晶体振荡器工作原理

晶体振荡器工作原理
晶体振荡器工作原理

晶体振荡器工作原理

石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。

石英晶体振荡器的基本原理

石英晶体振荡器的结构

石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

压电效应

若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。

符号和等效电路

当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L来等效。一般L的值为几十mH 到几百mH。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100Ω。由于晶片的等效电感很大,而C很小,R也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。

谐振频率

从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线。可见当频率低于串联谐振频率fs 或者频率高于并联揩振频率fd时,石英晶体呈容性。仅在fs<f<fd极窄的范围内,石英晶体呈感性。

石英晶体振荡器类型特点

石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(TCXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式

晶体振荡(OCXO)。目前发展中的还有数字补偿式晶体损振荡(DCXO)等。普通晶体振荡器(SPXO)可产生10^(-5)~10^(-4)量级的频率精度,标准频率1—100MHZ,频率稳定度是±100ppm。SPXO没有采用任何温度频率补偿措施,价格低廉,通常用作微处理器的时钟器件。封装尺寸范围从21×14×6mm及5×3.2×1.5mm。电压控制式晶体振荡器(VCXO)的精度是10^(-6)~10^(-5)量级,频率范围1~30MHz。低容差振荡器的频率稳定度是±50ppm。通常用于锁相环路。封装尺寸14×10×3mm。温度补偿式晶体振荡器(TCXO)采用温度敏感器件进行温度频率补偿,频率精度达到10^(-7)~10^(-6)量级,频率范围1—60MHz,频率稳定度为±1~±2.5ppm,封装尺寸从30×30×15mm至11.4×9.6×3.9mm。通常用于手持电话、蜂窝电话、双向无线通信设备等。恒温控制式晶体振荡器(OCXO)将晶体和振荡电路置于恒温箱中,以消除环境温度变化对频率的影响。OCXO频率精度是10^(-10)至10^(-8)量级,对某些特殊应用甚至达到更高。频率稳定度在四种类型振荡器中最高。

石英晶体振荡器的主要参数

晶振的主要参数有标称频率,负载电容、频率精度、频率稳定度等。不同的晶振标称频率不同,标称频率大都标明在晶振外壳上。如常用普通晶振标称频率有:48kHz、500 kHz、503.5 kHz、1MHz~40.50 MHz等,对于特殊要求的晶振频率可达到1000 MHz以上,也有的没有标称频率,如CRB、ZTB、Ja等系列。负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振片在电路中串接电容。负载频率不同决定振荡器的振荡频率不同。标称频率相同的晶振,负载电容不一定相同。因为石英晶体振荡器有两个谐振频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。所以,标称频率相同的晶振互换时还必须要求负载电容一至,不能冒然互换,否则会造成电器工作不正常。频率精度和频率稳定度:由于普通晶振的性能基本都能达到一般电器的要求,对于高档设备还需要有一定的频率精度和频率稳定度。频率精度从10^(-4)量级到10^(-10)量级不等。稳定度从±1到±100ppm不等。这要根据具体的设备需要而选择合适的晶振,如通信网络,无线数据传输等系统就需要更高要求的石英晶体振荡器。因此,晶振的参数决定了晶振的品质和性能。在实际应用中要根据具体要求选择适当的晶振,因不同性能的晶振其价格不同,要求越高价格也越贵,一般选择只要满足要求即可。

石英晶体振荡器的发展趋势

小型化、薄片化和片式化

为满足移动电话为代表的便携式产品轻、薄、短小的要求,石英晶体振荡器的封装由传统的裸金属外壳覆塑料金属向陶瓷封装转变。例如TCXO这类器件的体积缩小了30~100倍。采用SMD封装的TCXO厚度不足2mm,目前5×3mm 尺寸的器件已经上市。

高精度与高稳定度

目前无补偿式晶体振荡器总精度也能达到±25ppm,VCXO的频率稳定度在10~7℃范围内一般可达±20~100ppm,而OCXO在同一温度范围内频率稳定度一般为±0.0001~5ppm,VCXO控制在±25ppm以下。

低噪声,高频化

在GPS通信系统中是不允许频率颤抖的,相位噪声是表征振荡器频率颤抖的一个重要参数。目前OCXO主流产品的相位噪声性能有很大改善。除VCXO外,其它类型的晶体振荡器最高输出频率不超过200MHz。例如用于GSM等移动电

话的UCV4系列压控振荡器,其频率为650~1700 MHz,电源电压2.2~3.3V,工作电流8~10mA。

低功能,快速启动

低电压工作,低电平驱动和低电流消耗已成为一个趋势。电源电压一般为3.3V。目前许多TCXO和VCXO产品,电流损耗不超过2 mA。石英晶体振荡器的快速启动技术也取得突破性进展。例如日本精工生产的VG—2320SC型VCXO,在±0.1ppm规定值范围条件下,频率稳定时间小于4ms。日本东京陶瓷公司生产的SMD TCXO,在振荡启动4ms后则可达到额定值的90%。OAK公司的10~25 MHz的OCXO产品,在预热5分钟后,则能达到±0.01 ppm的稳定度。

