高频电子线路实验指导书副本

高频电子线路实验指导书副本
高频电子线路实验指导书副本

高频电子线路实验箱简介

HD-GP-Ⅲ型

一、产品组成

该产品由3种实验仪器、10个实验模块(其中1、6、9号模块属于选配模块)及实验箱体(含电源)组成。

1.实验仪器及主要指标如下:

1)频率计:

频率测量范围:50Hz~99MHz

输入电平范围:100mVrms~2Vrms

测量误差:≤±20ppm(频率低端≤±1Hz)

输入阻抗:1MΩ/10pF

2) 信号源:

输出频率范围:400KHz~45MHz(连续可调)

频率稳定度:10E-4

输出波形:正弦波,谐波≤-30dBc

输出幅度:1mVp-p~1Vp-p(连续可调)

输出阻抗:75Ω

3) 低频信号源:

输出频率范围:200Hz~16KHz(连续可调)

频率稳定度:10E-4

输出波形:正弦波、方波、三角波

输出幅度:10mVp-p~5Vp-p(连续可调)

输出阻抗:100Ω

2.实验模块及电路组成如下:

1)模块1:单元选频电路模块

该模块属于选件,非基本模块

包含LC并联谐振回路、LC串联谐振回路、集总参数LC低通滤波器、陶瓷滤波器、石英晶体滤波器等五种选频回路。

2)模块2:小信号选频放大模块

包含单调谐放大电路、电容耦合双调谐放大电路、集成选频放大电路、自动增益控制电路(AGC)等四种电路。

3)模块3:正弦波振荡及VCO模块

包含LC振荡电路、石英晶体振荡电路、压控LC振荡电路等三种电路。

4)模块4:AM调制及检波模块

包含模拟乘法器调幅(AM、DSB、SSB)电路、二极管峰值包络检波电路、三极管小信号包络检波电路、模拟乘法器同步检波电路等四种电路。

5)模块5:FM鉴频模块一

包含正交鉴频(乘积型相位鉴频)电路、锁相鉴频电路、基本锁相环路等三种电路。

6)模块6:FM鉴频模块二

该模块属于选件,非基本模块

包含双失谐回路斜率鉴频电路、脉冲计数式鉴频电路等两种电路。

7)模块7:混频及变频模块

包含二极管双平衡混频电路、模拟乘法器混频电路、三极管变频电路等三种电路。

8)模块8:高频功放模块

包含非线性丙类功放电路、线性宽带功放电路、集成线性宽带功放电路、集电极调幅电路等四种电路。

9)模块9:波形变换模块

该模块属于选件,非基本模块

包含限幅电路、直流电平移动电路、任意波变方波电路、方波变脉冲波电路、方波变三角波电路、脉冲波变锯齿波电路、三角波变正弦波电路等七种电路。

10)模块10:综合实验模块

包含话筒及音乐片放大电路、音频功放电路、天线及半双工电路、分频器电路等四种电路。

二、产品主要特点

1.采用模块化设计,使用者可以根据需要选择模块,既可节约经费又方便今后升级。

2.产品集成了多种高频电路设计及调试所必备的仪器,既可使学生在做实验时观察实验现象、调整电路时更加全面、更加有效,同时又可为学生在进行高频电路设计及调试时提供工具。

3.实验箱各模块有良好的系统性,除单元选频电路模块及波形变换模块外,其余八个模块可组合成四种典型系统:

⑴中波调幅发射机(535KHz~1605KHz)。

⑵超外差中波调幅接收机(535KHz~1605KHz,中频465KHz)。

⑶半双工调频无线对讲机(10MHz~15MHz,中频4.5MHz,信道间隔200KHz)。

⑷锁相频率合成器(频率步进40KHz~4MHz可变)。

4.实验内容非常丰富,单元实验包含了高频电子线路课程的大部分知识点,并有丰富的、有一定复杂性的综合实验。

5.电路板采用贴片工艺制造,高频特性良好,性能稳定可靠。

三、实验内容

1. 小信号调谐(单、双调谐)放大器实验(模块2)

2. 集成选频放大器实验(模块2)

3. 二极管双平衡混频器实验(模块7)

4. 模拟乘法器混频实验(模块7)

5. 三极管变频实验(模块7)

6. 三点式正弦波振荡器(LC、晶体)实验(模块3)

7. 压控振荡器实验(模块3)

8. 非线性丙类功率放大器实验(模块8)

9. 线性宽带功率放大器实验(模块8)

10. 集电极调幅实验(模块8)

11. 模拟乘法器调幅(AM、DSB、SSB)实验(模块4)

12. 包络检波及同步检波实验(模块4)

13. 变容二极管调频实验(模块3)

14. 正交鉴频及锁相鉴频实验(模块5)

15. 模拟锁相环实验(模块5)

16. 自动增益控制(AGC)实验(模块2)

17. 中波调幅发射机组装及调试实验(模块4、8、10)

18. 超外差中波调幅接收机组装及调试实验(模块2、4、7、10)

19. 锁相频率合成器组装及调试实验(模块5、10)

20. 半双工调频无线对讲机组装及调试实验(模块2、3、5、7、8、10)

21. 斜率鉴频及脉冲计数式鉴频实验(选件模块6,属选做实验)

22. 波形变换实验(选件模块9,属选做实验)

23. 常用低通、带通滤波器特性实验(选件模块1,属选做实验)

24. LC串、并联谐振回路特性实验(选件模块1,属选做实验)

四、需另配设备

1. 实验桌

2. 20M双踪示波器(数字或模拟)

3. 万用表(数字或模拟)附:综合实验方框图

1. 自动增益控制

2. 中波调幅发射机

3. 超外差中波调幅接收机

4. 锁相频率合成器

5. 半双工调频无线对讲机

实验注意事项

1.本实验系统接通电源前请确保电源插座接地良好。

2.每次安装实验模块之前应确保主机箱右侧的交流开关处于断开状态。为

保险起见,建议拔下电源线后再安装实验模块。

3.安装实验模块时,模块右边的双刀双掷开关要拨上,将模板四角的螺孔

和母板上的铜支柱对齐,然后用黑色接线柱固定。确保四个接线柱要拧紧,以免造成实验模块与电源或者地接触不良。经仔细检查后方可通电实验。

4.各实验模块上的双刀双掷开关、拨码开关、复位开关、自锁开关、手调

电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。

5.请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。

6.各模块中的3362电位器(蓝色正方形封装)是出厂前调试使用的。出

厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。若已调动请尽快复原;若无法复原,请与指导老师或直接与我公司联系。

