数论与解析数论简史

数论与解析数论简史
数论与解析数论简史

数论与解析数论简史

王志伟200800090156 数学与应用数学

数学王子Gauss曾经说过:数学是科学的女王,而数论是数学的女王。Gauss在数学、物理、天文各方面都取得了非凡的成就,但他却始终对数论情有独钟。数论,以其纯粹的数学本质,常常被认为是最美的数学,数学的中心。

与其他数学分支,比如几何、分析不同,数论并非是源于实际需要而创立的一门学科,其起源很有可能是出自数字游戏和Pythagoras学派以数字为图腾的宗教文化。数论曾经被认为是数学家的游戏、最纯的数学学科、唯一不会有什么应用价值的分支。但是现在随着网络加密技术的发展,数论也找到了自己用武之地——密码学。前几年破解MD5码的王小云老师就是山大数论学派出身。而在其他理论中,数论也表现出了一些意想不到的价值。在量子理论中,Hermite算子是最基本的概念之一,它的思想起源就是19世纪Hermite为解决数论问题而创立的Hermite型。我们在代数中常见的理想、环等概念最开始是出自Dedekind的数论著作中。最近的一个例子,Grothendieck为解决Weil猜想而对代数几何进行了革命性的改造。此类例子还有很多,在此不一一列举。

在古代对数论贡献最大的当属古希腊人。最著名的一些成果大概就是Euclid在《几何原本》中提到的Euclid算法、素数无限多个,算数基本定理等内容,这些我们在初等数论中都可以见到。另一个对数论有重大贡献的古希腊人当属Diophantus,他探讨了很多不定方程,为纪念,我们现在就称这些方程为Diophantus方程,著名的费马大定理就是一个Diophantus 方程问题。当然,中国古代在数论方面也作出了一定的贡献:众所周知、大名鼎鼎的中国剩余定理,被数学界唯一承认的中国的定理。

在经过漫长的中世纪之后,数论进入了一个辉煌的发展时期。推动数论发展的第一个重要人物首推Fermat,一个在数论界享有崇高地位的法国律师、业余数学家。Wiles在1994年证明的Fermat's last theorem,即我们所说的费马大定理,就是Fermat所提出的一个猜想。另外,Fermat小定理,关于多角形数的猜想,Fermat数,Mersenne素数性质,Pell方程都有他的贡献,我们证明中常用的无穷递降法,就是费马在证明费马大定理在n=3时最先发明使用的,除了数论,他在其他方面也有一些突出贡献,比如解析几何、微积分。Fermat之后,另一个重要的人物是Euler,他对Fermat的一个猜想:Fermat数都是素数给出了反例,引进了在数论中一个非常重要的数论函数,即Euler函数,并发现了一个数论中非常重要的Euler 公式。另外,笔者在跟同学在参加大学生科技创新项目中研究整数分拆这个课题时,阅读了Geogre Andrew的《The theory of partitions》,有幸了解到Euler在数论中的整数分拆方面也做出了很大的贡献,提出了母函数法,利用幂级数来研究整数分拆,这导致圆法和指数和方法的产生。

。在Euler之后,两个法国人Lagrange、Legendre也在数论方面做出了重要贡献,比如我们熟悉的二次互反律,Euler和Legendre都曾提出猜想,而公式中的符号我们即称作Legendre符号。他们的贡献就不在此细述。而在数论史上做出贡献最大的,我想大多人会同意是Gauss,一个伟大的数

学天才。

卡尔·弗里德里希·高斯,C.F.Gauss,德国人,历史上最伟大的数学家之一,可能没有之一。他的巨著《Disquisitiones Arithemeticae》具有划时代的意义。在书中,Gauss最先引进了同余的概念和符号,并提出了同余的一些基本性质。在书中的第二章,Gauss给出了算术基本定理的证明、同余方程的解法,Bezout等式、关于高次同余方程根数的Lagrange定理,并研究了Euler函数的一些性质。在第三章中,Gauss开始研究幂剩余。在本章中,Gauss第一次给出原根的存在性证明,并导出了指标及其概念。利用原根以及指标,他研究了高次二项同余方程,并用三种方法证明了Wilson 定理。在第四章中,Gauss对二次互反律做了详细的研究。上面说到Euler、Legendre都认识到了二次互反律,但是都未给出证明。而Gauss在学生时期就证明了这个结论,并在以后的辉煌数学生涯中给出了八种不同的证明。第五章约占全书篇幅的5/7,讲述的主要内容为型理论。在本章中,Gauss 定义了一个二元二次型的判别式、蕴含、包含于、等价变换等,并发现这些变换的联系和Pell方程有关。后面,他对型做了其他分类,将不同等价类按特征合并成种,研究了型、类、种、序的合成运算。接着,Gauss研究了三元二次型,由此证明了每个数都可以写成三个三角数或者四个平方数之和,并指出了一个Legendre关于二次互反律的一个不完全证明。最后,他用类数和种数的公式,定义了正规判别式和非正规判别式,提出了至今未完全解决的Gauss猜想。Gauss在指出Legendre那个二次互反律的不完全证明中,假定了一个比较明显但很难证明的定理—Dirichlet定理成立。这个假定以及类数、种数公式,是Dirichlet创立解析数论的直接动力。而解析数论的另一个创立人Riemann也是为了证明Gauss用统计方法猜测素数定理而把复变函数论应用到素数问题的。第六章,Gauss主要是引进了排除法,给出了两个合数素分解的方法,以及把循环小数化为分数。而在最后一章第七章中,Gauss主要研究了分圆理论。这一章好像只是一个独立的数学问题,但他的解决却需要许多其他领域的知识。首先是要承认复数及其重要的代数闭域性质,这是Gauss博士论文的结果“代数基本定理”,其结果是著名的,比如正十七边形可以尺规作图。他对分圆方程的研究启迪了Abel和Galois,后者将代数学的重点从解方程转移到我们现在的研究对象—群。Gauss在研究三次同余的时候,发明了“Gauss和”这个现在在代数数论中常用的工具。