石英晶体振荡器的应用

石英钟走时准、耗电省、经久耐用为其最大优点。

不论是老式石英钟或是新式多功能石英钟都是以石英晶体振荡器为核心电路,其频率精度决定了电子钟表的走时精度。从石英晶体振荡器原理的示意图中,其中V1和V2构成CMOS反相器石英晶体Q与振荡电容C1及微调电容C2构成振荡系统,这里石英晶体相当于电感。振荡系统的元件参数确定了振频率。一般Q、C1及C2均为外接元件。另外R1为反馈电阻,R2为振荡的稳定电阻,它们都集成在电路内部。故无法通过改变C1或C2的数值来调整走时精度。但此时我们仍可用加接一只电容C有方法,来改变振荡系统参数,以调整走时精度。根据电子钟表走时的快慢,调整电容有两种接法:若走时偏快,则可在石英晶体两端并接电容C,如图4所示。此时系统总电容加大,振荡频率变低,走时减慢。若走时偏慢,则可在晶体支路中串接电容C。如图5所示。此时系统的总电容减小,振荡频率变高,走时增快。只要经过耐心的反复试验,就可以调整走时精度。因此,晶振可用于时钟信号发生器。

随着电视技术的发展,近来彩电多采用500kHz或503 kHz的晶体振荡器作为行、场电路的振荡源,经1/3的分频得到15625Hz的行频,其稳定性和可靠性大为提高。面且晶振价格便宜,更换容易。

在通信系统产品中,石英晶体振荡器的价值得到了更广泛的体现,同时也得到了更快的发展。许多高性能的石英晶振主要应用于通信网络、无线数据传输、高速数字数据传输等。

晶体振荡器课程设计

1石英晶体及其特性 (1) 1.1 石英晶体简介............................................... . ... 1.2石英晶体的阻抗频率特性...................................... 1 ... 2晶体管的部工作原理 (3) 3.晶体振荡器电路的类型及其工作原理 (4) 3.1串联型谐振晶体振荡器........................................ 4…??… 3.2并联谐振型晶体振荡器........................................ 6…??… 3.3泛音晶体振荡器................................................ 8 .. 4 确定工作点和回路参数(以皮尔斯电路为例) (10) 4.1主要技术指标 (10) 4.2确定工作点 (10) 4.3交流参数的确定 (11) 5提高振荡器的频率稳定度........................................... 1 2 6.总结 (13) 参考文献:........................................................ 1.4

Word 文档

1石英晶体及其特性 1.1石英晶体简介 石英是矿物质硅石的一种,化学成分是Sio2,形状是呈角锥形的六棱结晶体,具有各向异性的物理特性。按其自然形状有三个对称轴,电轴X,机械轴丫光轴Z。石英谐振器中的各种晶片,就是按与各轴不同角度,切割成正方形、长方形、圆形、或棒型的薄片,如图1的AT、BT、CT、DT 等切型。不同切型的晶片振动型式不,性能不同 1.2石英晶体的阻抗频率特性 石英谐振器的电路符号和等效电路如图121。C0称为静态电容,即晶体不振动时两极板间的等效电容,与晶片尺寸有关,一般约为几到几十pF。晶体作机械振动时的惯性以Lq、弹性用Cq振动时因磨擦造成的损耗用Rq来等效,它们的数值与晶片切割方位、形状和大小有关, 一般Lq为10 3102H,Cq为10 410 1pF,Rq 在几一几百欧之间。它

晶振基础知识

晶振基础知识(第一版) 摘要:本文简单介绍了晶体谐振器和晶体振荡器的结构,工作原理,振荡器电路的分类,晶体振荡器的分类,晶振类器件的主要参数指标和石英晶体基本生产工艺流程。 一、振荡电路的定义,构成和工作原理 (2) 二. 晶体振荡器分类: (16) 三、石英晶体谐振器主要参数指标 (19) 四、石英晶体振荡器主要参数指标 (20) 五.石英晶体基本生产工艺流程 (26)

一、振荡电路的定义,构成和工作原理 1. 振荡器:不需外加输入信号,便能自行产生输出信号的电路,通常也被成为。 2. 振荡器构成:谐振器(选频或滤波)+驱动(谐振)电路构成振荡器电路。 3. 谐振器的种类有:RC 谐振器,LC 并联谐振器,陶瓷谐振器,石英(晶体)谐振器,原子谐振器,MEMS (硅)振荡器。本文只讨论石英晶体谐振器。 石英谐振器的结构 石英谐振器,它由石英晶片、电极、支架和外壳等部分组成。它的性能与晶片的切割方式、尺寸、电极的设置装架形式,以及加工工艺等有关。其中,晶片的切割问题是设计时首先要考虑的关键问题。由于石英晶体不是在任何方向都具有单一的振动模式(即单频性)和零温度系数,因此只有沿某些方向切下来的晶片才能满足设计要求。 Mounting clips Top view of cover Resonator