7.在关闭各模块电源之后,方可进行连线。连线时在保证接触良好的前提

下应尽量轻插轻放,检查无误后方可通电实验。拆线时若遇到连线与孔连接过紧的情况,应用手捏住线端的金属外壳轻轻摇晃,直至连线与孔松脱,切勿旋转及用蛮力强行拔出。

8.按动开关或转动电位器时,切勿用力过猛,以免造成元件损坏。

注意:本实验指导书适用实验箱型号为HD-GP-Ⅲ型和HD-GP-II型。两者区别为:HD-GP-Ⅲ型自带信号源、频率计;HD-GP-II型不含信号源、频率计,实验内容完全一致。本实验指导书以HD-GP-Ⅲ型为参照,HD-GP-II型在使用时需要外接信号源、频率计,其它实验步骤完全一致。

实验一 高频小信号调谐放大器实验

一、实验目的

1. 掌握小信号调谐放大器的基本工作原理;

2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;

3. 了解高频小信号放大器动态范围的测试方法;

二、实验原理

1-1a 1-1b

(一)单调谐放大器

小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1(a )所示。该电路由晶体管Q 1、选频回路T 1二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。本实验中输入信号的频率f S =12MHz 。基极偏置电阻W 3、R 22、R 4和射极电阻R 5决定晶体管的静态工作点。可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。

放大器各项性能指标及测量方法如下: 1.谐振频率

放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1(a )所示电路(也是以下各项指标所对应电路),f 0的表达式为

=

LC f π210

式中,L 为调谐回路电感线圈的电感量;

∑C 为调谐回路的总电容,∑C 的表达式为

ie oe C P C P C C 2

221++=∑

式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。

谐振频率f 0的测量方法是:

用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

2.电压放大倍数

放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为

G

g p g p y p p g y p p v v A ie oe fe fe

i V ++-=-=-=∑2

221212100 式中,∑g 为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0

与输入电压V i 相位差不是180o 而是为180o

+Φfe 。

A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1(a )中输出信号V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算:

A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d

B 3.通频带

由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为

BW = 2△f 0.7 = f 0/Q L

式中,Q L 为谐振回路的有载品质因数。

分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为

=

?C y BW A fe V π20

上式说明,当晶体管选定即y fe 确定,且回路总电容∑C 为定值时,谐振电压放大倍数A V0与通频带BW 的乘积为一常数。这与低频放大器中的增益带宽积为一常数的概念是相同

的。

通频带BW 的测量方法:是通过测量放大器的谐振曲线来求通频带。测量方法可以是扫频法,也可以是逐点法。逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率f 0及电压放大倍数A V0然后改变高频信号发生器的频率(保持其输出电压V S 不变),并测出对应的电压放大倍数A V0。由于回路失谐后

电压放大倍

数下降,所以放大器的谐振曲线如图1-2所示。

可得:

7.02f f f BW L H ?=-=

通频带越宽放大器的电压放大倍数越小。要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,除了选用y fe 较大的晶体管外,还应尽量减小调谐回路的总电容量C Σ。如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。

4.选择性——矩形系数

调谐放大器的选择性可用谐振曲线的矩形系数K v0.1时来表示,如图1-2所示的谐振曲线,矩形系数K v0.1为电压放大倍数下降到0.1 A V0时对应的频率偏移与电压放大倍数下降到0.707 A V0时对应的频率偏移之比,即

K v0.1 = 2△f 0.1/ 2△f 0.7 = 2△f 0.1/BW

上式表明,矩形系数K v0.1越小,谐振曲线的形状越接近矩形,选择性越好,反之亦然。一般单级调谐放大器的选择性较差(矩形系数K v0.1远大于1),为提高放大器的选择性,通常采用多级单调谐回路的谐振放大器。可以通过测量调谐放大器的谐振曲线来求矩形系数K v0.1。

(二)双调谐放大器

双调谐放大器具有频带较宽、选择性较好的优点。双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路改用双调谐回路。其原理基本相同。

1.电压增益为

g

y p p v v A fe i V 2210

-=-=

2. 通频带

BW = 2△f 0.7 =

2fo/Q L

3.选择性——矩形系数

K v0.1 = 2△f 0.1/ 2△f 0.7 =41100-

三、实验步骤

(一)单调谐小信号放大器单元电路实验

1.根据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件(具体指出)。

2.按下面框图(图1-3)所示搭建好测试电路。

图1-3 高频小信号调谐放大器测试连接框图

3.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮,红灯为+12V电源指示灯,绿灯为-12V电源指示灯。(以后实验步骤中不再强调打开实验模块电源开关步骤)

4.调整晶体管的静态工作点:

在不加输入信号时用万用表(直流电压测量档)测量电阻R4两端的电压(即V BQ)和R5两端的电压(即V EQ),调整可调电阻W3,使V eQ=4.8V,记下此时的V BQ、V EQ,并计算出此时的I EQ=V EQ /R5(R5=470Ω)。

5.按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。

6.调节信号源“RF幅度”和“频率调节”旋钮,使输出端口“RF1”和“RF2”输出频率为12MHz 的高频信号。将信号输入到2号板的J4口。在TH1处观察信号峰-峰值约为100mV以上。

7.调谐放大器的谐振回路使其谐振在输入信号的频率点上:

将示波器探头连接在调谐放大器的输出端即TH2上,调节示波器直到能观察到输出信号的波形,再调节中周磁芯使示波器上的信号幅度最大,此时放大器即被调谐到输入信号的频率点上。

8.测量电压增益A v0

在调谐放大器对输入信号已经谐振的情况下,用示波器探头在TH1和TH2分别观测输入和输出信号的幅度大小,则A v0即为输出信号与输入信号幅度之比。

9.测量放大器通频带

对放大器通频带的测量有两种方式,

其一是用频率特性测试仪(即扫频仪)直接测量;

其二则是用点频法来测量:即用高频信号源作扫频源,然后用示波器来测量各个频率信号的输出幅度,最终描绘出通频带特性,具体方法如下:

通过调节放大器输入信号的频率,使信号频率在谐振频率附近变化(以20KHz或500KHz为步进间隔来变化),并用示波器观测各频率点的输出信号的幅度,然后就可以在如下的“幅度-频率”坐标轴上标示出放大器的通频带特性。

10.测量放大器的选择性

描述放大器选择性的的最主要的一个指标就是矩形系数,这里用Kr0.1和Kr0.01来表示:

0.010.1

0.7

22r f K

f

=

??