解析数论是数论中以分析方法作为研究工具的一个分支。它起源于素数分布、哥德巴赫猜想、华林问题以及格点问题的研究。解析数论的方法主要有复变积分法、圆法、筛法、指数和方法、特征和方法、密率等。模形式论与解析数论有密切关系。

分析方法在数论中的应用可以追溯到18世纪的Euler时代,欧拉恒等式是算术基本定理的解析等价形式,它揭示了素数和自然数之间的积性关系。

随后,Dirichlet用分析方法于1837年解决了首项与公差互素的算术级数中有无限多个素数的问题,又于1839年推证出二次域的类数公式。并创立了研究数论的两个重要工具,即Dirichlet(剩余)特征标与Dirichlet L函数,从而奠定了解析数论的基础。

我们令π(x)表示不超过.x的素数的个数,关于π(x)的研究一直是素数论甚至整个数论界的中心问题,高斯曾猜想π(x)~x/lnx,即素数定理。Riemann 被认为是现代意义下解析数论的奠基人。1859年, Riemann发表了一篇关于π(x)的著名论文《论不大于一个给定值的素数个数》,这是他在数论方面公开发表的惟一的文章。在文章中,Riemann并没有证明素数定理,甚至根本没有提,他把Euler恒等式的右边的级数记作ζ(s),他的目标是具体求出π(x),更确切的说是求出与π(x)密切相关的函数ζ(s)的无穷级数的明显表示。Riemann指出,要解决这个问题,首先要把s看作复变数,研究作为复变量s=σ+it的ζ(s)函数,特别是它的零点分布。现在称ζ(s)为Riemann-ζ函数。Riemann对复变函数ζ(s)做了深刻的研究,得到许多重要结果,特别是他建立了一个与数ζ(s)的零点有关的表示π(x)的公式。因此研究素数分布的关键在于研究复变函数ζ(s)的性质,特别是数ζ(s)

的零点性质。这一杰出的工作,是复变函数论的思想和方法应用于数论研究的结果。黎曼开创了解析数论的新时期,也推动了单复变函数论的发展。在文章中他还提出了一个猜想:ζ(s)的所有复零点都在直线Res=1/2上。这就是大名鼎鼎的Riemann conjecture,即黎曼猜想。它是公认的尚未解决的最著名、最难的的数学问题之一。它的研究对解析数论和代数数论的发展都有极其深刻的影响。通过Riemann的工作及他的猜想,使得ζ(s)在解析数论中处于中心地位。联系数论和复变函数论的桥梁是所谓的佩隆公式(Peron). 很多数论问题可以归结为某类求和函数的估计问题,而利用佩隆公式,就可以将求和函数的估计转变为都某类复变函数的零点、极点的分布情况的估计。大多数数论问题最终都能归结为L函数的性质讨论。

1896年,Hadamard和Poussin严格地按照黎曼提出的方法和结果,用整函数理论,同时证明了素数定理,从此解析数论开始得到迅速发展。

总之,数论吸引了许多历史上最杰出的数学家,Euclid,Diophantus,Fermat,Legendre,Euler,Gauss,Dedekind,Jacobi,Eisenstein 和Hilbert 等前人都对其发展做出了了巨大贡献。而二十世纪比较有名的数论学家有Artin,Hardy, Ramanujan,Andre Weil,Jean-Pierre Serre和Andrew Wiles 等。他们都对数论做出了巨大的贡献。

不可否认,他们都在数论界有着举足轻重的地位。但是,中国人同样在数论方面做出了不可磨灭的贡献。Goldbach Conjecture,即哥德巴赫猜想,这个被称为是数学皇冠上的明珠的猜想,是由德国数学家Goldbach于1742年6月7日在给Euler的信中提出的,猜想为:1,任一不小于6之偶数,都可以表示成两个奇质数之和;2,任一不小于9之奇数,都可以表示成三个奇质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。

18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破,但是仍旧与哥德巴赫猜想的要求仍相距甚远。直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超

过b个的数之和"记作"a+b",那么就是要证明"1+1"成立。

1952年在中国科学院数学研究所,聚集了国内一批中青年数学人才,成立了数论研究组,由华罗康亲自担任组长,组织并领导了“哥德巴赫猜想讨论班”。他选择哥德巴赫猜想作为学习与研究对象的指导思想,考虑到哥德巴赫猜想与解析数论最重要的理论与方法都有密切关系,特别是园法、三角和估计、密率论筛法、L——函数与素数分布等,通过讨论班的学习,可以使参加者相当全面地掌握解析数论的诸重要方面,达到即出成果又出人才的良好效果。