普通晶振内部结构 石英晶体振荡器主要由基座、晶片、IC 及外围电路、陶瓷基板(DIP OSC )、上盖组成。 普通晶体振荡器原理图 胶点 基座 晶片 Bonding 线 IC

4. 振荡电路的振荡条件: (1)振幅平衡条件是反馈电压幅值等于输入电压幅值。根据振幅平衡条件,可以确定振荡幅度的大小并研究振幅的稳定。 (2)相位平衡条件是反馈电压与输入电压同相,即正反馈。根据相位平衡条件可以确定振荡器的工作频率和频率的稳定。 (3)振荡幅度的稳定是由器件非线性保证的,所以振荡器是非线性电路。 (4)振荡频率的稳定是由相频特性斜率为负的网络来保证的。 (5)振荡器的组成必须包含有放大器和反馈网络,它们必须能够完成选频、稳频、稳幅的功能。(6)利用自偏置保证振荡器能自行起振,并使放大器由甲类工作状态转换成丙类工作状态。

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

晶振

百科名片 晶振有着不同使用要求及特点,通分为以下几类:普通晶振、温补晶振、压控晶振、温控晶振等。在测试和使用时所供直流电源应没有足以影响其准确度的纹波含量,交流电压应无瞬变过程。测试仪器应有足够的精度,连线合理布置,将测试及外围电路对晶振指标的影响降至最低。以下内容将逐项为您解答有关晶振的相关知识。 目录 基本概述 主要参数 基本分类 工作原理 功能作用 发展趋势 1种类详介石英晶体振荡器 1温度补偿晶体振荡器 1电压控制晶体振荡器 1恒温控制晶体振荡器 1选用指南频率稳定性的考虑 1输出 1封装 1工作环境 1检测 1总结 展开 编辑本段基本概述 晶振全称为晶体振荡器,其作用在于产生原始的时钟频率,这个频率 晶振 经过频率发生器的放大或缩小后就成了电脑中各种不同的总线频率。以声卡为例,要实现对模拟信号44.1kHz或48kHz的采样,频率发生器就必须提供一个44.1kHz或48kHz的时钟频率。如果需要对这两种音频同时支持的话,声卡就需要有两颗晶振。

但是娱乐级声卡为了降低成本,通常都采用SRC将输出的采样频率固定在48kHz,但是SRC会对音质带来损害,而且现在的娱乐级声卡都没有很好地解决这个问题。晶振一般叫做晶体谐振器,是一种机电器件,是用电损耗很小的石英晶体经精密切割磨削并镀上电极焊上引线做成。这种晶体有一个很重要的特性,如果给它通电,它就会产生机械振荡,反之,如果给它机械力,它又会产生电,这种特性叫机电效应。他们有一个很重要的特点,其振荡频率与他们的形状,材料,切割方向等密切相关。由于石英晶体化学性能非常稳定,热膨胀系数非常小,其振荡频率也非常稳定,由于控制几何尺寸可以做到很精密,因此,其谐振频率也很准确。根据石英晶体的机电效应,我们可以把它等效为一个电磁振荡回路,即谐振回路。他们的机电效应是机-电-机-电..的不断转换,由电感和电容组成的谐振回路是电场-磁场的不断转换。在电路中的应用实际上是把它当作一个高Q值的电磁谐振回路。由于石英晶体的损耗非常小,即Q值非常高,做振荡器用时,可以产生非常稳定的振荡,作滤波器用,可以获得非常稳定和陡削的带通或带阻曲线。 编辑本段主要参数 参数基本描述 频率准确度在标称电源电压、标称负载阻抗、基准温度(252℃)以及其他条件保持不变,晶体振荡器的频率相对与其规定标称值的最大允许偏 差,即(fmax-fmin)/f0; 温度稳定度其他条件保持不变,在规定温度范围内晶体振荡器输出频率的最大变化量相对于温度范围内输出频率极值之和的允许频偏值,即 (fmax-fmin)/(fmax+fmin); 频率调节范围通过调节晶振的某可变元件改变输出频率的范围。 调频(压控)特性包括调频频偏、调频灵敏度、调频线性度。①调频频偏:压控晶体振荡器控制电压由标称的最大值变化到最小值时输出频率差。②调频灵敏度:压控晶体振荡器变化单位外加控制电压所引起的输出频率的变化量。③调频线性度:是一种与理想直线(最小二乘法)相比较的调制系统传输特性的量度。 负载特性其他条件保持不变,负载在规定变化范围内晶体振荡器输出频率相对于标称负载下的输出频率的最大允许频偏。 电压特性其他条件保持不变,电源电压在规定变化范围内晶体振荡器输出频率相对于标称电源电压下的输出频率的最大允许频偏。 杂波输出信号中与主频无谐波(副谐波除外)关系的离散频谱分量与主频的功率比,用dBc表示。 谐波谐波分量功率Pi与载波功率P0之比,用dBc表示。 频率老化在规定的环境条件下,由于元件(主要是石英谐振器)老化而引起的输出频率随时间的系统漂移过程。通常用某一时间间隔内的频差

