电机轴承常见故障

电机轴承常见故障
电机轴承常见故障

电机轴承常见故障

1. 电机轴窜问题,导致轴承过热?

第一,电机的轴窜问题:一般的电机,用得最多的是深沟球轴承和圆柱滚子轴承。安装时,一端做轴向定位,另一端做轴向浮动。你说的窜动,首先我觉得你应该查一下,你的轴向定位做得怎么样?定位是否可靠。如果可靠,对于深沟球轴承来说,它的轴向窜动量就应该是它的轴向游隙。一般不会太大。但是取决于你选的径向游隙。对于圆柱棍子轴承,对于N和NU系列的,不能作为定位轴承,如果你用他们做定位,那一定窜动过大。

第二:你说的轴窜动轴承着了,我想,如果定位轴承承受了过大的轴向负荷,会导致轴承烧毁。所以,选择定位轴承的时候要看看轴向负荷有多大。你选的轴承是否承受得了。如果是NJ系列的圆柱棍子轴承,这种轴向负荷完全是由滑动部分承受的,所以不行。对于深沟球轴承,它的轴向能力最多有径向的四分之一,对于不同的轴承各有不同。

2. 如果用深沟球轴承,有没必要把一端轴承与轴固定死,然后轴承又固定在端盖上以限制轴窜动?现在很多都是轴可以来回窜动的,靠一个波纹垫片来垫,但是还是能够窜动

轴系一般会要求轴向定位。所以会需要有一段作为定位端,一端作为游动端。

你说得靠波形弹簧来垫,那个波形弹簧不是用于定位的,是用于加轴向预负荷的。所以,对于交叉定位得电机,一定会存在这个由于弹簧垫圈引起的轴向窜动。如果你要控制,那就该做传统的一个定位端,一个非定位端。然后再非定为段加弹簧垫圈,就好了!

4. 小功率直流有刷电机中,一端采用滚珠轴承,另一端采用球形含油轴承,请问这样的结构如何选用滚珠轴承以及与轴、轴承室的配合的松紧。(轴径8mm,轴承厚8mm,两轴承档开档约90mm,电机噪声要求很高)

一般而言,j5\6用于内圈, H7用于外圈,但这不是绝对的,我只是大略的给你说。另外,控制电机噪声,从轴承而言,你已经需要选择特殊的游隙和润滑脂了(如果噪声要求很高的话)。游隙可以选小一点的,不要太小否则抱死。润滑脂选粘度低一些的。不知道你用的是不是进口轴承,如果是的话,我可以给你些他们的推荐。对于国产轴承,如果谈到噪声,他们恐怕没有什么特殊的解决方案,除非你提出来。

5. 轴承跑外圈的情况?

分两种情况说:第一,你用的是铝轴承室,第二,一般的铸铁,或者别的铁质轴承室。

对于第一条,由于铝的膨胀系数比铁的大一倍,所以,你在安装的时候使用的正确配合,在温度升高以后就变松了,跑圈也就产生了。办法两个,第一,在安装的时候加紧配合,这个办法我不推荐,虽然可以解决,但是,安装的时候比较烦人,那么紧工人要叫的。第二、使用一个橡胶圈,在轴承室内开个槽,槽深是橡胶圈厚度的0.8倍,宽1.4倍。这样就好了。记住,我给的数据不能变,要不会有问题,有兴趣的话再细说。

第二条,铁质轴承室,建议你查查轴承室的配合,这个问题比上面的简单多了,多数是配合松了!

6. 据有些轴承(NSK、SKF)资料上介绍:轴承外圈与轴承室的配合程度是轴承外圈能够在轴承室内蠕动,这样就会使轴承外圈得到均匀的磨损从而延长轴承的使用寿命,请问是否合理?

你说的蠕动,是指轴向的蠕动,这种蠕动是为了吸收轴向膨胀。(绝不是周向蠕动,周向肯定是不好的,它破坏了轴承的滚动状态。)但是外圈受到均匀磨损的说法,我个人不是很认同。蠕动的目的不是为了磨损。磨损之后,轴承的相对位置和受载会变,不见得好。如果蠕动磨损是好的,就不用发明可以调整轴向伸长的轴承了。

7. 能谈谈震动电机用的轴承问题么?振动电机选用什么型号系列的好?安装时怎样更好的安装?

保养和维修要注意哪几个方面?

振动电机,是个很好玩的话题。选轴承的时候,要注意,计算轴承负荷的时候就已经不一样了,要考虑到震动的加速度。这样得到的当量负荷就不一样,所以选出来的轴承大小就不一样。还有要注意保持架的选择,很多情况下用铜保持架。(但不可以教条,要看情况而定)还有,有些品牌,比如SKF有专门的振动筛用轴承,那是专门为振动场合开发的。保持架非常结实。

还有,振动电机的轴承在安装的时候,润滑的选择要注意,有时候要用有EP添加剂的润滑脂。并且在润滑时间间隔要缩短,根据不同的轴承厂家的说明进行相应的计算。

在装配的时候,一定要注意,设计人员选择的公差配合的时候就应该注意,振动电机的轴和轴承室的配合应该都是紧配合,具体数据清参考相应的轴承厂家资料。但是你配合紧了,就要考虑剩余游隙够不够、、、

8. 请问小功率异步电机轴与轴承内圈及端盖与外圈选用什么配合比较合适?另外外转子风扇电机启

动时有噪声跟轴承有关吗?谢谢!!!!

小电机,的配合选择应该有这几个方面:第一,对于铝壳电机,通常铝的热膨胀系数比铸铁的大,所以你选配合的时候建议比铸铁机座的放紧一挡。第二,对于铸铁机座的电机,用手册上的配合就好。第三、如果注铝转子使用手册上的配合,请在外圈上加o形环,避免跑圈。

对于外转子电机,如果轴承是外圈旋转的,那么,外圈使用紧配合,内圈使用过渡配合。配合的选择和上面的一样,只不过反过来。

9. 请问铜保持架轴承及工程塑料保持架轴承的推荐使用场合(在电机上)?金属防尘盖及塑料防尘盖

轴承的推荐使用场合?