后来实践证明,“哥德巴赫猜想讨论班”是非常成功的,以“哥德巴赫猜想讨论班”为核心,组成了中国数学的一个特殊学派,一个数学王国的优秀群体。

领导这个群体的是大家熟悉的华罗庚和闵嗣鹤教授。华罗庚教授,这位名扬中外的大数学家,研究范围十分广泛,是中国解析数论、典型群矩阵、几何学、自守函数论、多复变函数论等多方面研究的创始人与开拓者,一生写了200多篇学术论文,10部专著。闵嗣鹤教授,对数学的许多分支都有研究,工作涉及数论,几何、调和分析、微分方程、复变函数论,多重积分的近似计算及广义解析函数等多方面,但他的主要贡献是在解析数论。在解析数论及黎曼猜想的证明中,发表了许多具有独到见解的文章和论述。

就是在有二位学识渊博,研究广泛的导师带领下,展现了新中国解析数论领域的雄厚实力。在该领域的研究中屡居世界领先地位。两位教授的功绩不单单在于他们的学识和研究领域的广泛,更可贵的是培养了大批解析数论的人才,为国际解析数论做出贡献的、顶尖的数学家。越民义、丁夏畦、吴方、尹文霖、邵品棕、任建华、潘承彪、谢盛刚、楼世拓、姚琦、于秀沅、陆洪文、陆鸣皋、冯克勤、于坤瑞等,都对我国解析数论做出了贡献,都是这优秀群体的一员。而王元、陈景润、潘承洞是其中的代表。

王元教授早在1956年就证明了“哥德巴赫猜想”的命题“3+4”,仅仅过了一年,1957年证明了命题“2+3”,“2+3”是从命题“a+b”开始证明哥德巴赫猜想的最好结果,处于世界领先地位。1962年王元教授指出了证明“1+4”的关键,并于同年与潘承洞教授证明了命题“1+4”。

陈景润教授于1966年发表的“大偶数表为一个素数及一个不超过二个素数的乘积之和”的证明,即证明了“1+2”,现在仍是该领域最好结果。虽然离哥德巴赫猜想仅有一步之遥,但没有人知道这一步到底有多大,到底需要多长时间跨过这一步。

潘承洞教授在我国解析数论中,同样做出了杰出贡献。早在1962年,就首先证明了命题“1+5”成立。“1+5”是潘承洞教授首次对1948年匈牙利数学家兰恩易所得命题“1+c”中c的定性结果到定量结果,把一个无穷大的c变为有限大的5。从无限到有限,从定性到定量,可以说是一个质的飞跃。同年,潘承洞教授就与王元教授合作证明了“1+4”。这些结果在当时都处于世界领先地位。

无论将来“哥德巴赫猜想”用什么方法被证明,为我国解析数论做出杰出贡献的优秀的数学家,所组成的我国数学史上的特殊学派,创造了中国数论在世界数学领域的辉煌,在数论史上写下了浓墨重彩的一笔。他们的功绩不可磨灭,他们勇于攀登的精神、高深的学识和谦虚的品德,永远值得

我们学习。作为后人,我们更要以他们为榜样,发扬勇于钻研,不怕吃苦,面对难题不退缩的精神,为山大数论、中国数论,做出自己的贡献,让中国的数论、数学在世界崛起。

初等数论结课论文

初等数论结课论文 一.课程感悟 初等数论是研究数的规律,特别是整数性质的数学分支,它是数论的一个最古老的分支。它以算术方法为主要研究方法,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。 换言之,初等数论就是用初等、朴素的方法去研究数论。 这学期我在初等数论的学习中,从学习方法和解题思路上明显感觉出有别于之前学的的数学分析和高等代数等数学课程,那种学习中学数学的熟悉感觉又回来了。可能在难度上这门课程并不逊色于其他,但是对于我却更容易接受这门课程的内容。 二.连分数的学习 1.连分数的定义 若 为整数 , ,… 皆为正整数,则 叫简单连分数。 2.要把一个分数写成连分数,只要不断的把分子分母同除以分子,将分子化为1,。如: 121211121251211213725219937+++=++=+==[0;2,1,2,12] 当然,连分数也可写成分数,如 30433013113421 14 131211=+=++=+++ 3.早在公元前三世纪,欧几里德就发现了一个较优的求连分数算法——辗转相除法,实际上就是中学求最大公约数的辗转相除法。 例如:用辗转相除法求942和1350的最大公约数。 012341111a a a a a +++++ 0a 1a 2a

13504081942942 9421262408408 408303126126 126643030 30506=+=+=+=+=+ 135011194221 31 450=++ +++代入得: 4.连分数的应用。 例如:求斐波那契数列前项与后项之比的极限(黄金比) 512211125125151115121211 1115112 -====++--++-+= ++-+()

数学与应用数学毕业论文(剁树枝问题,组合数学、初等数论方向)