有源晶振电路及工作原理简述

有源晶振电路及工作原理简述 有源晶振是由石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。 压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。图3是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC电路。在这个电路中,石英晶体相当于一个电感,C2为可变电容器,调节其容量即可使电路进入谐振状态。该振荡器供电电压为5V,输出波形为方波。 有源晶振引脚排列: 有源晶振引脚识别,实物图如上图(b)所示. 有个点标记的为1脚,按逆时针(管脚向下)分别为2、3、4。 方形有源晶振引脚分布: 1、正方的,使用DIP-8封装,打点的是1脚。 1-NC;4-GND;5-Output;8-VCC 2、长方的,使用DIP-14封装,打点的是1脚。 1-NC;7-GND;8-Output;14-VCC

注:有源晶振型号众多,而且每一种型号的引脚定义都有所不同,接法也有所不同,上述介绍仅供参考,实际使用中要确认其管脚列方式. 有源晶振通常的接法: 一脚悬空,二脚接地,三脚接输出,四脚接电压。 有源晶振与无源晶振的联系与区别 无源晶振与有源晶振的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。 石英晶体振荡器的频率稳定度可达10^-9/日,甚至10^-11。例如10MHz的振荡器,频率在一日之内的变化一般不大于0.1Hz。因此,完全可以将晶体振荡器视为恒定的基准频率源(石英表、电子表中都是利用石英晶体来做计时的基准频率)。从PC诞生至现在,主板上一直都使用一颗14.318MHz的石英晶体振荡器作为基准频率源。 有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。 下图为晶体及晶振实特图,左边两个是晶振,右边14.38MHz的为晶体.

石英晶体振荡器设计方案

石英晶体振荡器 第一章研究意义 金融危机以来,国家围绕“保增长、调结构”采取了一系列调控政策,为我国石英晶体振荡器行业提供了较为宽松的国内发展环境,使石英晶体振荡器行业从2008年下半年以来的困境中得到了缓解和恢复。我国石英晶体振荡器行业也在加快产业结构调整、转变发展方式,为行业持续发展提供了动力和支撑。在全球经济不景气、国际市场持续低迷的情况下,我国石英晶体振荡器行业仍然呈现出了企稳回升、发展逐渐向好的良好局面。 虽然石英晶体振荡器行业发展很快,但是市场存在的一些问题不容忽视,如市场无序竞争、产品质量下降、创新乏力等。石英晶体振荡器行业的规划和发展需要建立在充分市场调研的基础之上,石英晶体振荡器市场管理需要认清市场经济条件下政府和企业的角色定位,石英晶体振荡器市场有序运行需要完善市场交易规则和各项制度。 第二章发展现状 石英的化学成分为SiO2,晶体属三方晶系的氧化物矿物,即低温石英(a-石英),是石英族矿物中分布最广的一个矿物种。广义的石英还包括高温石英(b-石英)。 低温石英常呈带尖顶的六方柱状晶体产出,柱面有横纹,类似于六方双锥状的尖顶实际上是由两个菱面体单形所形成的。石英集合体通常呈粒状、块状或晶簇、晶腺等。纯净的石英无色透明,玻璃光泽,贝壳状断口上具油脂光泽,无解理。受压或受热能产生电效应。 发展趋势 1、小型化、薄片化和片式化:为满足移动电话为代表的便携式产品轻、薄、短小的要求,石英晶体振荡器的封装由传统的裸金属外壳覆塑料金属向陶瓷封装转变。例如TCXO这类器件的体积缩小了30~100倍。采用SMD 封装的TCXO厚度不足2mm,目前5×3mm尺寸的器件已经上市石英晶体振荡器。 2、高精度与高稳定度,无补偿式晶体振荡器总精度也能达到±25ppm,VCXO的频率稳定度在10~7℃范围内一般可达±20~100ppm,而OCXO在同一温度范围内频率稳定度一般为±0.0001~5ppm,VCXO控制在±25ppm以下。