各种品牌的轴承保持架按照材质的不同分为:黄铜、钢、和工程塑料。在电机里这三者都有很多的应用。

对于工程塑料的保持架,各个厂家的性能略有不同,但大体相似。这种保持架重量轻,适用于高转速的场合。并且这种保持架的失效模式不是突然迸裂,所以比较适合于一些不允许突然停机的场合。但是对于矿山机械,这种保持架由于安全的考虑不适合使用。(主要是因为他坏的时候不是一下子坏,会温度一点点升高,这样对于易爆场合危险。)同时这种保持架有温度限制,一般是零下40度到120

之间。否则保持架材料就有问题了。

对于黄铜保持架,基本没有什么阻碍,只是不能适用于有氨的环境。

对于钢保持架,也没有什么限制。但是一般小轴承没有同保持架,大轴承没有钢保持架。

对于防尘,一般的铁盖儿,仅仅是防尘,没有密封作用。没有温度限制。同时转速性能和开式轴承一样。

对于橡胶密封件,一般的普通橡胶密封件温度有范围,不能超过120度,高温氟橡胶是180度。这是有密封性能的,但是密封轴承的转速比开式轴承低。

10. 机械设计书中,只见如何选用轴和孔的公差,至于如何选用游隙的,则比较少或者含糊其词。原始游隙、安装游隙、工作游隙到底如何选用呢?我见普通的机械设计书中,正常负荷、120mm的轴颈,皆选m5公差( 0。013, 0。028),平均 0。0205;基本游隙组( 0。015, 0。041),平均 0。028;轴承内孔(0,-0。02),平均-0。01。这样安装后平均过盈就变成了 0。0305,而轴承游隙才平均0。028,工作时成了负的游隙。这样合适吗?我公司电动机,600KW,长期连续工作,120mm的轴颈,选用6324轴承,若选轴公差n6,c3游隙,你认为游隙小吗?那么应c4游隙或选m5、c3游隙?安装后的游隙是否是留给热膨胀空间的?应该有多大呢?

首先要说一下你前面的提问,手册里没有选择游隙的建议,这是合理的!这是因为,轴承的游隙是在生产的时候就确定的,这样你在使用的时候是要配合他的游隙来选择合适的公差配合。而不是相反,因为你的公差和配合来定制轴承。因为轴承是标准件。由上可知,其实,选择游隙的实质,是选择合适的公差配合。正常情况下,轴承工作的时候内部游隙应该是一个非常小的正值(圆锥滚子轴承和角接触球轴承除外)。所以,你说的工作游隙变成了负值,很有可能是个不好的选择。至于多大,

不同类型的轴承,有不同的范围。例如,通常温度,工矿下,中小型深沟球轴承工作游隙推荐:4-11um。(注意前提,不是所有轴承,也不是大深沟球。)

其次,你说的轴承游隙变化,直说了公差影响的变化,其实还有一个方面要注意,就是温度变化,热胀冷缩引起的游隙变化。这点在计算的时候一定也要考虑进来。

选择游隙的方法就是由原始游隙减去由于公差配合造成的游隙间小,再减去由于温度变化引起的游隙变化量,所得到的工作游隙符合基本运行工况就好。

应你的要求把你的那个轴承作了如下计算:

由于你没有给出温度分布(轴,轴承室),所以我只就公差影响进行了计算。即便如此,由于你没有给出轴承室的公差,我的计算也仅仅是假设轴承室H7。

如果是n6的轴径,如果选6324/C3的轴承,内部剩余游隙是-0.005到0.049。如果把配合变成了m6,剩余游隙是:0。003到0.057。从这里可以看到,其实不是你需要选择C4的问题,而是你需要重新看看自己的公差配合问题。

另外,你说要给热膨胀留出空间,我觉得这个说法有点点需要考虑。因为,其实所谓热膨胀的空间,在轴承内部,影响最大的也就是游隙了。配合选对了,游隙选对了,自然都有了,不要自己另外留。

最后一个通用建议:对于工业电机,一般运行状况。推荐使用C3游隙(小电机除外)。公差配合按照手册上选择,除非温度负荷有特殊变化。(相信手册吧,那里面的数字都是经过计算的。)即使平时在我个人的工作中,只有温度或者运行工况有特殊要求的时候才做游隙计算。一般情况,直接按照手册选择。(说实话,过去我也经常计算,但是发现,很多情况算了一大圈,还是回到手册的数据。所以,在这点上,我相信手册。当然,还是那句话,特殊工况手册不适用)

11. 有一个振动大的电机拆开后,轴承内油脂变成了银灰色(原来是乳白色),是什么问题引起的?轴

承油脂变色是不是正常的,油脂变成什么颜色是正常的?变成什么程度是正常的.有的轴承油脂也变色,由乳白色变成褐色,而且变色的部位是滚动体周围,这是什么原因?如果变成银灰色是由于配合紧,游

隙小,摩擦大造成的,但同一轴承有外圈跑圈的现象.这又是为什么呢?

润滑脂在轴承中变色的情况是有的,即使不放在轴承里,也会变色。这是因为:

第一,润滑脂存在氧化问题。润滑脂放置(或者运行)一段时间,会和氧气有很多接触,同时,金属(轴承本身)在这个氧化反应中充当了催化剂的角色。所以,在计算轴承中润滑脂的补充时间间隔的时候,也要考虑氧化的问题。现在有很多润滑脂都有抗氧化添加剂。这不等于就不会氧化了。

第二,轴承运行本身,温度(轴承本身,或者环境)会变化,这就导致润滑脂中的基油不断的进出增稠剂,同时每次基油回去的时候,不一定完全回去。这样间久了,油脂的性能会变化,会不能满足润滑,所以要重新施加润滑。基油不足的润滑脂,颜色有可能变化。还有,如果温度异常,油脂的性能变化也很大,这样,会有变色。如果温度很高,会碳化。颜色会变深。

第三,轴承运行过程中,润滑脂内部混入了杂质。这种杂质有可能是轴承本身自己剥落的,也有可能是外界进入的。可能是固体的,可能是液体的,这些都会影响润滑脂性质。

另外你说的配合紧,游隙小,导致油脂变色。这种推理应该是这样的:配合紧,工作(剩余)游隙小,轴承负荷区增大,发热,导致油脂变性,导致油脂颜色变化。而你说的跑圈,第一有可能你轴承室的配合有问题,第二,内部游隙太小,摩擦力大,导致跑圈。后面一种可能,不能靠调紧配合来实现。越调越糟糕。

还有,你说的是根据润滑脂的颜色来判断情况是否正常。这点判断十分困难,不同的润滑脂内部添加剂不同,运行条件不同,适应温度范围不同,不可能有统一的标准。即使是同一种润滑脂,可能也会由于出场的批次不同,配方略有不同。请不要用这个颜色变化作依据,不可靠。