0.010.01

0.7

22r f K

f

=

??

式中,0.7

2f

?为放大器的通频带;0.1

2f

?和0.01

2f

?分别为相对放大倍数下降至0.1和0.01处的带宽。用第9步中的方法,我们就可以测出0.7

2f ?、0.12f

?和0.01

2f

?的大小,从而得到0.1r K 和

0.01

r K

注意:对高频电路而言,随着频率升高,电路分布参数的影响将越来越大,而我们在理论计算中是没有考虑到这些分布参数的,所以实际测试结果与理论分析可能存在一定的偏差。另外,为了使测试结果准确,应使仪器的接地尽可能良好。

(二)双调谐小信号放大器单元电路实验

双调谐小信号放大器的测试方法和测试步骤与单调谐放大电路基本相同,只是在以下两个方面稍作改动:

其一是输入信号的频率应改为465KHz (峰-峰值200mV );

其二是在谐振回路的调试时,对双调谐回路的两个中周要反复调试才能最终使谐振回路谐振在输入信号的频点上,具体方法是,按图1-3连接好测试电路并打开信号源及放大器电源之后,首先调试放大电路的第一级中周,让示波器上被测信号幅度尽可能大,然后调试第二级中周,也是让示波器上被测信号的幅度尽可能大,这之后再重复调第一级和第二级中周,直到输出信号的幅度达到最大,这样,放大器就已经谐振到输入信号的频点上了。

11.同单调谐实验,做双调谐实验,并将两种调谐电路进行比较。

四、实验报告要求

1.写明实验目的。

2.画出实验电路的直流和交流等效电路。 3.计算直流工作点,与实验实测结果比较。 4.整理实验数据,并画出幅频特性。

五、实验仪器

1. 高频实验箱 1台

2. 双踪示波器 1台

3. 万用表 1块

4. 扫频仪(可选) 1台

实验二 三点式正弦波振荡器

一、实验目的

1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容

1. 熟悉振荡器模块各元件及其作用。

2. 进行LC 振荡器波段工作研究。

3. 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4. 测试LC 振荡器的频率稳定度。

三、基本原理

图6-1 正弦波振荡器(4.5MHz )

将开关S2的1拨上2拨下, S1全部断开,由晶体管Q 3和C 13、C 20、C 10、CCI 、L 2构成电容反馈三

点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

)

(21

1020CCI C L f +=

π

振荡器的频率约为4.5MHz (计算振荡频率可调范围)

振荡电路反馈系数: F=

12.0470

56

2013≈=C C 振荡器输出通过耦合电容C 3(10P )加到由Q 2组成的射极跟随器的输入端,因C 3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号Q 1调谐放大,再经变压器耦合从J1输出。

四、实验步骤

1. 根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2. 研究振荡器静态工作点对振荡幅度的影响。 1) 将开关S2的1拨上,S1全拨下,构成LC 振荡器。 2) 改变上偏置电位器R A1,记下发射极电流I eo (=

10

R V e

),并用示波器测量对应点的振荡幅度V P-P (峰—峰值)记下对应峰峰值以及停振时的静态工作点电流值。

分析输出振荡电压和振荡管静态工作点的关系,分析思路:静态电流I CQ 会影响晶体管跨导gm ,而放大倍数和gm 是有关系的。在饱和状态下(I CQ 过大),管子电压增盖A V 会下降,一般取I CQ =(1~5mA )为宜。

3. 分别用5000p 和100p 的电容并联在C20两端,改变反馈系数,观察振荡器输出电压的大小。(选做)

1) 计算反馈系数

2) 用示波器记下振荡幅度值 3) 分析原因

五、实验报告要求

1.记录实验箱序号

2.分析静态工作点、反馈系数F 对振荡器起振条件和输出波形振幅的影响,并用所学理论加以分析。

3.计算实验电路的振荡频率f o ,并与实测结果比较。

六、实验仪器

1.高频实验箱 1台 2.双踪示波器 1台 3.万用表 1块

高频电子线路实验合集

实验名称:高频小信号放大器 系别:计算机系年级:2015 专业:电子信息工程 班级:学号: 姓名: 成绩: 任课教师: 2015年月日

实验一高频小信号放大器 一、实验目的 1、掌握小信号调谐放大器的基本工作原理; 2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3、了解高频小信号放大器动态围的测试方法; 二、主要仪器设备 在计算机上用仿真软件模拟现实的效果, 通过采用仿真技术,虚拟构建一个直观、可视化的2D、3D 实验环境,从而达到对实验现象和实验结果的虚拟仿真以及对现实实验的操作,为处于不同时间、空间的实验者提供虚拟仿真的实验环境,使学习者仿佛置身其中,对仪器、设备、容等实验项目进行互动操作和练习。 二、实验原理 二、实验步骤

1、绘制电路 利用Mulisim软件绘制如图1-1所示的单调谐高频小信号实验电路。 图1-1 单调谐高频小信号实验电路 2、用示波器观察输入和输出波形; 输入波形:

输出波形: 3、利用软件中的波特测试仪观察通频带。

5.实验数据处理与分析 根据电路中选频网络参数值,计算该电路的谐振频率ωp ; s rad CL w p /936.210 58010 2001 16 12 =???= = -- 通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。 ,708.356uV V I = ,544.1mV V O = === 357 .0544 .10I O v V V A 4.325 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,根据图粗略计算出通频带。 f 0(KHz ) 65 75 165 265 365 465 1065 1665 226 5 2865 3465 4065 U 0 (mv) 0.97 7 1.064 1.39 2 1.48 3 1.528 1.54 8 1.45 7 1.28 2 1.09 5 0479 0.84 0 0.74 7 A V 2.73 6 2.974 3.89 9 4.154 4.280 4.33 6 4.08 1 3.59 1 3.06 7 1.34 1 2.35 2 2.09 2 (5)在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

AM调幅发射机课程设计

淮海工学院 课程设计报告书 课程名称:电子技术课程设计 题目: AM调幅发射机设计 学院:电子工程学院 学期:2012-2013 第二学期 专业班级:通信工程 112 姓名: 学号: 2011120721

小功率调幅高频发射机的设计 1 引言 本学期学习了《通信原理》、《电子线路》等理论学习和高频电子线路实验和通信原理实验,此次高频电子线路课程设计是一次重要的实践性教学环节。主要任务是在学生掌握和具备电子技术基础知识与单元电路的设计能力之后,让学生综合运用高频电子线路知识,进行实际高频系统的设计、安装和调测,利用mutisim、protel等相关软件进行电路设计。通过课程设计,使同学们增强对通信电子技术的理解,学会查寻资料、比较方案,学会通信电路的设计、计算;进一步提高分析解决实际问题的能力、创造一个动脑动手、独立开展电路实验的机会,锻炼分析、解决通信电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强实践能力。在课程设计期间,要求学生对模拟通信系统有较详细的理解。 发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。 利用无线电波作为载波,对信号进行传递,可以用不同的装载方式。在无线电广播中可分为调幅制、调频制两种调制方式。目前调频式或调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性好及失真度小等优点。我们要研究的是调幅发射机。 2 课程设计目的及要求 2.1 设计目的

(1)巩固所学理论知识,加强综合能力,提高实验技术,起到启发创新思思维的效果。 (2)通过课程设计,使学生增强对通信电子技术的理解,学会查寻资料、比较方案,学会通信电路的设计、计算。 (3)进一步提高分析解决实际问题的能力、创造一个动脑动手、独立开展电路实验的机会,锻炼分析、解决通信电子电路问题的实际本领,真正实现由课本知识向实际能力的转化。 (4)通过典型电路的设计与制作,加深对基本原理的了解,增强实践能力。 2.2调幅发射系统要求 此设计思路为将调幅发射机分成主振级、隔离级、、调制级、输出级等几个 个部分。主要性能指标要求:载波频率MHz f 100=,载波频率稳定度不低于10-3, 发射功率W 200m P A ≥,发射效率%50>A η,调幅度%30≥a m ,调频围 kHz Hz F 10~500=。 3 调幅发射系统的各模块介绍及电路图 发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。 通常,发射机包括三个部分:高频部分,低频部分,和电源部分。 高频部分一般包括主振荡器、缓冲放大、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级采用电容三点式震荡电路,并在它后面加上缓冲级,以削弱后级对主振器的影响。 低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。因此,末级低频功率放大级也叫调制器。 调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。所以末级高频功率放大级则成为受调放大器 根据课程设计要求,其工作频率为10MHz 。基于以上要求,可选用最基本的发射机结构。该结构由主振、隔离、振幅调制和谐振功率放大器构成。

高频电子线路实验说明书

高频电子线路实验 说明书

实验要求(电信111班) l.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。 4.高频电路实验注意: 1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。 2)由于高频电路频率较高,分布参数及相互感应的影响较大。因此在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。 3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。找出原因、排除故障,经指导教师同意再继续实验。 6.实验过程中需要改接线时,应关断电源后才能拆、接线。 7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。 8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 9.实验后每个同学必须按要求独立完成实验报告。 实验一调谐放大器 一、实验目的

1、熟悉电子元器件和高频电路实验箱。 2、熟悉谐振回路的幅频特性分析一通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1、双踪示波器 2、扫频仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、实验电路中,若电感量L=1uh,回路总电容C=220pf (分布电容包括在内),计算回路中心频率 f 0 。图1-1 单调谐回路谐振放大器原理图 四、实验内容及步骤 (一)单调谐回路谐振放大器

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

高频电子线路实验3

实验三幅度调制(AM, DSB) 一. 实验目的 1. 掌握AM, DSB 调制的原理与性质; 2. 掌握模拟乘法器的工作原理及其调整方法; 二. 实验内容 1. 产生并观察AM, DSB 的波形; 2. 观察DSB 波和过调幅时的反相现象. 三. 实验仪器 1. 数字存储示波器1 台; 2. 信号发生器1 台; 导线2根. 四. 实验原理 实验原理图如图17-1所示. 图3-1 模拟乘法器调幅实验原理图 调制信号从TP2输入, 载波从TP1输入. 合理设置调制信号与载波信号的幅度以及乘法器的静态偏置电压(调节W1), 可在TT1处观察普通调幅波(AM) 和抑制载波双边带调幅波(DSB). 五. 实验步骤 1. 连接实验电路 在主板上正确插好幅度调制与解调模块, 开关K1. K2. K8. K9. K10. K11向左拨, 主板GND 接模块GND, 主板+12V 接模块+12V, 主板-12V 接模块-12V, 检查连线正确无误后, 打开实验箱右侧的船形开关, K1. K2 向右拨. 若正确连接, 则模块上的电源指示灯LED1. LED2 亮. 2. 产生并观察AM 波和DSB 波 (1) 输入调制信号V? 调制信号V?由信号发生器CH1通道产生. 频率1kHz, 峰峰值200mVpp, 正弦. 调制信号V?接到"幅度调制与解调模块" 的TP2. (2) 输入载波信号V i 载波信号V i由信号发生器CH2通道产生. 频率20kHz, 峰峰值400mVpp, 正弦. 载波信号V i. 接到"幅度调制与解调模块" 的TP1. (3) 产生并观察记录AM 信号, DSB 信号, 过调幅信号. ①示波器探头1选择衰减悉数为X1, 接到"幅度调制与解调模块" TP2 观察调制信号的波形. ②示波器探头2选择衰减悉数为X1, 接到"幅度调制与解调模块" TT1 观察乘法器的输出信号. 调节W1 , 改变调制信号中直流分量的数值, 可以观察到不同调制度的AM 信号, 如图3-2 所示.