摘要 有一根正整数单位长树枝,要剁成一定长的短树枝,在剁的过程中可以重叠,问如何剁次数最少?这样的问题被称为剁树枝问题。剁树枝问题是许多实际问题的一个模型,有着广泛的应用。本课题的任务是提供一般的方法使剁的次数最少。采用例举、分析、归纳、证明的流程,给出了剁树枝问题最少次数的递推关系和具体表达式,并对其进行了证明。 关键词初等数论;组合数学;递归;数学归纳法 Abstract Suppose there is a positive integer units long branches, to chop them into a certain length of short branches. During the cutting process overlap is allowed, then how many times is needed at least? This problem is known as cutting the tree problem. The cutting branches-problem is a model for many practical problems, with a wide range of applications. Based on the idea of dynamic programming, the recursion formula of the least number of movements necessary for this problem is presented. The direct formula of the least number of movements necessary for this problem is given and proved by triple mathematical induction and pure combinatorics. Key words number theory;combinatorial mathematics;recursive; mathematical

HPM的初等数论绪论课教学设计论文

HPM的初等数论绪论课教学设计论文HPM的初等数论绪论课教学设计论文 关键词:HPM;数学史;初等数论;数学教学 一、引言 初等数论以整除为基础,研究整数性质和方程(组)整数解,是近代数学中最典型、最基本的概念、思想、方法和技巧。初等数论课程是我校小学教育(理科方向)和数学教育专业的专业必修课,学生通过本课程中基础知识的学习,掌握初等数论的基础内容,即算术基本理论和最大公约数理论;掌握初等数论的核心,即同余理论的基本知识;并能运用整除理论和同余理论来求解几类最基本的不定方程;掌握连分数等有关概念和性质及其应用;通过观察、实验、猜测、分析、计算、推理等学习活动,发展学生的演绎推理能力,体会数学的基本思想和思维方式;了解初等数论的价值,为学生以后继续学习数论或从事教学工作打下基础。然而,初等数论教材重在阐述数论理论知识的结果,忽视介绍知识的背景、发生与形成过程,某种意义上影响了该课程的教学质量。针对初等数论课程的性质,在绪论课中结合数学史知识,在HPM的视角下进行绪论课的教学设计,HPM视角下的绪论课教学的目的在于将初等数学与数学史等其他知识衔接起来,尽量消除数学教学的枯燥性,提高学生学习的积极性,让学生体验初等数论的价值,进而增强学生的使命感和目标感,吸引更多的学生热爱数学,变被动学习为主动学习。HPM指的是数学史与数学教育的关系,其研究的最终目标是提高数学教育水平,具体方法是通过在数学教学中恰当地运用数学史。 二、初等数论的主要内容 1、整除理论:整除理论是数论中最重要的基本内容。本章首先简要介绍自然数与数学归纳法,然后引进整除的概念,利用带余除

法和辗转相除法这两个工具,建立最大公约数与最小公倍数的理论,进一步研究素数的基本性质和极具重要性的算术基本定理。这一理 论的主要成果有:算术基本定理、数的十进制、高斯函数、费马数、梅森数、完全数等。2、同余理论:同余是初等数论的又一基本概念。同余概念的引入,使许多数论问题的讨论得到简化,极大地丰 富了数论内容,因而同余在数论中占有极为重要的地位、涉及内容 有同余及其基本性质,剩余类与剩余系,欧拉定理和费马定理及其 在循环小数和公开密钥问题上的应用。3、不定方程:不定方程是 数论中的一个古老分支,它有悠久的历史与丰富的内容、古希腊数 学家丢番图于3世纪初就研究过这样的方程,所以不定方程又称丢 番图方程、但实际上,我国对不定方程的研究从勾股方程的商高定 理和费马大定理等低次代数曲线对应的不定方程已经延续了数千年。4、连分数理论:引入了连分数概念和算法等等。特别是研究了整 数平方根的连分数展开。主要成果:循环连分数展开、最佳逼近问 题等。 三、初等数论的发展简史 对数的崇拜和好奇是促使人们去研究数的原始推动力,这样一门以整数的结构和性质为研究对象的学科也就诞生了,这就是数论。 目前大多数人大致赞同数论的研究在内容上是从数的可约性开始的。若“可约”,则它是一个整除性问题;若“不可约”,则为余数问题。因此,整除理论被称为是数论中最古老的内容。早在两千多年 前的古希腊欧几里德的《几何原本》中论述了数论的知识,例如欧 几里得证明了质数个数是无限的,提出了求最大公约数的方法(即 所谓欧几里得算法)。我国古代在数论方面取得过辉煌的成就,现 在一般数论书中被称为“中国剩余定理”的孙子定理就起源于我国 古代《孙子算经》(约公元400年)中的下卷第26题。初等数 论从早期发展起来后的近两千年时间里,发展几乎停滞不前,直到 15世纪,费马、欧拉、拉格朗日、勒让德和高斯等作了初等数论 的研究工作,特别是德国数学家高斯在前人研究的基础上,发表了 著作《算术探究》,在研究整数性质过程中引进并推广了统一的符号,提出了同余理论,发现了二次互反律,开始了现代数论的新纪元。自二十世纪以来,由于现代信息技术的发展以及抽象数学和高