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

晶振作用分类

1、晶振的作用 晶振是晶体振荡器的简称,分为有源晶振和无源晶振两种,有源晶振无需外接匹配电容,只要加电即可输出一定频率的周期波形,所以有源晶振一般是四个引脚;无源晶振严格来说不能叫晶振,只能算是晶体,因为它需要外接匹配电容才可起振,由于其起振不需要电源供电,因此称为无源晶振。晶振的作用就是为电路系统提供时钟或者时序。 2、晶振的分类 根据晶振的功能和实现技术的不同,可以将晶振分为以下四类: (1) 恒温晶体振荡器(以下简称OCXO):这类晶振对温度稳定性的解决方案采用了恒温槽技术,将晶体置于恒温槽内,通过设置恒温工作点,使槽体保持恒温状态,在一定范围内不受外界温度影响,达到稳定输出频率的效果。这类晶振主要用于各种类型的通信设备,包括交换机、SDH传输设备、移动通信直放机、G PS接收机、电台、数字电视及军工设备等领域。根据用户需要,该类型晶振可以带压控引脚。OCXO的工作原理如下图所示: 图1恒温晶体振荡器原理框图 OCXO的主要优点是,由于采用了恒温槽技术,频率温度特性在所有类型晶振中是最好的,由于电路设计精密,其短稳和相位噪声都较好。主要缺点是功耗大、体积大,需要5分钟左右的加热时间才能正常工作等。 (2) 温度补偿晶体振荡器(以下简称TCXO):其对温度稳定性的解决方案采用了一些温度补偿手段,主要原理是通过感应环境温度,将温度信息做适当变换后控制晶振的输出频率,达到稳定输出频率的效果。传统的TCXO是采用模拟器件进行补偿,随着补偿技术的发展,很多数字化补偿TCXO开始出现,这种数字化补偿的TCXO又叫DTCXO,用单片机进行补偿时我们称之为MCXO,由于采用了数字化技术,这一类型的晶振在温度特性上达到了很高的精度,并且能够适应更宽的工作温度范围,主要应用于军工领域和使用环境恶劣的场合。 (3) 普通晶体振荡器(SPXO):这是一种简单的晶体振荡器,通常称为钟振,其工作原理为图1中去除“压控”、“温度补偿”和“AGC”部分,完全是由晶体的自由振荡完成。这类晶振主要应用于稳定度要求不高的场合。

实验 石英晶体振荡器(严选材料)

实验四石英晶体振荡器 一、实验目的 1、熟悉石英晶体振荡器的基本工作原理; 2、掌握静态工作点对晶体振荡器工作的影响。 3、掌握晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的 方法。 二、实验原理 1、电路与工作原理 一种晶体振荡器的交流通路如图4-1所示。若将晶体短路,则L1、C2、C3就构成了典型的电容三点式振荡器(考毕兹电路)。因此,图4-1的电路是一种典型的串联型晶体振荡器电路(共基接法)。若取L1=4.3μH、C2=820pF、C3=180pF,C4=20nF,则可算得LC并联谐振回路的谐振频率f≈6MHz,与晶体工作频率相同。图中,C4是微调电容,用来微调振荡频率 C5是耦合电容,R5是负载电阻。很显然,R5越小,负载越重,输出振荡幅度将越小。 图4-1 晶体振荡器交流通路 2、实验电路

如图4-2所示。1R03、1C02为去耦元件,1C01为旁路电容,并构成共基接法。1W01用以调整振荡器的静态工作点(主要影响起振条件)。1C05为输出耦合电容。1Q02为射随器,用以提高带负载能力。实际上,图4-2电路的交流通路即为图4-1所示的电路。 三、实验内容 1、观察振荡器输出波形,测量振荡频率和振荡电压峰值Vp-p。 2、观察静态工作点等因素对晶体振荡器振荡幅度和频率的影响。 四、实验步骤 (一)模块上电 将晶体振荡器模块⑤,接通电源,此时电源指示灯点亮。 (二)测量晶体振荡器的振荡频率 把示波器接到1P01端,顺时针调整电位器1W01,以改变晶体管静态工作点,读取振荡频率(应为6MHZ)。 (三)观察静态工作点变化对振荡器工作的影响

晶振的分类

晶振的分类 根据晶振的功能和实现技术的不同,可以将晶振分为以下四类: 1)恒温晶体振荡器(以下简称OCXO) 这类型晶振对温度稳定性的解决方案采用了恒温槽技术,将晶体置于恒温槽内,通过设置恒温工作点,使槽体保持恒温状态,在一定范围内不受外界温度影响,达到稳定输出频率的效果。这类晶振主要用于各种类型的通信设备,包括交换机、SDH传输设备、移动通信直放机、GPS接收机、电台、数字电视及军工设备等领域。根据用户需要,该类型晶振可以带压控引脚。OCXO的工作原理如下图3所示: OCXO的主要优点是,由于采用了恒温槽技术,频率温度特性在所有类型晶振中是最好的,由于电路设计精密,其短稳和相位噪声都较好。主要缺点是功耗大、体积大,需要5分钟左右的加热时间才能正常工作等。 2)温度补偿晶体振荡器(以下简称TCXO)。 其对温度稳定性的解决方案采用了一些温度补偿手段,主要原理是通过感应环境温度,将温度信息做适当变换后控制晶振的输出频率,达到稳定输出频率的效果。传统的TCXO是采用模拟器件进行补偿,随着补偿技术的发展,很多数字化补偿大TCXO开始出现,这种数字化补偿的TCXO又叫DTCXO,用单片机进行补偿时我们称之为MCXO,由于采用了数字化技术,这一类型的晶振再温度特性上达到了很高的精度,并且能够适应更宽的工作温度范围,主要应用于军工领域和使用环境恶劣的场合。在广大研发人员的共同努力下,我公司自主开发出了高精度的MCXO,其设计原理和在世界范围都是领先的,配以高度自动化的生产测试系统,其月产可以达到5000只,其设计原理如图4。 3)普通晶体振荡器(SPXO)。 这是一种简单的晶体振荡器,通常称为钟振,其工作原理为图3中去除“压控”、“温度补偿”和“AGC”部分,完全是由晶体的自由振荡完成。这类晶振主要应用于稳定度要求不高的场合。 4)压控晶体振荡器(VCXO)。 这是根据晶振是否带压控功能来分类,带压控输入引脚的一类晶振叫VCXO,以上三种类型的晶振都可以带压控端口。