高频电子线路Matlab仿真实验

高频电子线路Matlab 仿真实验要求 1. 仿真题目 (1) 线性频谱搬移电路仿真 根据线性频谱搬移原理,仿真普通调幅波。 基本要求:载波频率为8kHz ,调制信号频率为400Hz ,调幅度为0.3;画出调制信号、载波信号、已调信号波形,以及对应的频谱图。 扩展要求1:根据你的学号更改相应参数和代码完成仿真上述仿真;载波频率改为学号的后5位,调制信号改为学号后3位,调幅度设为最后1位/10。(学号中为0的全部替换为1,例如学号2010101014,则载波为11114Hz ,调制信号频率为114,调幅度为0.4)。 扩展要求2:根据扩展要求1的条件,仿真设计相应滤波器,并获取DSB-SC 和SSB 的信号和频谱。 (2) 调频信号仿真 根据调频原理,仿真调频波。 基本要求:载波频率为30KHz ,调制信号为1KHz ,调频灵敏度32310f k π=??,仿真调制信号,瞬时角频率,瞬时相位偏移的波形。 扩展要求:调制信号改为1KHz 的方波,其它条件不变,完成上述仿真。 2. 说明 (1) 仿真的基本要求每位同学都要完成,并且记入实验基本成绩。 (2) 扩展要求可以选择完成。

1.0 >> ma = 0.3; >> omega_c = 2 * pi * 8000; >> omega = 2 * pi * 400; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t); >> fa = cos(omega * t); >> u_am = u_cm * (1 + fa).* fc; >> U_c =fft(fc,1024); >> U_o =fft(fa,1024); >> U_am =fft(u_am, 1024); >> figure(1); >> subplot(321);plot(t, fa, 'k');title('调制信号');grid;axis([0 2/400 -1.5 1.5]); >> subplot(323);plot(t, fc, 'k');title('高频载波');grid;axis([0 2/400 -1.5 1.5]); >> subplot(325);plot(t, u_am, 'k');title('已调信号');grid;axis([0 2/400 -3 3]); >> fs = 5000; >> w1 = (0:511)/512*(fs/2)/1000; >> subplot(322);plot(w1, abs([U_am(1:512)']),'k');title('调制信号频谱');grid;axis([0 0.7 0 500]); >> subplot(324);plot(w1, abs([U_c(1:512)']),'k');title('高频载波频谱');grid;axis([0 0.7 0 500]); >> subplot(326);plot(w1, abs([U_am(1:512)']),'k');title('已调信号频谱');grid;axis([0 0.7 0 500]); 1.1 >> ma = 0.8; >> omega_c = 2 * pi * 11138; >> omega = 2 * pi * 138; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t);

中北大学高频电子线路实验报告

中北大学 高频电子线路实验报告 班级: 姓名: 学号: 时间: 实验一低电平振幅调制器(利用乘法器)

一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波5-1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集

基于OrCAD电路设计软件的高频电子线路仿真分析

基于OrCAD电路设计软件的高频电子线路仿真分析本文基于OrCAD/Pspice电子线路计算机辅助分析设计软件以实现高频电子线路的综合电路分析仿真为目的,针对回路使用的信号频率比较高,电路实现的功能多、结构复杂,造成OrCAD设计软件在仿真过程时运算量大,电路调试过程变得复杂、电路的元器件参量优化难度大,通过采用复杂电路的仿真调试关联优化的方法对变容二极管调频与功率放大及发射电路的仿真过程进行分析,仿真效果表明,采用关联优化方法能有效提高优化设计效率。 OrCAD/Pspice是个通用的电子线路计算机辅助分析设计软件,是电路计算机仿真程序中极为优秀的一款软件。具备强大的电路设计与仿真能力,能够方便地实现电子线路的直流分析、交流分析、瞬态分析、噪声分析、灵敏度分析、傅里叶分析、谐波失真分析以及在不同温度下的电路性能分析,完成电子线路的元器件参量优化。提供了丰富的电子元器件模型,能实现各电路参量的测试、分折功能及器件库的构建功能。随着OrCAD/Pspice快速发展,实现各种功能时操作变得越为简化,受编程过程限制越少,且对电路的计算和仿真越为准确。在掌握电路原理的基础上,能方便地利用电子辅助仿真设计软件Pspice完成所需电路的设计分析和器件特性分析。笔者将对可变电容调频与功率放大及发射电路的仿真过程进行分析探讨。 1 OrCAD/Pspice在高频电子线路仿真中的优势作用 高频电子线路中的振荡电路、调幅电路、混频电路、调频电路、解调电路在生活中应用非常广泛,在设计和生产中,利用OrCAD/Pspi ce来辅助分析所需高频电路的各项功能和特性指标,能方便实现高频电子线路各种设计需要。而且应用OrCAD/layout phus能快速

高频电子线路实验二

实验二 高频功率放大器 一、 实验目的 1.通过实验,加深对于功率放大器工作原理的理解。 2.探讨丙类谐振高频放大器的激励大小对工作状态的影响,观察三种状态的脉冲电流波形。 3.了解基极偏置电压、集电极电压、负载的变化对于工作状态的影响。 二、 实验设备 1. Multisim1 2.0 电路仿真软件 2.双踪示波器 3.高频信号发生器 4. 万用表 三、 实验说明与内容 实验原理 高频功率放大器主要用于放大高频信号或高频窄带(或已调波)信号。由 于采用谐振回路做负载,解决了大功率放大时的效率、失真、阻抗变换等问题,因此高频功率放大器又称为谐振功率放大器,就放大过程而言,电路中的功率管是在截止、放大至饱和等区域中工作,变现出了明显的非线性特性,其效果一方面可以对窄带信号实现不失真放大,另一方面又可以使电压增益随输入信号大小变化,实现非线性放大。 1、 高频功率放大电路的仿真分析 高频功率放大电路的仿真测试电路如图1所示,要求画出高频功率放大器输 入、输出电压波形,其参数如图2所示。(提示:使用示波器) 1)高频功率放大器原理仿真,电路如图1所示: H 图1 高频功率放大电路 2)输入、输出电压波形参数设置,如图2所示。