“4-6 初等数论初步”简介

“4-6 初等数论初步”简介 北京师范大学胡永建 初等数论是研究整数的性质和不定方程(组)的整数解的一门学问,它与几何学是最古老的两个数学分支。初等数论中至今仍有许多没有解决的问题,如哥德巴赫(Goldbach)问题,孪生素数猜想,奇完全数的存在性问题等,它们对人类智慧产生了极大挑战。人们在解决一些初等数论问题的过程中所作的贡献,对数论乃至整个数学的发展起了重要的推动作用,产生了一些直接与数学有关的新的重要数学分支。初等数论在计算机科学和信息工程中有许多重大的实际应用。在本专题中,同学们将通过具体的问题,学习初等数论的一些基本知识,如有关整数和整除的知识,用辗转相除法求解一次同余方程(组)和简单的一次不定方程等,初等数论中蕴含的一些思想方法,以及我国古代数学在初等数论的研究方面取得的一些重要成就。 一、内容与课程学习目标 本专题的学习初等数论的一些基本知识,具体包括:整数的整除、同余与同余方程、一次不定方程和数论在密码中的应用四部分内容。通过本专题的学习,要引导学生:1.通过实例,认识带余除法,理解同余和剩余类的概念及意义,探索剩余类的运算性质(加法和乘法),并且理解它的实际意义。体会剩余类运算与传统数的运算的异同(会出现零因子)。 2.理解整除、因数和素数的概念,了解确定素数的方法,如埃拉托斯特尼(Eratoshenes)筛法,知道素数有无穷多个。 3.了解十进制表示的整数的整除判别法,探索整数能被3,9,11,7等整除的判别法。会检查整数加法、乘法运算错误的一种方法,如弃九验算法。 4.通过实例,探索利用辗转相除法求两个整数的最大公约数的方法,理解互素的概念,并能用辗转相除法证明:若a能整除bc,且a,b互素,则a能整除c。探索公因数和公倍数的性质。了解算术基本定理。 5.通过实例,理解一次不定方程的模型,利用辗转相除法求解简单的一次不定方程。并尝试写出算法的程序框图,在条件允许的情况下上机实现。 6.通过实例(如物不知其数问题),理解一次同余方程组的模型。 7.理解大衍求一术和孙子定理的证明。 8.理解费马小定理(当m是素数时,a m-1≡1(mod m))和欧拉定理(aφ(m)≡1(mod m),其中φ(m)是1,2,…,m-1中与m互素的数的个数)及其证明。 9.了解数论在密码中的应用——公开密钥。 二、内容安排 本专题共安排了四讲,其中最后一讲“数论在密码中的应用”可根据教学时间的实际情况机动安排,可由教师讲授,也可作为学生课后的阅读材料。本专题教学时间约需18课时,具体分配如下(仅供参考): 第一讲整数的整除约5课时 一、整除的概念和性质约2课时 二、最大公因数与最小公倍数约2课时

初等数论练习册汇总

作业次数:学号姓名作业成绩 第0章序言及预备知识 第一节序言(1) 1、数论人物、资料查询:(每人物写600字左右的简介) (1)华罗庚 2、理论计算与证明: (1 是无理数。 (2)Show that there are infinitely many Ulam numbers 3、用Mathematica 数学软件实现 A Ulam number is a member of an which was devised by and published in in 1964. The standard Ulam sequence (the (1, 2-Ulam sequence starts with U 1=1 and U 2=2 being the first two Ulam numbers. Then for n > 2, U n is defined to be the smallest that is the sum of two distinct earlier terms in exactly one way 。 By the definition, 3=1+2 is an Ulam number; and 4=1+3 is an Ulam number (The sum 4=2+2 doesn't count because the previous terms must be distinct. The integer 5 is not an Ulam number because 5=1+4=2+3. The first few terms are 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77,

初等数论在数学中的应用

给学弟学妹的建议 我是大四的学生,大学生活即将结束,在快要离别之际,我想给亲爱的学弟学妹们一点建议。 在学习方面的建议。 1,阅读几位与自己人生发展目标相近的名人传记 2,听几场优秀大学生报告会 3,每学期制定一个详细的学习计划,让自己每天进步一点点 4,放弃考前通宵达旦的突击来蒙混过关,平时学习才最重要 5,兴趣是最好的老师,认真辅修或选修专业课以外的课程,也许你会发现这些知识比主修课更实用 6,去去英语角,不会说总会听吧,这是提高你口语的有效途径 7,千万别挂科,更不要考试作弊,一旦捉住你将终生遗憾 8,学习,永远别忘记学习。不管别人怎么说大学是个提高综合能力的地方云云,如果你学习失败了,你就什么也不是了——不排除意外,但你会是那个意外吗? 9,毕业设计和毕业论文可能是你求学生涯的最后一次作业,务必认真完成10,要不停地向校友和学长取经:请教为人处事之道和学习生活的经验之谈 11,电脑不是整天用来上网娱乐的,认真学学WORD、EXEEL、PHOTOSHOP、POWERPOINT等实用工程 12,证书不是万能的,但TOEFL、GRE、G—、MAT、LELTS证书和计算机等级证书将会成为你选择的加速器 13,永远别把英语忘掉,英语四六级越往后越难考,否则你将会承受越来越多的压力 14,立身以立学为先,立学以读书为本。书是个人终极意义的归宿,多去看看书,别让图书馆成为你眼前的摆设 15,一分耕耘,一分收获,永远别忽视学习,在别人放弃的时候再坚持30min.你或许会得到精神和物质上的双重收获 16,再熟悉一下Albert Einstein的成功秘诀:成功=艰苦劳动+正确方法+少