12. 轴承内圈固定,外圈旋转,需要什么样的配合,轴承游隙怎么选择.还需要注意什么?谢谢

你说的是轴承内圈固定、外圈旋转。这和一般的轴承运行状况刚刚好相反。有下面几点建议:第一、公差配合:一般轴承,内圈旋转,配合相对于外圈紧一些。外圈松一些。原因是外圈主要起支撑作用,没有很大的转动作用力。(微观上,外圈会相对蠕动,但是不多)你说的情况刚好相反,也就是两个轴承圈的受力刚刚好相反。所以,公差配合也要相反。主动旋转的圈配合会相对紧。

第二、游隙选择:基本上游隙的选择与温度和公差配合相关。如果你仅仅是把你外圈公差的松紧作了对调的话,那么变化前后的影响不是特别大(但是肯定有,在精密场合不能忽略),一般情况可认为和一般的轴承,由于公差配合引起的变化一样。至于温度,完全和哪一个圈旋转没有关系,主要看你外界的热源。所以也没有太多变化。总之,游隙上面基本上可以按照过去的选择。

第三、润滑,要注意,如果是密封轴承,请不要使用防尘盖的,他一定会漏油。要选橡胶密封的。如果是一般的开式轴承,请注意,再润滑时间间隔要调整为过去的一半。

13. 一台三相异步电机,轴承选用φ45×φ58×7,安装时很容易变形?由于对转速和噪声要求很严,轴向

间隙小,转速低,噪声合适;轴向间隙大,转速合适,噪声大,有何高招?有台电机,轴承卡死,拆开后发现轴承里大量黑色块状的东西,是啥东西?

如果以一般的工业电机,这种618系列的轴承不是很常用的。这是薄系列轴承。你说得容易变形是对的。这种变形来自于外界形变的影响。与你外界的材质有关系。如果是铝的,影响就更大。另外,你说的轴向间隙值得是那部分?轴承的内部间隙么?对于深沟球轴承我们多数谈的是径向,除非你的应用有特殊的需求,需要换算。游隙适当的小,确实会改善噪声和震动。但这并不意味着好。你作出厂试验的时候,内部间隙和实际工况的内部间隙不一定一样。因为有温度的变化。所以,你出厂可能好,(如果运行温度没有达到实际工况的时候),到了实际运行,就不行了。有隙过小自然会卡死。所以,选择游隙,要选择好工作游隙,这样运行的时候,要运行到和工况一样的温度,再来看噪声和震动。这样才是正确的。

另外你说的黑东西,如果有照片就好了。卡死了,一定温度高,可能是轴承的剥落?可能是变性的油脂?可能是外界进来的污染。。?很多种可能性,凭你这样描述,恕小弟无能,不能明确判断。

14. 有一个捆饶了很久的问题,请教楼主轴承的本身的损耗问题?选用的轴承的型号为6020zz(中孔15,外径35)生产线上下线的马达,在高转速运行时,空载功率高达200W,但是如果马达连续跑合30钟后,功率仅有50W,之后在等马达完全冷却后,在启动马达,空载功率很快就降到50W,经过分析问题出现在轴承上,我的理解是: 1.新的轴承内部油脂分布的不均匀造成的, 2.油脂的黏度有一定的关系,如果选用黏度相对低的油脂,又会在寿命上有所影响 3.轴承的游隙的大小,但是跑合后的轴承就不会出现这个问题。马达的噪音要求有很严格暂时还没有有一个很好的解决办法还请楼主多多指点!!多谢

1.新的轴承内部油脂分布的不均匀造成的,你说的对,一开始,轴承内部的润滑脂分布是不均匀的,在运转初期确实存在匀脂的现象。

2.油脂的黏度有一定的关系,如果选用黏度相对低的油脂,又会在寿命上有所影响这个方面其实最关键的是周知的黏度还和温度有关系,温度越高,油脂的黏度越低。这样带来的损耗就越少。所以你前半部分说的是对的,后半部分,其实应该这么说,合时的油脂黏度才最适合轴承运行,并不是越大越好。通常有一定范围,叫做卡帕系数,当这个数字在1到4之间的时候,优质的黏度最合适。如果优质黏度太大,会带来温升的问题。你的问题是,开始,所有的温度都低,油脂黏度大,带来的损耗就大,运行一段时间之后,温度上升,油脂变软,黏度降低,带来的损失就小。所以,在选择润滑的时候,应该基于工作温度选择,同时作损耗的时候,也要基于一个温度。来消除温度的影响。

3.轴承的游隙的大小,但是跑合后的轴承就不会出现这个问题。马达的噪音要求有很严格轴承的游隙对摩擦没有直接影响,但是它对于负荷区滚动体的数量有影响,从而间接的影响了损耗,但并不主要。不建议通过调整游隙来考核损耗。你不如把精力放到别的地方。但是,对于噪声,游隙的影响

就大了。前面我回答的问题中有具体说到,你可以自己去查,我就不细说了。

还有,你说的困扰你的问题,是损耗还是噪声?如果是损耗,那么按道理说,一个给定的轴承,损耗已经基本差不多,你很难改变太多(基于正常使用的前提下)。同时,这对电机的总损耗的影响,大约有0.6%左右。还是多花精力在电磁上吧!

对于噪声,这里面说法就多了。篇幅所限,不能全部说。给你的通用建议,深沟球轴承,选择

C3游隙,圆柱磙子轴承普通游隙。这是适用于普通工业电机,特殊的设计除外。

15. 1、电动机、发电机和汽车发电机轴承必须用C3游隙吗?2、轴承是普通游隙用的多还是C3游隙用的多?3、2Z、2RZ、2RS有何区别及优缺点?4、我有一发电机轴承,长期连续工作在70-90度,1500-3000转,选用6203/C3,轴公差17j5,孔为铝壳体,选H7好还是H6好?