图2 输入、输出电压波形设置 3)利用瞬态分析对高频功率放大器进行分析设置。要设置起始时间与终止时间,和输出变量。 (提示:单击菜单栏中的“仿真”,下拉菜单中的“分析”选项下的“瞬态分析”命令,在弹出的对话框中设置。在设置起始时间与终止时间不能过大,影响仿真速度。例如设起始时间为0.03s,终止时间设置为0.030005s。点击“输出”菜单页中设置输出节点变量时选择v中的所有节点,回到“分析参数”页,点击仿真即可。观察各个节点的波形并分析。) 2、高频功率放大器电流、电压波形 为了观察到高频功率放大器输出电流波形,在三极管的发射极串联一个很小的电阻R1(0.2欧),测量R1上的电压波形,即高频功率放大器输出电流波形。构建的仿真电路测试图,见图3所示。示波器一端接入输入信号,一端 接R1上。

《高频电子线路》试卷范例二

《高频电子线路》试卷范例二 一、填空题(15分) 1.在小信号谐振放大器中,三极管的集电极负载通常采用(),它的作用是()。 2.与低频功放相比较,丙类谐振功放的特点是:①工作频率高和相对频带窄;②负载性质为();③晶体管工作在()状态。 3.反馈式正弦波振荡器一般由()、()、()和()四部分组成。 4.在几种调幅波之中,其包络能够反映调制信号变化规律的是()。 5.AGC电路的主要作用是()6.在调频波中,用()反映调制信号的变化规律;在调相波之中,用()反映调制信号的变化规律。 7.锁相环路由()、()和()三部分组成。 二、判断题(5分) 1.()小信号谐振放大器的矩形系数大于1,且越大越好。 2.()克拉泼电路实际上是电容三点式的一种改进形式。 3.()避免组合频率干扰的一种方法是改善混频器前端电路的选择性。 4.()丙类谐振功放作为集电极调幅时,应工作于过压状态。 5.()如果大信号包络检波器的检波负载越大,则惰

情失真越严重。 三、分析简答题(30分) 1.下图为一振荡器的交流通路,分析电路后回答下列问题:(1)该振荡器是什么类型的振荡器(或说出名称)(2分)? (2)该振荡器的振荡频率的表达式是什么?(2分) (3)该振荡器具有什么样的优点?(4分) 2.简述同步检波器与非同步检波器之间的异同?(5分) 3.分析下图,按要求回答以下问题: ①如果要求该电路输出双边带调幅信号,则U1和U2分别为什么 信号?(3分) ②如果要求该电路输出低频调制信号,则U1和U2分别为什么信 号?(3分) ③如果要求该电路输出中频调幅波信号,则U1和U2分别为什么 信号?(3分) 4.下图为斜率鉴频器的原理框图,试说明其实现鉴频的工作原理,并指出U1、U2和U3各是什么样的信号?(8分)

高频课程设计---基于Multisim的高频电子线路设计与仿真

高频电子线路课程设计 题目:基于Multisim的高频电子线路设计与仿真 中文摘要 本接收系统,以模拟乘法器为核心,接收部分由本机振荡,混频电路,晶体振荡电路,小信号放大,鉴频电路等模块组成。在设计过程中,采用模块化的设计方法,并使用了EDA 工具软件,在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取,提高了设计效率。方案的优点是电路简单、器件易得、大大提高了电路的可行性。 关键词: 调频接收机;鉴频电路;仿真

目录 第一章概述 (1) 第二章窄带调频接收机原理介绍 (2) 2.1 接收系统原理框图 (2) 2.2 高频小信号放大电路 (3) 2.3 混频电路 (3) 2.4 晶体振荡器电路 (4) 2.5 鉴频电路 (4) 第三章设计要求 (5) 3.1 目的及意义 (5) 3.2主要技术指标和要求 (6) 3.3 内容和要求 (6) 第四章开发平台简介 (8) 第五章详细设计及仿真 (10) 5.1 高频小信号放大器电路设计及仿真 (10) 5.2 混频电路设计及仿真 (11) 5.3 晶体振荡电路设计及仿真 (12) 5.4 鉴频电路设计及仿真 (12) 总结 (16) 参考文献 (17)

第一章概述 随着社会经济的迅速发展和科学技术的全面进步,计算机事业的飞速发展,以计算机与通信技术为基础的信息系统正处于蓬勃发展的时期。随着经济文化水平的显著提高,人们对生活质量及工作软件的要求也越来越高。在当今电子设计领域,EDA设计和仿真是一个十分重要的设计环节。在众多的EDA设计和仿真软件中,EWB软件以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。EWB软件及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。 EWB(电子工作平台)软件,最突出的特点是用户界面友好,各类器件和集成芯片丰富,尤其是其直观的虚拟仪表是EWB软件的一大特色。它采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。EWB软件所包含的虚拟仪表有:示波器,万用表,函数发生器,波特图图示仪,失真度分析仪,频谱分析仪,逻辑分析仪,网络分析仪等。 本次课程设计主要是利用EWB软件来设计和仿真信号调频接收机系统电路。

高频电子线路实验

实验一低电平振幅调制器(利用乘法器) 一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波图1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4 的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。 用1496集成电路构成的调幅器电路图如图2所示,图中R P5002用来调节引出脚①、④之间的平衡,R P5001用来调节⑧、⑩脚之间的平衡,三极管V5001为射极跟随器,以提高调幅器带负载的能力。 五、实验内容及步骤 实验电路见图2 构成的调幅器 1.直流调制特性的测量 1)载波输入端平衡调节:在调制信号输入端P5002加入峰值为100mv, 频率为1KHz的正弦信号,调节Rp5001电位器使输出端信号最小,然 后去掉输入信号。 2)在载波输入端P5001加峰值为10mv,频率为100KHz的正弦信号,用 万用表测量A、B之间的电压V AB,用示波器观察OUT输出端的波形,