晶体振荡器电路+PCB布线设计指南

AN2867 应用笔记 ST微控制器振荡器电路 设计指南 前言 大多数设计者都熟悉基于Pierce(皮尔斯)栅拓扑结构的振荡器,但很少有人真正了解它是如何工 作的,更遑论如何正确的设计。我们经常看到,在振荡器工作不正常之前,多数人是不愿付出 太多精力来关注振荡器的设计的,而此时产品通常已经量产;许多系统或项目因为它们的晶振 无法正常工作而被推迟部署或运行。情况不应该是如此。在设计阶段,以及产品量产前的阶 段,振荡器应该得到适当的关注。设计者应当避免一场恶梦般的情景:发往外地的产品被大批 量地送回来。 本应用指南介绍了Pierce振荡器的基本知识,并提供一些指导作法来帮助用户如何规划一个好的 振荡器设计,如何确定不同的外部器件的具体参数以及如何为振荡器设计一个良好的印刷电路 板。 在本应用指南的结尾处,有一个简易的晶振及外围器件选型指南,其中为STM32推荐了一些晶 振型号(针对HSE及LSE),可以帮助用户快速上手。

目录ST微控制器振荡器电路设计指南目录 1石英晶振的特性及模型3 2振荡器原理5 3Pierce振荡器6 4Pierce振荡器设计7 4.1反馈电阻R F7 4.2负载电容C L7 4.3振荡器的增益裕量8 4.4驱动级别DL外部电阻R Ext计算8 4.4.1驱动级别DL计算8 4.4.2另一个驱动级别测量方法9 4.4.3外部电阻R Ext计算 10 4.5启动时间10 4.6晶振的牵引度(Pullability) 10 5挑选晶振及外部器件的简易指南 11 6针对STM32?微控制器的一些推荐晶振 12 6.1HSE部分12 6.1.1推荐的8MHz晶振型号 12 6.1.2推荐的8MHz陶瓷振荡器型号 12 6.2LSE部分12 7关于PCB的提示 13 8结论14

晶体振荡原理

石英晶体、晶振介绍 文摘2010-10-25 23:36:39 阅读50 评论0 字号:大中小订阅 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器、手机等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。可以说只要需要稳定时钟的地方,就必需要有晶体振荡器。一:认识晶体、晶振 常见晶体振荡器有两类,一类是无源晶体,也叫无源晶振,另一类是有源晶振,也叫钟振。 无源晶体外形如下图: (HC-49S 插脚) (HC-49S/SMD 贴片) 无源晶体以以上两种封装的晶体最为常用,广泛应用于普通设备上,尤其是嵌入式设备,若对体积大小有要求,可以选择更小的贴片封装,如下图: (XG5032 贴片)(XS3225 贴片1,3脚有效,2,4脚为空脚) 当前消费类电子如手机,MP4,笔记本等,XS3225封装最为常用。具体关于晶体的封装及参数信息,请参考国内最大的高端晶体晶振厂家:浙江省东晶电子股份有限公司网站提供的信息:https://www.360docs.net/doc/3a1710074.html,/product.aspx/23 无源晶体说穿了就是封装了一下晶体,在晶体两面镀上电极引出两根线即可,那么有源晶振就是在无源晶体的基础上加了一个晶体振

荡电路,,比如采用一个74HC04或者54HC04之类的非门与晶体勾通三点式电容振荡电路,所以它具有电源,地,时钟输出三个脚,有些还会增加一个脚,就是晶振工作控制脚,当不需要工作的时候,可以关掉晶振降低功耗。如下图: (OS3225 与XS3225外形一样,只是脚位定义不同1:EN控制脚,2:GND地,3:OUT信号输出,4:VCC电源,一般为3.3V 或者5V)。 晶振内部振荡电路等效图如下: 非门5404的输出脚2就是信号输出脚。 二:晶体振荡电路原理分析(本篇由东晶电子网上独家代理创易电子提供技术文档https://www.360docs.net/doc/3a1710074.html,) 我们以最常见得MCU振荡电路为例,参考电路如下:

晶振的工作原理

晶振的工作原理 一、什么是晶振? 晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。 晶振还有个作用是在电路产生震荡电流,发出时钟信号. 晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。 晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。 晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。 晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10 ^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。 石英晶振不分正负极, 外壳是地线,其两条不分正负 二、晶振的使用 晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。 晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。 一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容

石英晶体振荡器电路设计

辽宁工业大学 高频电子线路课程设计(论文)题目:石英晶体振荡器电路设计 院(系):电子与信息工程学院 专业班级: 学号: 学生姓名: 指导教师: 起止时间: 2014.6.16-2014.6.27

课程设计(论文)任务及评语 院(系):电子与信息工程学院 教研室: 电子信息工程 注:成绩:平时20% 论文质量50% 答辩30% 以百分制计算 学 号 学生姓名 专业班级 课程设计(论文)题目 石英晶体振荡器电路设计 课 程设计(论文)任务 要求:1.设计一个石英晶体振荡器 2.能够观察输入输出波形。 3.观察振荡频率。 参数:振荡频率10000HZ 左右。 设计要求: 1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4 .组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 指导教师评语及成绩 平时成绩(20%): 论文成绩(50%): 答辩成绩(30%): 总成绩: 学生签字: 年 月 日

目录 第1章绪论 (1) 1.1石英晶体振荡器 (1) 1.2设计要求 (1) 第2章石英晶体振荡器设计电路 (2) 2.1石英晶体振荡器总体设计方案 (2) 2.2具体电路设计 (2) 2.2.1串联型晶体振荡器 (2) 2.2.2并联型晶体振荡器 (4) 2.2.3输出缓冲级设计 (5) 2.3元件参数的计算 (5) 2.4Multisim软件仿真 (6) 2.4.1串联型振荡器输出测试 (6) 2.4.2并联型振荡器输出测试 (7) 第3章课程设计总结 (9) 参考文献 (10) 附录Ⅰ总体电路图 (11) 附录Ⅱ元器件清单 (12)

晶体振荡器的设计.

1.课程设计的目的 (3) 2.课程设计的内容 (3) 3.课程设计原理 (3) 4.课程设计的步骤或计算 (5) 5.课程设计的结果与结论 (11) 6.参考文献 (16)

一、设计的目的 设计一个晶振频率为20MHz,输出信号幅度≥5V(峰-峰值),可调的晶体振荡器 二、设计的内容 本次课程设计要求振荡器的输出频率为20Mhz,属于高频范围。所以选择LC振荡器作为参考对象,再考虑输出频率和振幅的稳定性,最终选择了克拉泼振荡器。通过ORCAD 的设计与仿真,Protel绘制PCB版图,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 三、设计原理 1.振荡器的概述 在电子线路中,除了要有对各种电信号进行放大的电子线路外,还需要有在没有激励信号的情况下产生周期性振荡信号的电子线路,这种电子线路就是振荡器。 振荡器是一种能量转换器,它不需要外部激励就能自动地将直流电源共给的功率转换为制定频率和振幅的交流信号功率输出。振荡器一般由晶体管等有源器件和某种具有选频能力的无源网络组成。 振荡器的种类很多,根据工作原理可分为反馈型振荡器和负阻型振荡器,根据所产生的波形可分为正弦波振荡器和非正弦波振荡器;根据选频网络可分为LC振荡器﹑晶体振荡器﹑RC振荡器等。 2.振荡器的振荡条件 反馈型振荡器的原理框图如下:

图1.1 反馈型振荡器的原理框图 如图1,放大器的电压放大倍数为K(s),反馈网络的电压反馈系数为F(s),则闭环电压放大倍数Ku(s)的表达式为[1]: K u (s)= ) () (s Us s Uo ( 1—1) 由 K(s)= ) () (s Ui s Uo (1—2) F(s)=) ()(s Uo s i U ' (1—3) U i(s)=U s (s)+)(s i U ' (1—4) 得 K u (s)= )()(1)(s F s K s K -=) (1) (s T s K - (1—5) 其中T(s)=K(s)F(s)= ) () (s Ui s i U ' (1—6) 称为反馈系统的环路增益。用s=j ω带入就得到稳态下的传输系数和环路增益。由式(1—5)可知,若在某一频率ω=ω1上T(j ω),Ku (j ω)将趋近于无穷大,这表明即使没有外加信号,也可以维持振荡输出。因此自激振荡的条件就是环路增益为1,即 T(j ω)=K(j ω)F((j ω)=1 (1—7) 通常称为振荡器的平衡条件。 由式(1—6)还可知|T(j ω)|>1,|)(ωj i U '|>|Ui (j ω)|,形成增幅振荡。 |T(j ω)|<1, |)(ωj i U '|<|Ui (j ω)|,形成减幅振荡。 综上,正弦波振荡器的平衡条件为: T(j ω)=K(j ω)F((j ω)=1 也可表示为|T(j ω)|=KF=1 (1—8a)

