x x 1 arctan lim 0→的极限为 ( ) (A )2π (B) 2π- (C) 2 π或 2π - (D )不存在 二、填空题(将正确答案填在横线上) (本大题分4小题, 每小题3分, 共12分) 1、=?- →3 2 0tan lim x dt t x x 2、______________1sin 121 ?2 12 ? =-+- ?dx x x --------------------------------------------------------------------------------------装 订 线------------------------------------------------------------------------------------

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且[] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>?=??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1) t t t t ≤? =? +> ? (3) 已知) 211sin x x ' ?=?+? ,求积分2011sin I dx x π=+?. (4) 计算()()2222 2 ()0x y z t f t xyz dxdydz t ++≤= >???的导数()f t '(只需写出()f t '的积分表达

相关文档
最新文档