基于PSPICE的高频电子线路的仿真教学

1引言 高频电子线路所研究的是信息传输和信息处理方面的基本电路,也即通信系统中的基本单元电路。它包括高频小信号放大电路、高频功率放大器、正弦波振荡器电路、调制和解调电路、混频电路、反馈控制电路等。在高频电子线路中,大部分是非线性电路,非线性电路必须采用非线性分析方法,而求解非线性方程是非常困难的,工程上一般采用近似分析和求解的方法,理解和掌握这些分析方法难度较大。此外,由于非线性电子电路工作频率一般都比较高以及电路的复杂性,所以它有许多实际问题及理论概念需要通过实践环节学习和加深理解。利用PSPICE进行性能分析和模拟实践有助于学生加深对这些功能电路的工作原理和分析方法的理解,有助于学生深入了解这些功能电路之间的共性,做到以点带面,举一反三。 此外,通过PSPICE模拟分析电路,引导学生了解并掌握这种先进的电子线路分析方法,这符合现代教育和科学实践的要求。下面就以高频功率放大电路为例,用PSPICE软件进行电路分析。 2高频功率放大器工作原理 在通信系统中,高频功率放大器是发射机的重要组成部分,要求它的输出功率很大,效率高,非线性失真小。因此,采用效率较高的丙类工作状态,为减小失真,采用LC谐振回路作为负载,所以也称为谐振功率放大器。原理电路如图1所示。高频谐振功率放大器根据晶体管工作是否进入饱和区,分为欠压、临界和过压这三个工作状态。在欠压状态下,集电极电流是尖顶余弦脉冲,集电极交变电压幅度比较小,输出功率低,效率不高,功放作用发挥不充分;在临界状态下,集电极电流仍是尖顶余弦脉冲,集电极交变电压幅度比较大,输出功率最大,效率也很高;在过压状态下,集电极电流是凹顶余弦脉冲,集电极交变电压幅度比较大,但是,集电极电流中的基波分量和平均分量都剧烈下降,并且其它谐波分量明显加大,这对于高频功率放大很不利。 3高频功率放大器性能的PSPICE仿真分析3.1负载特性 当VBB、VCC和Vbm一定时,放大器的性能随谐振回路电阻RP改变,随着RP由小变大,放 基于PSPICE的高频电子线路的仿真教学 王苹 (芜湖职业技术学院电气系,安徽 芜湖 241001) 摘要:高频电子线路是理论性和实践性都很强的一门课程,它的大部分功能电路是非线性 电路,利用PSPICE仿真技术对高频电子线路进行性能分析、测试,使学生加深了对高频功能电路的工作原理和工程近似分析方法的理解,有利于掌握这些功能电路的测试、调整方法,是既经济又安全的科学教学方法。关键词:高频电子线路;PSPICE;仿真中图分类号:G642.4 文献标识码:A 文章编号:1672-2868(2007)03-0133-04 收稿日期:2007-02-11 作者简介:王苹(1968-),女,安徽芜湖人。芜湖职业技术学院电气系讲师,硕士学位。 2007年第9卷第3期 巢湖学院学报 No.3.,Vol.9.2007总第84期 JournalofChaohuCollege GeneralSerialNo.84 133

课设心得体会

课设心得体会 课设心得体会范文通过此次课程设计,使我更加扎实的掌握了有关高频电子线路方面的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。 过而能改,善莫大焉。在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获龋最终的检测调试环节,本身就是在践行“过而能改,善莫大焉”的知行观。这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在老师的指导下,终于游逆而解。在今后社会的发展和学习实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上劈荆斩棘,而不是知难而退,那样永远不可能收获成功,收获喜悦,也永远不可能得到社会及他人对你的认可! 课程设计诚然是一门专业课,给我很多专业知识以及专业技能上的提升,同时又是一门讲道课,一门辩思课,给了我许多道,给了我很多思,给了我莫大的空间。同时,设计让我感触很深。使我对抽象的理论有了具体的认识。通过这次课程设计,我掌握了常用元件的识别和测试;熟悉了常用

仪器、仪表;了解了电路的连线方法;以及如何提高电路的性能等等,掌握了焊接的方法和技术,通过查询资料,也了解了收音机的构造及原理。 我认为,在这学期的实验中,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在实验课上,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践。这对于我们的将来也有很大的帮助。以后,不管有多苦,我想我们都能变苦为乐,找寻有趣的事情,发现其中珍贵的事情。就像中国提倡的艰苦奋斗一样,我们都可以在实验结束之后变的更加成熟,会面对需要面对的事情。 回顾起此课程设计,至今我仍感慨颇多,从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,但可喜的是最终都得到了解决。 实验过程中,也对团队精神的进行了考察,让我们在合

电子课程设计心得体会范文.doc

电子课程设计心得体会范文 做电子课程的设计,在设计中会学到很多东西,同时也是对自己之前所学的一种实践。下面是由我为大家整理的“电子课程设计心得体会范文”,仅供参考,欢迎大家阅读。 电子课程设计心得体会范文(一) 通过这次为期近半月的课程设计,我们深感自己动手操作的重要性。我们在课堂上接触到的多半是苍白的理论,在实践层面上只有一定的指导作用。但是真正在实际运用过程中,我们如果缺乏必要的及时锻炼,那将会感觉到力不从心。理工科本来就是一门集思维和动手能力于一体的学科,要想真正掌握好,思考、假设和实验验证都是必不可少的。在通过很多的理论学习之后,我们通过课程设计和相关的实验把书本上的理论知识在实际运用中加以利用,巩固了理论知识的同时也增强了我们的动手能力。 另外,我们生活在一个讲究团队合作的社会里。通过团队的协作,也培养了我们团结互助,相互协调的团队合作能力。通过大家的努力,我们共同完成了小组的任务,大家集思广益,各抒己见,共同把一个个问题解决。虽然辛苦,但是我们也享受着这次课程设计中给我们带来的乐趣,那就是自己亲自动手解决好实际问题,虽然我们做的还不够,但是我们也算是迈出了艰难的一步。我们学习理论知识的最终目的还是要走向实际运用,通过这种模拟式的学习,我们加深认识到理论与实践的差异。通过这个课程设计,我们大家把整个学习阶段的各种学科知识窜联在一起,更好地认识到学习是一个系统工程。我们的每一个环节都是在为以后的实践环节做铺垫,我们的每一个环节都是要有所掌握才可以顺利完成任务。 通过这样的实践活动,我们还可以充分发挥自己的主观能动性,因人而异,合理分配任务,团结协作,一起朝着任务的方向不断地奋斗,大家都很辛苦,各自完成自己负责的那部分工作。我们都深感动手起来遇到的各种问题都要亲自去解决是一件很不容易的事情,同时我们也在实践过程中修复了以往学习的很多漏洞。我们也得到了不同程度的完善和提升。希