晶振基础知识

晶振基础知识

晶振基础知识(第一版) 摘要:本文简单介绍了晶体谐振器和晶体振荡器的结构,工作原理,振荡器电路的分类,晶体振荡器的分类,晶振类器件的主要参数指标和石英晶体基本生产工艺流程。 一、振荡电路的定义,构成和工作原理 (3) 二. 晶体振荡器分类: (23) 三、石英晶体谐振器主要参数指标 (27) 四、石英晶体振荡器主要参数指标 (30) 五.石英晶体基本生产工艺流程 (43)

一、振荡电路的定义,构成和工作原理 1. 振荡器:不需外加输入信号,便能自行产生输出信号的电路,通常也被成为。 2. 振荡器构成:谐振器(选频或滤波)+驱动(谐振)电路构成振荡器电路。 3. 谐振器的种类有:RC谐振器,LC并联谐振器,陶瓷谐振器,石英(晶体)谐振器,原子谐振器,MEMS(硅)振荡器。本文只讨论石英晶体谐振器。石英谐振器的结构 石英谐振器,它由石英晶片、电极、支架和外壳等部分组成。它的性能与晶片的切割方式、尺寸、电极的设置装架形式,以及加工工艺等有关。其中,晶片的切割问题是设计时首先要考虑的关键问题。由于石英晶体不是在任何方向都具有单一的振动模式(即单频性)和零温度系数,因此只有沿某些方向切下来的晶片才能满足设计要求。

普通晶振内部结构 Base Mounting clips Bonding area Electrodes Quartz blank Cover Seal Pins Top view of cover Metallic electrodes Resonator plate substrate (the “blank”)

晶体振荡器工作原理

晶体振荡器工作原理 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。 石英晶体振荡器的基本原理 石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。 压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 符号和等效电路 当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L来等效。一般L的值为几十mH 到几百mH。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100Ω。由于晶片的等效电感很大,而C很小,R也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。 谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线。可见当频率低于串联谐振频率fs 或者频率高于并联揩振频率fd时,石英晶体呈容性。仅在fs<f<fd极窄的范围内,石英晶体呈感性。 石英晶体振荡器类型特点 石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(TCXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式

石英晶体振荡器的主要参数

石英晶体振荡器的主要参数 标称频率fo:存规定的负载电容下,晶振元件的振荡频率即为标称频率矗。标称频率足晶体技术条件中规定的频率,通常标识在产品外壳上。需要注意的是,晶体外壳所标注的频率,既不是串联谐振频率也不足并联谐振频率,而足在外接负载电容时测定的频率,数值介于串联谐振频率与并联谐振频率之间。所以即使两个晶体外壳所标注的频率是一样的,其实际频率也会有些小的偏差(1.艺引起的离散性)。 常用普通晶振标称频率有48kHz、500kHz、503.5kHz、l -40.50MHz等,对于特殊要求的晶振频率可达到IOOOMHz以上。 负载电容:品振元件相当于电感,组成振荡电路时需配接外部电容,此电容目U负载电容。负载电容是与晶体一起决定负载谐振频率f的有效外界电容,通常用CL表示。设计电路时必须按产品手册巾规定的CL值,才能使振荡频率符合晶振的fL。在应用晶体时,负载电容(C。)的值是卣接由厂家所提供的,无需冉去计算。常见的负载电容为8pF、12pF、15pF、20pF、30pF、50pF、lOOpF。』I要可能就应选lOpF、20pF、30pF、50pF、lOOpF 这样的推荐值。 负载频率不同决定振荡器的振荡频率不同。标称频率相同的晶振,负载电容不一定相同。因为石英品体振荡器有两个谐振频率:一个是串联谐振品振的低负载电容晶振:另一个为并联谐振晶振的高负载电容晶振。所以,标称频率相同的晶振互换时还必须要求贞载电容一致,不能冒然互换,否则会造成电器工作不止常。 调整频差:在规定条件下,基准温度(25℃±2℃)时工作频率相对于标称频率所允许的偏若。 温度频差:在规定条件下,在工作温度范围内相对于基准温度(25℃t2℃)时工作频率的允许偏差。 老化率:在规定条件下,晶体T作频率随时间向允许的相对变化。以年为时间单位衡量时称为年老化率。

晶振的工作原理教学内容

晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并 联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相 当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合 适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正 弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大, 这个振荡器的频率也不会有很大的变化。 晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。 晶振的应用:一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。 一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p 的电容构成晶振的振荡电路就是比较好的选择。晶体振荡器也分为无源晶振和有源晶振两种 类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自 身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。 晶振的种类:谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。 晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。 石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两 个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的 方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变

相关文档
最新文档