第一个问题:你说的种类包含了所有的电机(电动机和发电机),所以,肯定你的答案是不确定的。

第二个问题:这个与轴承的种类,电机的种类,电机的负荷,温度,等等应用工况有关,一样不能一言以蔽之。

第三个问题,这三种封闭方式各有不同,2Z是防尘盖,不是密封件,只有粗略的防护固体污染颗粒的能力,所以英语是shielder,不是密封。对于后两种(从你的说的型号看,很有可能你说的是SKF轴承),一种是轻接触式密封,一种是接触式密封。接触式密封防护能力最好。但是由于密封的接触,所以轴承的转速能力就最差。(老天爷是公平的,给了你密封能力,就不给你转速能力。)这三种防护方式,都是这样,密封性能越好,转速能力越低。

第四个问题,铝壳电机公差配合要比铸铁基座的紧一个等级。但这也不是最好的方法,最好的方法是添加o形环,防止外圈跑圈。

2021三相异步电动机常见故障分析与排除

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021三相异步电动机常见故障分 析与排除

2021三相异步电动机常见故障分析与排除导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 三相异步电动机应用广泛,但通过长期运行后,会发生各种故障,及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。 一、通电后电动机不能转动,但无异响,也无异味和冒烟。 1.故障原因①电源未通(至少两相未通);②熔丝熔断(至少两相熔断);③过流继电器调得过小;④控制设备接线错误。 2.故障排除①检查电源回路开关,熔丝、接线盒处是否有断点,修复;②检查熔丝型号、熔断原因,换新熔丝;③调节继电器整定值与电动机配合;④改正接线。 二、通电后电动机不转,然后熔丝烧断 1.故障原因①缺一相电源,或定干线圈一相反接;②定子绕组相间短路;③定子绕组接地;④定子绕组接线错误;⑤熔丝截面过小; ⑤电源线短路或接地。 2.故障排除①检查刀闸是否有一相未合好,可电源回路有一相断

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

电机滚动轴承保持架失效原因分析

电机滚动轴承保持架失效原因分析 【摘要】圆柱滚子槽形保持架轴承的失效形式主要是保持架早期磨损。针对造成该问题的几种因素:保持架加工工艺、滚子倒角尺寸、装配工艺和表面处理工艺进行了改进和控制,有效解决了保持架早期失效问题,提高了槽形保持架轴承的使用寿命。 【关键词】保持架;滚子轴承;磨损;寿命;工艺 保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。滚动轴承在工作时,由于滑动摩擦而造成轴承发热和磨损,特别是在高速运转的条件下,由于离心力的作用,加速了摩擦磨损与发热,严重时会造成保持架烧伤和断裂,致使轴承不能正常使用。保持架损坏在轴承失效形式中占有较大的比例。 下面以6201- 2RZ轴承的保持架为研究对象。某轴承企业生产的6201- 2RZ 轴承装在某型电机上使用不到2天就发生抱死,且此类现象频现。在对电机进行分解后发现:轴承外表面有变色的油脂,用手转动轴承完全卡死,轴承密封盖打开后可观察到轴承内部较黑,剩余油脂已全部碳化,轴承保持架有一处断裂;轴承清洗后可见大量片状碎屑,在钢球与内滚道间居多,防尘盖附着的油脂中也混有部分碎屑。 一、故障特征 鉴于轴承已经发生止转失效,部分零件已经损坏严重,轴承的旋转精度及尺寸精度完全丧失,已无法测量,故直接对轴承外圈切割将轴承进行分解,发现有以下几个特征: 1.一粒钢球从断裂的兜孔中脱离,挤压到相邻兜孔,两个兜孔都已变形;钢球表面已经失去光泽,朝外一侧严重磨损(图1)。 图1 钢球从断裂的兜孔中脱离 2.内外沟道的工作轨迹均偏离沟道中心位置,且内圈工作轨迹较宽,约占沟道宽度的3/5。内、外沟道均发现有多个轴向压痕,工作轨迹表面出现了粗糙度下降的情况;内沟道黏有大量金属铁屑,连续铺满约180°的内沟道表面,铁屑已被碾压成片状。 3.保持架内径与外径方向均有明显磨损,兜孔边缘可见挤压变形;七个兜孔中有五个兜孔保持基本完整,一片半保持架在两个相邻的损坏的兜孔间的铆钉孔处断裂,断裂处铆钉已不可见,断口卷曲变形(无脆性断裂特征);另一片半保持架在对应位置有挤压变形,铆钉孔内径方向磨豁。在未分解之前该处一粒钢球已从兜孔中脱出。在断裂处相隔一个铆钉的位置,发现一枚铆钉在中心位置断

电机轴承常见7种异常声音的分析与解决

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生 解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值

B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发 解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围 原因分析: A、润滑脂过多,润滑剂的阻力增大 B、游隙过小引起内部负荷过大 C、安装误差

轴承常见故障分析

轴承常见故障分析 1 轴承的种类: 表1-1滚动轴承类型与适用精度等级。 轴承形式适用标 准 适用精度等级 深沟球轴 承 GB307 0 级 6 级 5 级 4 级 2级 角接触球轴承0 级 6 级 5 级 4 级 2级 调心球轴 承0级 圆柱滚子轴承0 级 6 级 5 级 4 级 2级 圆锥滚子轴承公制系 列 (单 列) GB307 级 6 级 6 级 5 级 4 级 公制系 列(双 列、四 列) SB/T534 1994 级

英制系列SB/CO/ T1089 Cla ss4 Cla ss2 Cla ss3 Cla ss0 Cla ss0 调心滚子 轴承 GB307 0级 推力球轴 承0 级 6 级 5 级 4 级 推力调心滚子轴承0级 2 轴承使用中常见问题及对策 2.1 强金属音 1、异常载荷:选择合适的装配游隙和预紧力 2、组装不良:提高轴的加工精度,改善安装方法 3、润滑剂不足:补充或使用合适润滑剂 2.2 规则音 1、异物引起沟道锈蚀、压痕、伤痕:清洗相关零件,使用干净润滑脂 2、沟道剥落:疲劳磨损,更换轴承 2.3 不规则异音 1、异物侵入:清洗相关零件,使用干净润滑脂 2、游隙过大:注意配合及选择合适游隙 3、钢球伤痕:钢球疲劳剥落或异物卡伤,更换轴承

2.4 异常温升 1、润滑剂过多:减少润滑剂。 2、润滑剂不足,或不适合:增加润滑剂或选择合适润滑剂。 3、配合面蠕变或密封装置过大:轴承外径或内径配合面修正,密封形式进行变更。 2.5 轴的回转振动大 1、剥落:疲劳剥落,更换轴承 2、组装不良:提高轴的加工精度,改善安装方法 3、异物侵入:清洗相关零件,使用干净润滑脂 2.6 润滑剂泄漏大变色 1、润滑剂过多:减少润滑剂 2、异物入侵:清洗相关零

高速电机抱轴原因分析和解决方法(2021版)