数学归纳法以及其在初等数论中的应用

LUOYANG NORMAL UNIVERSITY 2013届本科毕业论文 数学归纳法及其在初等数论中的应用 院(系)名称数学科学学院 专业名称数学与应用数学 学生姓名孙xx 学号110412016 指导教师xx 讲师 完成时间2013.5

数学归纳法及其在初等数论的应用 孙xx 数学科学学院 数学与应用数学 学号:110412016 指导教师:xx 摘 要:数学归纳法是一种非常重要的数学证明方法,典型的用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他形式在一个无穷数列是成立的.本文通过直接证法引入数学归纳法,并介绍了数学归纳法的两个基本步骤及原理.初等数论研究的是关于整数的问题,故应用数学归纳法证明初等数论中的有关的命题是重要的途径. 关键词:数学归纳法;初等数论;不定方程;整除;同余 1 引论 1.1 直接证法 众所周知,数学上的许多命题都与自然数有关.这里所指的n ,往往是指任意的一个自然数.因此,这样的一个命题实际上也就是一个整列命题.要证明这样一整列命题成立,当然可以有多种不同的方法. 其中常用的方法是置n 的任何具体值而不顾,而把它看成是一个任意的自然数,也就是说,假定它只是任何自然数都具备的共同性质,并且在这样的基础上进行推导、运算.如果我们在推导运算中没有遇到什么难以克服的困难,那么我们就有可能用这种方法来完成命题的证明了.这种方法就是习惯上所说的直接证法.如下例: 例1 已知)(2;,,2,1≥???=∈n n i R x i ,满足 121=+++n x x x ,021=+++n x x x . 证明

初等数论论文

初等数论数学思想对高中数学竞赛的指导 学号: 班级: 姓名: 摘要:初等数论是研究数的规律,及整数性质的数学分支,它是数论的一个最古老的分支。 在高中数学中引入初等数论,有利于拓展学生的数学视野,有利于提高学生对数学的科学价值,应用价值,文化价值的认识。初等数论中的数学思想对高中数学竞赛也具有很强的指导作用。 关键词:初等数论 数学竞赛 数学思想 应用 数论,这门古老而又常新的学科既是典型的纯粹数学,又是日益得到广泛应用的新“应用数学”. 在数论中,初等数论是以整除理论为基础,研究整数性质和方程(组)整数解的一门数学学科,是一门古老的数学分支.它展示着近代数学中最典型、最基本的概念、思想、方法和技巧.目前,初等数论在计算机科学、代数编码、密码学、组合数学、计算方法等领域内得到了广泛的应用,成为计算机科学等相关专业不可缺少的数学基础. 数论的魅力在于它可以适合小孩到老人,只要有算术基础的人均可以研究数论.初等数论貌似简单,但真正掌握并非易事,它的内容严谨简洁,方法奇巧多变,其中蕴含了丰富的数学思想方法 1 转化思想方法 转化是一种常用的数学思想方法.转化是指问题之间的相互转化,或者将问题的一种形式转化为另一种形式,或者把复杂问题转化成较简单问题、将陌生问题转化为已解决或熟悉的问题[1].通过恰当的化归转化不仅能够顺利地解决原问题,而且有助于培养学生科学的思维习惯. 整除是数论中的基本概念,此问题是数论中比较简单的一种类型.有时我们需要判断几个分式的和是一个整数,这样直接求其是整数比较困难,因而常常化为整除问题解决. 例2(第35届美国中学数学竞赛题)满足联立方程 ?? ?=+=+23 44 bc ac bc ab 的正整数()c b a ,,的组数是() ()A 0 ()B 1 ()C 2 ()D 3 ()E 4 解(质因数分解法)由方程23=+bc ac 得 ()23123?==+c b a . a , b , c 为整数,1=c 且23=+b a .将c 和b a -=23代入方程44=+bc ab