高频电子线路课程设计与仿真

高频电子线路课程设计(论文) 题目:集电极调幅 院(系): 专业班级: 学号: 学生姓名: 指导教师: 教师职称: 起止时间: 任务及评语 院(系):教研室: 学号学生姓名专业班级

课程设 计(论 文)题目 集电极调幅 课程设计(论文)任务 要求:1.用EWB仿真,能够观察输入输出波形。 2.三极管工作在丙类状态 3.采用单调谐做为负载 4.采用三极管作为放大器 参数:输入信号频率15000HZ,电压500mV左右 输入直流电源电压12V 采用单调谐做为负载 设计要求: 1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4.组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 指导教师评语 及成绩成绩:指导教师签字: 年月日

目录 第1章集电极调幅设计方案 (1) 1.1 调幅器 (1) 1.2 集电极调幅 (1) 1.3 集电极调幅的要求及技术指标 (1) 第2章集电极调幅的工作原理及分析 (2) 2.1集电极调幅的工作原理 (2) 2.2 集电极电流脉冲的变化情形 (3) 2.3 集电极调幅波形图 (3) 2.4 集电极调幅的静态调制特性 (4) 第3章集电极调幅设计仿真 (6) 3.1 设计电路 (6) 3.2 输入载波信号波形 (6) 3.3 输入调制信号波形 (7) 3.4 输出波形 (7) 第4章设计总结 (8) 器件附表 (8) 参考文献 (8)

高频电子线路实验说明书..

实验要求(电信111班) l.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。 4.高频电路实验注意: 1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。 2)由于高频电路频率较高,分布参数及相互感应的影响较大。所以在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。 3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。 5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。找出原因、排除故障,经指导教师同意再继续实验。 6.实验过程中需要改接线时,应关断电源后才能拆、接线。 7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。 8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 9.实验后每个同学必须按要求独立完成实验报告。

实验一调谐放大器 一、实验目的 1、熟悉电子元器件和高频电路实验箱。 2、熟悉谐振回路的幅频特性分析一通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1、双踪示波器 2、扫频仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率 f 0 。图1-1 单调谐回路谐振放大器原理图 四、实验内容及步骤 (一)单调谐回路谐振放大器 1、实验电路见图1-1 (1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。 (2).接线后仔细检查,确认无误后接通电源。 2. 静态测量 实验电路中选Re=1K 测量各静态工作点,计算并填表1.l 表1.1 *VB,VE是三极管的基极和发射极对地电压。 3. 动态研究 ⑴.测放大器的动态范围Vi~V0(在谐振点) 选R=l0K,R0=lK。把高频信号发生器接到电路输入端,电路输出端按毫伏表,选择正常放大区的输入电压Vi,调节频率f使其为10.7MHZ,调节CT使回路谐振,使输出电压幅度为最大。此时调节Vi由0.02伏变到0.8伏,逐点记录V。电压,并填入表l.2。Vi的各点测量值可根据(各自)实测情况来确定。表1.2 (2). 当Re分别为500Ω、2K时,重复上述过程,将结果填入表l.2。在同一坐标纸上画出

集电极调幅与大信号检波实验报告

集电极调幅与大信号检波实验报告 篇一:实验三集电极调幅与大信号检波 课程名称: 实验项目: 实验地点: 专业班级: 学号: 学生姓名:指导教师: 高频电子线路集电极调幅与大信号检波信息1 2013年1月5日 一、实验目的 1、进一步加深对集电极调幅和二极管大信号检波工作原理的理解; 2、掌握动态调幅特性的测试方法; 3、掌握利用示波器测量调幅系数ma的方法; 4、观察检波器电路参数对输出信号失真的影响。

二、实验原理与线路 1、原理 集电极调幅的工作原理 集电极调幅是利用低频调制电压去控制晶体管的集电极电压,通过集电极电压的变化,使集电极高频电流的基波分量随调制电压的规律变化,从而实现调幅。实际上,它是一个集电极电源受调制信号控制的谐振功率放大器,属高电平调幅。调幅管处于丙类工作状态。 集电极调幅的基本原理电路如图5—1所示: 图5-1 集电极调幅原理电路 图中,设基极激励信号电压(即载波电压)为:?0?V0cos?0t 则加在基射极间的瞬时电压为?B??VBE?V0cos?0t 调制信号电压υΩ 加在集电极电路中,与集电极直流电压VCC串联,因此,集电极有效电源电压为 VC?VCC????VCC?V?cos?0t?VCC?1?ma cos?t?

式中,VCC 为集电极固定电源电压;ma?V?CC为调幅指数。由式可见,集电极的有效电源电压VC随调制信号压变化而变化。由图5—2所示, 图中,由于-VBB与υb不变,故vBmax为常数,又RP不变,因此动态特性曲线的斜率也不变。若电源电压变化,则动态线随VCC值的不同,沿υc 平行移动。由图可以看出,在欠压区内,当VCC由VCC1变至VCC2(临界)时,集电极电流脉冲的振幅与通角变化很小,因此分解出的Icm1的变化也很小,因而回路上的输出电压υc的变化也很小。这就是说在欠压区内不能产生有效的调幅作用。 当动态特性曲线进入过压区后,VCC等于VCC3、VCC4等,集电极电流脉冲的振幅下降,出现凹陷,甚至可能使脉冲分裂为两半。在这种情况下,分解出的Icm1随集电极电压VCC的变化而变化,集电极回路两端的高频电压也随VCC而变化。输出高频电压的振幅

相关文档
最新文档