高速电机抱轴原因分析和解决 方法(2021版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0969

高速电机抱轴原因分析和解决方法(2021 版) 分析高速电机抱轴的原因,提出正确的解决方法,取得良好效果。 问题背景 化工集团醋酸分公司隶属于中石油大庆油田有限责任公司,成立于2006年12月,现有在册职工412人,固定资产15.02亿元。主要以甲醇、一氧化碳为原料,采用低压液相羰基合成工艺,生产20万吨/年优质醋酸。共有设备608台,动设备就有220台,其中两极高速电机占75%以上,主要分布于装置的各关键工序,自2007年开工投产以来,两极高速电机故障频出。其中尤其以位于造气车间脱硫脱碳工序的贫液泵P1504电机最为典型(2台国产YB450S3-2型防爆高压电机,功率400kW,电压6000V,转速2985r/min),先后两

次发生抱轴事故,严重制约和影响装置的安全稳定长周期运行。 问题分析 紧急停机后发现电动机盘不动车,电机轴已抱死。引起电机抱轴事故的原因很多,主要分为内部原因和外部原因。电机的内部原因有:轴承质量不好;润滑脂质量不好;润滑脂加入量不合适;检修工艺不当;电机运行时振动超标;转子上有轴电压。电机外部原因主要有:非户外型电机户外安装或用水冲洗电机;电机安装基础不牢固;电机周围环境温度过高。经解体检查发现,轴承润滑脂烧尽,轴承保持架损坏变形,滚子和滑道过热发蓝,轴承座防爆曲路与轴结合处烧结抱死。经分析问题出在以下两方面: 2.1.该电机轴承选用SKF钢制保持架,相对于黄铜保持架,其极限转速有所降低,在同等运行条件下更容易失效损坏。 据轴承有关资料表明,一般情况下,在同种保持架,同种润滑条件下,随着轴承型号的增大,其极限转速相应减小。对于极限转速与电机转速接近的轴承,最好不用。2P高压电机的转速一般为2970~2990r/min,因受两极高压电机轴伸直径的限制与润滑条件,

电机轴承故障处理及分析

电机轴承故障处理及分析 一、保持器声“唏利唏利……” 原因分析:由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生。 解决方法: 1、提高保持器精; 2、选用游隙小的轴承或对轴承施加预负荷; 3、降低力矩负荷,减少安装误差; 4、选用好的油脂。 二、连续蜂鸣声“嗡嗡……” 原因分析:马达无负荷运转是发出类似蜂鸣一样的声音,且马达发生轴向异常振动,开或关机时有“嗡”声音。 具体特点:多发润滑状态不好,冬天且两端用球轴承的马达多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动。 解决方法: 1、用润滑性能好的油脂; 2、加预负荷,减少安装误差; 4、提高马达轴承座刚性; 5、加强轴承的调心性。 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 三、漆锈 原因分析:由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音。 具体特点:被腐蚀后轴承表面生锈比第一面更严重。 解决方法: 1、把转子、机壳、晾干或烘干后装配; 3、选用适应漆的型号; 4、改善电机轴承放置的环境温度; 5、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起; 6、采用真空浸漆工艺。 四、杂质音 原因分析:由轴承或油脂的清洁度引起,发出一种不规则的异常音。 具体特点:声音偶有偶无,时大时小?有规则,在高速电机上多发。 解决方法: 1、选用好的油脂; 2、提高注脂前清洁度; 3、加强轴承的密封性能; 4、提高安装环境的清洁度。 五、高频、振动声“哒哒......” 具体特点:声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: 1、改善轴承滚道表面加工质量,降低波纹度幅值; 2、减少碰伤;

滚动轴承常见故障原因分析

增刊 西 山 科 技 Supp lem en t 2001年8月 X ishan Science&T echno logy A ug.2001  技术经验 滚动轴承常见故障原因分析 王 建 国① (华化制药集团公司) 摘 要 介绍了滚动轴承的故障形式,分析了产生的原因,并提出了相应的解决方法。 关键词 滚动轴承 故障 原因 滚动轴承一般由外座圈、内座圈、滚动体和保持架等四部分组成。滚动轴承属于标准件,其类型很多,用量很大,凡是运转设备几乎都有不同类型和不同精度的滚动轴承。在生产实际中,由于各种原因,滚动轴承常出现故障,影响设备的正常运行,现对滚动轴承在运行中的常见故障作一分析,并简要介绍消除故障的方法。 1 故障形式 1)轴承转动困难、发热;2)轴承运转有异声;3)轴承产生振动;4)内座圈剥落、开裂;5)外座圈剥落、开裂;6)轴承滚道和滚动体产生压痕。 2 故障原因分析 2.1 检查不细致 轴承在装配前,要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡住的现象;同时检查轴颈和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧的“瓦口”处出现“夹帮”现象。若装配前检查不细致,会导致装配后的轴承运转情况不良,出现由于原始间隙太小导致的转动困难、发热;由于“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 2.2 装配不当 装配不当会导致轴承出现上述的各种故障形式。装配不当有以下几种情况: 1)配合不当。轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5、js5、js6、k5、k6、m6配合,轴承座孔与轴承外座圈采用J6、J7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈为不旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴颈或轴承座孔的配合表面上发生滚动或滑动。但有时由于轴颈和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大剂压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在安装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈) ①作者简介:王建国 男 1963年出生 1984年毕业于太原工学院 工程师 太原 030021

引风机电机轴承烧毁的原因分析

引风机电机 轴承烧毁的原因分析

X炉XX引风机电机轴承烧毁的原因分析 X炉引风机电机为内馈调速异步电动机绕线式电机,其基本技术参数如下: 其前后端轴承于2009年12月至今先后发生四次烧毁轴承或抱轴的现象。其所用轴承型号:电机驱动端为:SKF NU1044 MA/C3 SKF NU16044 MA/C3;电机非驱动端为:SKF NU1044 MA/C3。经现场观察与分析,造成上述事故的原因有以下几点: 1.2009年12月4日在检修部巡检人员8点班正常的巡检情况下,未 发现异常情况,电机前后端轴承运行温度正常。到晚上19点20分左右,运行人员在巡视时发现电机后端轴承有温度突然升高迹象,最后停机,量取温度达200℃,电机后端轴抱死,轴承内润滑油脂飞溅外溢。在进行抢修打开时发现轴承内保持架断裂,轴承内套与大轴轴颈相粘连。在拆解内套发现轴颈有不同程度的损伤,在轴颈中部有划痕,在通知厂部现场观察后考虑到现场的实际运行情况,决定进行现场修复,用锉刀进行粗略打磨与细砂纸精细打磨。换取同类型号轴承SKF NU1044 MA/C3。 此后端轴承在2008年#2机组大修时打开发现油隙超标,但由于未进行更换,可能是这一次的事故发生的原因。 2. 2010年2月6日在检修部巡检人员8点班正常的巡检情况下,未发 现异常情况,电机前后端轴承运行温度正常。到晚上21点10分左右,运行人员在巡视时发现电机后端轴承有温度突然升高迹象,并且有铜粉