初等数论

问题一:数学教育专业分为专业基础课:高等代数,数学分析,空间解析几何以及专业课:实变函数论,点集拓扑,复变函数论,微分几何,概率与数理统计,数学建模,初等数论,数学教学论。数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 一、李永乐:李永乐老师毕业于北京大学数学系,后来在清华大学数学系任教, 他还是前二李全书的代数执笔者,李永乐全书和660题的主编,可以说是考研数学界的权威代表。他的研究方向是线性代数。 二、汤家凤:汤老师是南京大学数学系博士,南京工业大学副教授。他的研究方 向为高等代数。 三、李林:李林老师毕业于北师大数学系,大连理工大学数学科学学院数学研究 所教师,职称为讲师,研究方向为常微分方程。 四、武忠祥:西安交通大学数学系教授,从事高等数学教学和考研辅导23年, 国家高等数学试题库骨干专家。 五、王式安:王式安本人毕业于复旦大学数学系,后来任教于北京理工大学。王 式安老师是前考研命题组的老师,主要是讲概率。 六、方复全:首都师范大学特聘教授,教育部长江学者特聘教授。主要研究方向 为微分几何、微分拓扑学。 七、曹一鸣:北京师范大学数学学科学院教授,博士生导师,贵州师范大学特聘 教授。主要从事数学课程与教学、数学史与数学教育研究。 八、戎小春:首都师范大学数学系硕士毕业,后留校任教。现为美国Rutgers大 学教授。他的研究方向主要为微分几何理论。 九、王贵君:天津师范大学数学学院教授。研究方向:模糊测度与积分,模糊神 经网络,模糊系统逼近。 十、汪晓勤:中国科学院科学技术史博士专业,获哲学博士学位。现任华东师范 大学数学系教授,学科教育(数学)专业博士生导师。研究方向为数学史与数学教育。 问题二:数论的发展史及现状 数论早期称为算术。到20世纪初,才开始使用数论的名称,而算术一词则表示“基本运算”,不过在20世纪的后半,有部份数学家仍会用“算术”一词来表示数论。1952年时数学家Harold Davenport仍用“高等算术”一词来表示数论,戈弗雷·哈罗德·哈代和爱德华·梅特兰·赖特在1938年写《数论介绍》简介时曾提到“我们曾考虑过将书名改为《算术介绍》,某方面而言是更合适的书名,但也容易让读者误会其中的内容”。古希腊数学家——欧几里得 公元前300年,古希腊数学家欧几里德证明了有无穷多个素数,公元前250年古希腊数学家埃拉托塞尼发明了一种寻找素数的埃拉托斯特尼筛法。寻找一个表示所有素数的素数通项公式,或者叫素数普遍公式,是古典数论最主要的问题之一。数论从早期到中期跨越了1000—2000年,在接近2000年时间,数论几乎是空白。中期主要指15-16世纪到19世纪,是由费马,梅森、欧拉、高斯、勒让德、黎曼、希尔伯特、Heegner等人发展的。

初等数论 论文

突出师范特色改革初等数论教学 [摘要]本文介绍了初等数论课程教学中,不断进行教学内容和教学方法的改革,加强对高师生师德、授课能力、创新精神和实践能力培养的一些做法和体会。 [关键词]初等数论教学创新精神和实践能力高师生授课能力作为培养未来中小学教师的高等师范院校,在课堂教学中突出师范特色,加强对高师生进行师德教育,培养学生的授课能力,加强学生创新精神和实践能力的培养显得尤为重要。 一、改革初等数论教学内容,加强高师生的教师素养培养 1.结合初等数论教学,对高师生进行师德教育我国数学家对数论这门学科的发展有过重大的贡献,结合初等数论课程的有关内容,介绍我国数学家在数论领域的伟大成就,能增强民族自豪感,激发学生的爱国主义思想感情。同时,结合初等数论的教学对学生进行辩证唯物主义教育、科学求实精神的教育。如在讲不定方程这一节时,介绍世界上最早提出不定方程的是我国的《九章算术》,比欧洲早200多年。在讲同余方程这一节时,介绍世界上最早提出同余方程组的是我国的《孙子算经》中的孙子定理(即中国剩余定理)。在讲数论与中学教学的联系时,介绍我国中学生在国际数学奥林匹克竞赛(IMO)上屡获佳绩,多次获得团体总分第一名的优异成绩。还介绍华罗庚在数论中的伟大成就,如“华氏定理”、“华氏不等式”。在介绍华罗庚、闵嗣鹤等数论学者甘为人梯,举办数论讨论班,指导年轻数学家(如王元、陈景润、潘承洞等)摘取“数学王冠上的宝石”的高贵品质,对学生进行师德教育。在讲到高次不定方程时,介绍费马大定理,1637年前后由法国数学家费马提出,一代又一代数学家历经350多年的不懈努力,到1993年由英国数学家怀尔斯最后证明,来激发学生勇于探索,科学求实的学习风气。 2.结合中学数学教学,改革初等数论的教学内客。作为一个高等师范院校,数学与应用数学专业的培养目标是德、智、体、美等全面发展的合格中学数学师资及其他数学专门人才,我们数学系的大多数毕业生要从事中学数学教学,因此,我们的教学要注重与中学数学教学结合起来。如整除、素数和合数、约数和倍数、奇数和偶数、平方数、同余、不定方程、[x]、数的非十进制、欧拉函数等内容与中学联系比较紧密,而且是中学数学奥林匹克竞赛的常客。据统计,被誉为“世界青年智能大赛”的国际数学奥林匹克竞赛(IMO)的试题中主要用于数论知识来解的约占30%,因此也有人把数论称为是锻炼人思维的体操。对这些知识我们要重点进行讲解,并补充一些中学数学竞赛的题目给他们分析讲解,提高学生的解题能力。同时我们开设了选修课《竞赛数学》,为提高学生以后从事辅导中学生数学奥林匹克创造了一定条件。原根与指标也是初等数论中的重要内容,但与中学内容联系比较少,我们采取简单介绍的方法进行讲解。 二、改革初等数论教学方法,加强学生创新精神和实践能力培养 1.加强实践环节,提高数学系高师生的授课能力。初等数论课中的部分内容,如整除、素数与合数、奇数与偶数、同余等概念,在其他课程中已有涉及,只是没有初等数论中讲得详细、系统,因而学生已有了一定的了解。对于这部分内容我们采取让学生讲、分组讨论,由学生对这节课教学内容、教学方法进行评论,提出自己的建议,并对如何上这节课进行阐述,最后由老师进行总结、点