溢出,最后停机,量取温度达145℃之高,被迫停机进行检修,在打开电机后端轴承发现轴承保持架磨损,更换相同型号怕轴承:SKF NU1044 MA/C3。这一次事故的发生有前次轴承抱死,造成大轴损伤,虽然在现场用锉刀进行粗略打磨与细砂纸精细打磨修复。但轴颈是否有弯曲没有进行会诊;所换轴承为同一类型,其运行时间不足三个月的时间,轴承质量问题有待考虑。 3. 2010年7月13日,在各项巡检正常工作下,电机前后端轴承运行 温度正常。在次日凌晨4点40分左右前端轴承运行温度突然盘升造成大轴抱死,被迫停机。考虑到可能造成大轴弯曲,进行隔半小时进行强行盘车。在打开前轴发现轴承保持架磨损。这次考虑到前二次的事故发生,决定进行外委检修,由新乡电机厂进行了检修,对电机大轴进行修正。为保障电机的安全运行,对电机前后端轴承进行重新更换。换取同一类型号轴承:电机驱动端为:SKF NU1044 MA/C3 SKF NU16044 MA/C3; 电机非驱动端为:SKF NU1044 MA/C3。这一次事故的发生有前二次的事故,可能造成电机大轴弯曲,使电机与风机机械相连不为同心运行所致,但电机轴承的质量问题是不得不考虑的。在2010年7月26日恢复安装使用。 4. 2010年11月26日凌晨5点20分左右,运行人员巡视发现电机后 端轴承有铜粉磨出,但电机运行温度在40℃左右。考虑到电机运行的安全,进行停机。在打开后端轴承时发现,电机的轴承外径与轴承室内径之间有油脂与铜粉磨出,呈比较规律性的分布特性。在现场经相关职能部门与修复厂家的会诊,厂家不为其电机才运行不足两个月的时间承认

烧电机的原因总结起来都有哪些呢

烧电机的原因总结起来都有哪些呢 电源问题or负载问题... ①电源电压过高,使铁芯发热大大增加;②电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;③修理拆除绕组时,采用热拆法不当,烧伤铁芯;④定转子铁芯相擦;⑤电动机过载或频繁起动;⑥笼型转子断条;⑦电动机缺相,两相运行;⑧重绕后定于绕组浸漆不充分;⑨环境温度高电动机表面污垢多,或通风道堵塞;⑩电动机风扇故障,通风不良;定子绕组故障(相间、匝间短路;定子绕组内部连接错误)。 2.故障排除:①降低电源电压(如调整供电变压器分接头),若是电机Y、Δ接法错误引起,则应改正接法;②提高电源电压或换粗供电导线;③检修铁芯,排除故障;④消除擦点(调整气隙或挫、车转子);⑤减载;按规定次数控制起动;⑥检查并消除转子绕组故障;⑦恢复三相运行;⑧采用二次浸漆及真空浸漆工艺;⑨清洗电动机,改善环境温度,采用降温措施;⑩检查并修复风扇,必要时更换 这个原因很多。 1.电源问题 a.三相电源不对称 b.接法错误包括三角形接成星形,星形接成三角形 c.电压过高或过低 2.负载问题 过载; 负载被卡住 3.电机问题 线圈匝间短路 线圈断开 电机内有异物 定转子相擦 4.其它问题 轴承问题 油脂不好 通风有问题 楼上的比较全面。一般在用户使用过程中烧毁的电机主要原因是:过载、单相、缺相、匝间。拆开电机后检查绕组线包,可以判断出烧毁的大致原因: 1、过载机过载烧毁时,线包一般会全部烧黑。 2、单相、缺相烧毁一相线圈或两相线圈 3、匝间在线包或是线槽上会有铜线烧熔化后烧出来的洞和铜珠 另外轴承内盖配合不好或是轴承故障抱死轴烧坏电机的情况也会有,这个可以直接看到。这个属于机械方面的故障 造成电动机过负荷的原因主要有: (1)电源电压低。当机械负载不变时,电源电压降低,就会造成电动机工作电流加大。由于

轴承故障原因分析及处理方法

轴承故障原因分析及处理方法 [摘要]: 本文介绍了轴承常见故障和处理办法,总结了避免故障发生的几种办法,保证生产的连续性。 [关键字]:轴承;故障率高;处理措施; 一、前言: 轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 二、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 三、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题

1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热

电动机轴承异响故障分析及应对措施

电动机知识 电动机轴承异响故障分析及应对措施 1.电动机轴承声音异常 一台给水泵高压(6kV)电动机YKK400-2,功率450kW,转速2975r/min.轴伸端用深沟柱NU3E222型轴承,非负荷端用深沟球6222型轴承。运行中轴伸端声音尖锐刺耳,不像是电磁噪声,也不像轴承缺油干磨的声音,噪声持续约2min,然后间歇2min.用测振仪(VA-80A)测出轴承的振动幅值为0.021mm,声响异常时,测得振动速度值为53.6m/s,有时甚至达到97m/s,远远超过标准值28 m/s,且电流波动较大。 由于轴伸端采用间隙配合,无法调整轴承的轴向定位尺寸。在检修过程中发现内油盖有不均匀的磨损痕迹,轴承有两个深沟柱损伤。测量轴承、端盖和内外挡油小盖的定位尺寸,并经过计算,轴承的允许间隙为0.7mm,当电动机的轴承温度达到100℃,轴承的膨胀值约0.9mm,不能满足电动机正常运行要求。多次更换深沟柱轴承后,电动机噪声不仅没有消失,而且异响周期变为4min. 2.故障分析与处理 根据轴承的特点分析:由于电动机原来采用NU型深沟柱轴承,允许电动机轴向窜动。轴承内圈两侧有挡边,外圈无挡边,因此允许轴相对轴承双向位移,可以承受轴热膨胀引起的伸长。同时轴承的间隙相对深沟球轴承来说偏大,但轴承的受力为线形,比深沟球轴承的点受力好。轴承运动轨迹不是一个圆形而是一个椭圆,这是由干深沟柱(或深沟球)和滚道之间存在间隙,运行时受力的不同,使得运动轨迹成椭圆形。轴承的受力主要是在下部,对于深沟柱轴承其受力点为一条直线,高速运转中,由于轴承的间隙,受力点改变,受力运动轨迹变

成抛物曲线形。 给水泵电动机运行时主要受轴向力作用,且拖动的负载平稳,深沟柱轴承允许的径向窜动必要性减弱,因此将前轴承更换为深沟球轴承,轴承的间隙仍为C3,约0.04mm,可以满足运行要求。同时考虑轴承的膨胀,在挡油环小盖处加一块厚度约0.8mm垫片,克服来自于给水泵和轴承温度升高引起的窜动。 轴承滚动体及滚道的微观表曲是粗糙不平的,运动中会发生一定的冲击,但这种冲击产生的脉冲是高频的,因而使用测振仪测量电动机运行的高频干扰的参数值比标准的大。深沟柱轴承与滚道的接触较多,产生的高频冲击就大,而深沟球轴承与滚道的接触是点,产生的高频冲击相对较小,因而本例的电动机可以使用深沟球轴承代替深沟柱轴承,解决设备出现的异响。 将深沟柱轴承更换为深沟球轴承后,轴承异响消失。运行一段时间噪声没有再出现,测电动机的振动幅值为0.013mm,加速度值为2.8m/s2,带负荷性能稳定,电流也没有较大波动。·基于UC3637的直流电动机PWM控制电路图_ ·多台电动机逐一星形三角形起动电路_电 ·变频器的暂停减速功能 ·变频器过压类故障的分析 ·变频器启动前的直流制动功能 ·变频器与电动机的距离 ·变频调速控制方式的选择 ·变频器常见故障原因及处理方法 ·变频器为什么要求可靠接地? ·变频器怎样利用多功能输出控制端? ·NDJ-79旋转粘度计仪器的工作原理

分析常见滚针轴承故障及其原因

分析常见滚针轴承故障及其原因 滚针轴承常见故障及其原因 1.故障形式: (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析: (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当: 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。

滚动轴承常见故障及其原因分析(正式版)

文件编号:TP-AR-L9607 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 滚动轴承常见故障及其 原因分析(正式版)

滚动轴承常见故障及其原因分析(正 式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清 洗并认真检查轴承的内外座圈、滚动体和保持架,是

否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,

高速电机抱轴原因分析和解决方法

高速电机抱轴原因分析和解决方法 分析高速电机抱轴的原因,提出正确的解决方法,取得良好效果。问题背景化工集团醋酸分公司隶属于中石油大庆油田有限责任公司,成立于2006年12月,现有在册职工412人,固定资产15.02亿元。主要以甲醇、一氧化碳为原料,采用低压液相羰基合成工艺,生产20万吨/年优质醋酸。共有设备608台,动设备就有220台,其中两极高速电机占75%以上,主要分布于装置的各关键工序,自2007年开工投产以来,两极高速电机故障频出。其中尤其以位于造气车间脱硫脱碳工序的贫液泵P1504电机最为典型,先后两次发生抱轴事故,严重制约和影响装置的安全稳定长周期运行。问题分析紧急停机后发现电动机盘不动车,电机轴已抱死。引起电机抱轴事故的原因很多,主要分为内部原因和外部原因。电机的内部原因有:轴承质量不好;润滑脂质量不好;润滑脂加入量不合适;检修工艺不当;电机运行时振动超标;转子上有轴电压。电机外部原因主要有:非户外型电机户外安装或用水冲洗电机;电机安装基础不牢固;电机周围环境温度过高。经解体检查发现,轴承润滑脂烧尽,轴承保持架损坏变形,滚子和滑道过热发蓝,轴承座防爆曲路与轴结合处烧结抱死。经分析问题出在以下两方面: 2.1.该电机轴承选用SKF钢制保持架,相对于黄铜保持架,其极限转速有所降低,在同等运行条件下更容易失效损坏。据轴承有关资料表明,一般情况下,在同种保持架,同种润滑条件下,随着轴承型号的增大,其极限转速相应减小。对于极限转速与电机转速接近的轴承,最好不用。2P高压电机的转速一般为2970~2990r/min,因受两极高压电机轴伸直径的限制与润滑条件,轴承只能在NU216219与6216~6219、6316~6318中选取。对于6216~6219、6316~6319球轴承,各种保持架的轴承都有较高的极限转速;而NU216、NU217柱轴承,各种保持架也都有较高的极限转速,可以任意选择;而NU218~NU219情况却不同,例如NSK轴承以黄铜保持架作为标准保持架,NU218M、NU219M分别为4000r/min与3800r/min,而钢保持架(无后缀或后缀为w)轴承,NU218、NU219分别对应为3200r/min和3040r/min;SKF较少供应黄铜保持架轴承,其钢保持架轴承因设计时适当提高了承载力,故SKF轴承与NSK同型号轴承相比,其极限转速便有所降低。因此对SKF钢保持架的NU218、

电动机常见故障分析及处理方法_万萍英

摘要:针对电机出现故障各种现象和相应对策做一分析和研究。 关键词:电动机故障维护检修 0引言 运作中的电动机要严格按照国家相关质量标准进行检查维护以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有震动、窜轴,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1电动机电气常见故障的分析和处理 1.1电动机接通电源起动,电动机不转但有嗡嗡声音可能原因: ①由于电源的接通问题,造成单相运转;②电动机的运载量超载;③被拖动机械卡住;④绕线式电动机转子回路开路成断线;⑤定子内部首端位置接错,或有断线、短路。处理方法:第一种情况需检查电源线,主要检查电动机的接线与熔断器,是否有线路损坏现象;第二种情况将电机卸载后空载或轻载起动;第三种情况估计是由于被拖动器械的故障,卸载被拖动机械,从被拖动机械上找故障;第四种情况检查电刷,滑环和起动电阻各个接触器的接合情况;第五种情况需重新判定三相的首尾端,并检查三相绕组是否有断线和短路。 1.2电动机启动后发热超过温升标准或冒烟可能原因:①电源电压达不到标准,电动机在额定负载下升温过快;②电动机运转环境的影响,如湿度高等原因;③电动机过载或单相运行;④电动机启动频繁、正反转过多。处理方法:第一种情况调整电动机电网电压,使电机尽量在额定电压下运行;第二种情况检查风扇运行情况,加强对环境的检查,保证环境的适宜;第三种情况检查电动机启动电流,发现问题及时处理;第四种情况减少电动机正反转的次数,及时更换适应正反转的电动机。 1.3绝缘电阻低可能原因:①电动机内部进水,受潮;②绕组上有杂物,粉尘影响;③电动机内部绕组老化。处理方法:第一种情况电动机内部烘干处理;第二种情况处理电动机内部杂物;第三种情况需检查并恢复引出线绝缘或更换接线盒绝缘线板;第四种情况及时检查绕组老化情况,及时更换绕组。 1.4电动机外壳带电可能原因:①电动机引出线的绝缘或接线盒绝缘线板损坏;②绕组端盖接触电动机机壳;③电动机接地问题。处理方法:第一种情况恢复电动机引出线的绝缘或更换接线盒绝缘板;第二种情况如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;第四种情况按规定重新接地。 1.5电动机运行时声音异常主要是因为:①电动机内部一相绕组突然断路,造成电机单相运行,电流不稳引起噪音;②电动机内部轴承磨损严重、间隙不合格,或轴承里面有杂物。处理措施:如果是第一种情况,则要进行全面检查;如果是第二种情况,必须将轴承内的杂物清理干净,或更换新轴承。 1.6电动机振动可能原因:①电动机安装的地面不平;②电动机内部转子不稳定;③皮带轮或联轴器不平衡;④内部转头的弯曲;⑤电动机风扇问题。处理方法:第一种需将电动机安装平稳底座,保证平衡性;第二种情况需校对转子平衡;第三种情况需进行皮带轮或联轴器校平衡;第四种情况需校直转轴,将皮带轮找正后镶套重车;第五种情况对风扇校静。 2电动机机械常见故障的分析和处理 2.1定子和转子铁芯故障检修。 相互绝缘的硅钢片叠成了定子和转子,并由此构成了电动机的磁路部分。导致定子和转子铁芯出现故障的因素有:①经长时间的使用轴承出现严重的磨损,进而使定子和转子相互摩擦,损坏铁芯表面,导致硅钢片之间发生短路,加大了电动机的铁损程度,使其温度快速上升,这时要通过细锉等工具将毛刺搓掉,消除硅钢片短接,然后将绝缘漆涂刷在表面,再加热烘干。②对旧绕组进行拆除的过程中,由于用力较大,造成倒槽出现歪斜现象并向外张开。可使用木榔头、小嘴钳等工具纠偏,使齿槽恢复原位,有的存在缝隙的硅钢片难以复位,可将硬质绝缘材料(如胶木板或青壳纸)夹在钢片之间。③由于空气潮湿或受其他因素的影响,铁芯表面如果锈蚀,则要使用砂纸打磨干净,再将绝缘漆涂刷在铁芯表面。④若是高热的绕组接地会将齿部和铁芯烧毁,则要通过刮刀、凿子之类的工具剔除熔积物,并将绝缘漆涂刷在其表面,然后烘干。⑤机座和铁芯之间连接不紧密,则必须重新固定。用于定位的螺钉若是无法二次利用,则重新定位,并将定位螺钉旋紧。 2.2电机轴承故障检修。 转轴在轴承的支撑下才能转动,是负载最重的部分,但极易磨损。 2.2.1故障检查运行中检查:若滚动轴承缺油,则可按照以往经验对注意其声音的变化,如果轴承断裂,运行时的声音肯定是异常的。轴承中若是有沙子等杂物,运行时会产生杂音。拆卸后检查:查看轴承的磨损程度,用手将轴承内圈捏紧,同时利用轴承摆平,然后用另一只手用力推外钢圈,如果一切正常,则轴承的外钢圈是平稳运转的,且运转时不会卡滞或振动;当轴承停止运行时也不会倒退,说明轴承彻底坏掉了,应该及时更换。用左手将外圈卡住,右手则捏住内钢圈,稍稍施加推力,如果轴承转动,则说明磨损程度较大。 2.2.2故障修理通过砂布处理轴承表面的锈斑,再在上面涂抹一层汽油;当轴承的磨损程度太深或轴承表面产生裂纹时,就要选用符合标准的新的轴承进行更换。 2.3转轴故障检修。 2.3.1对于弯曲程度较小的轴弯曲,可通过打磨的方式进行修整;若弯曲程度在0.2mm以上,则要利用压力机来修整,修整后将表面磨光,使其还原成原样即可;若肘弯曲程度超过了修整的范围,则要考虑及时更换。 2.3.2如果轴颈处未出现较大的磨损,则可将一层铬涂刷在轴颈处之后,再根据设计尺寸进行打磨;如果磨损过大,可先堆焊,再按照标准尺寸通过车床进行修整;如果轴颈处的磨损超出了可修整的程度,就必须予以更换。 2.3.3轴裂纹或断裂轴的横向裂纹深度不到轴直径的10%~15%,纵向裂纹不大于轴长的10%,则在堆焊之后再修整,直至满足设计要求。若裂纹或断裂超过了了修整的范围,则要及时更换。 2.4端盖、机壳的检修。 如果端盖与机壳之间的缝隙太大,则可采取先堆焊后修整的途径进行处理,如端盖与轴承之间配合不紧密,可先通过冲子进行修整,再在端盖上打入轴承,若采用的电动机是大功率的,则可利用电镀加以修整。 3故障的诊断及处理 3.1我厂生产8#泵站300S-90水泵,用Y2-355L1-4280KW电机拖动的故障。 3.1.1故障的现象 生产8#泵站300S-90水泵,原是用JO系列的电机拖动,JO系列的电机是老产品,能耗较高,最近几年随着老产品的淘汰,几乎买不到这种型号的电机,同时也为了节能降耗,改用节能型Y132M-4280KW电机拖动。在冬季还好,特别是天气稍热,电机就不断的出现故障,曾经一月电机故障三台,解体后统一现象都定子绕组整体过热,匝间短路。 3.1.2故障原因的分析 ①电源电压过高。从解体状况来看,是由于绕组过热造成的电机故障;由于生产8#泵站供电电源来源于垣曲县828#线路,并且828#线路供电电压略高于国家标准电压,二次线电压经常在410V以上;电压过高导致电动机的定子磁通接近饱和状态,出现电流急剧增大,电机效率下降而发热严重。导致定子绕组过热而超过允许范围国家标准规定。电动机只有在电源电压波动范围正负5%之内,才能 电动机常见故障分析及处理方法 万萍英(中条山北方铜业股份有限公司热电厂) 科学实践 297

相关文档
最新文档