初等数论论文

初等数论论文素数及其应用

摘要:质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其 他自然数整除的数。因为合数是由若干个质数相乘而得来的,所以,没有质数就没有合数,由此可见素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。算术基本定理每一个比1大的数(即每个比1大的正整数)要么本身是一个素数,要么可以写成一系列素数的乘积,如果不考虑这些素数的在乘积中的顺序,那么写出来的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。 关键词:素数,无穷性,著名问题,应用 素数的概念概念 只有1和它本身两个正因数的自然数,叫素数(Prime Number),又称质素。(如:由 2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。) 100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。 注:(1)2和3是所有素数中唯一两个连着的数。 (2)2是唯一一个为偶数(双数)的质数。 (3)质数的平方数只有三个因数. 素数无穷性的证明 素数的个数是无穷的。 最经典的证明由欧几里得证得,在他的《几何原本》中就有记载。它使用了证明常用的方法:反证法。具体的证明如下: 假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。 如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。 如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。 因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。对任何有限个素数的集合来说,用上述的方法永远可以得到有一个素数不在假设的素数集合中的结论。 所以原先的假设不成立。也就是说,素数有无穷多个。

[VIP专享]“初等数论初步”简介

“初等数论初步”简介  初等数论是研究整数的性质和不定方程(组)的整数解的一门学问,它与几何学是最 古老的两个数学分支。初等数论中至今仍有许多没有解决的问题,如哥德巴赫 (Goldbach)问题,孪生素数猜想,奇完全数的存在性问题等,它们对人类智慧产生了极 大挑战。人们在解决一些初等数论问题的过程中所作的贡献,对数论乃至整个数学的发展 起了重要的推动作用,产生了一些直接与数学有关的新的重要数学分支。初等数论在计算 机科学和信息工程中有许多重大的实际应用。在本专题中,同学们将通过具体的问题,学 习初等数论的一些基本知识,如有关整数和整除的知识,用辗转相除法求解一次同余方程(组)和简单的一次不定方程等,初等数论中蕴含的一些思想方法,以及我国古代数学在 初等数论的研究方面取得的一些重要成就。 一、内容与课程学习目标 本专题的学习初等数论的一些基本知识,具体包括:整数的整除、同余与同余方程、 一次不定方程和数论在密码中的应用四部分内容。通过本专题的学习,要引导学生: 1.通过实例,认识带余除法,理解同余和剩余类的概念及意义,探索剩余类的运算 性质(加法和乘法),并且理解它的实际意义。体会剩余类运算与传统数的运算的异同 (会出现零因子)。 2.理解整除、因数和素数的概念,了解确定素数的方法,如埃拉托斯特尼(Eratoshenes)筛法,知道素数有无穷多个。 3.了解十进制表示的整数的整除判别法,探索整数能被3,9,11,7等整除的判别 法。会检查整数加法、乘法运算错误的一种方法,如弃九验算法。 4.通过实例,探索利用辗转相除法求两个整数的最大公约数的方法,理解互素的概 念,并能用辗转相除法证明:若a能整除bc,且a,b互素,则a能整除c。探索公因数和 公倍数的性质。了解算术基本定理。 5.通过实例,理解一次不定方程的模型,利用辗转相除法求解简单的一次不定方程。 并尝试写出算法的程序框图,在条件允许的情况下上机实现。 6.通过实例(如物不知其数问题),理解一次同余方程组的模型。 7.理解大衍求一术和孙子定理的证明。 8.理解费马小定理(当m是素数时,a m-1≡1(mod m))和欧拉定理(aφ(m)≡1(mod m),其中φ(m)是1,2,…,m-1中与m互素的数的个数)及其证明。 9.了解数论在密码中的应用——公开密钥。 二、内容安排

数学各个研究方向简介

数学各个研究方向 数论 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们和起来叫做整数。 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。

数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高

初等数论__论文

突出师范特色改革初等数论 [摘要]本文介绍了初等数论课程教学中,不断进行教学内容和教学方法的改革,加强对高师生师德、授课能力、创新精神和实践能力培养的一些做法和体会。 [关键词]初等数论教学创新精神和实践能力高师生授课能力作为培养未来中小学教师的高等师范院校,在课堂教学中突出师范特色,加强对高师生进行师德教育,培养学生的授课能力,加强学生创新精神和实践能力的培养显得尤为重要。 一、改革初等数论教学内容,加强高师生的教师素养培养 1.结合初等数论教学,对高师生进行师德教育我国数学家对数论这门学科的发展有过重大的贡献,结合初等数论课程的有关内容,介绍我国数学家在数论领域的伟大成就,能增强民族自豪感,激发学生的爱国主义思想感情。同时,结合初等数论的教学对学生进行辩证唯物主义教育、科学求实精神的教育。如在讲不定方程这一节时,介绍世界上最早提出不定方程的是我国的《九章算术》,比欧洲早200多年。在讲同余方程这一节时,介绍世界上最早提出同余方程组的是我国的《孙子算经》中的孙子定理(即中国剩余定理)。在讲数论与中学教学的联系时,介绍我国中学生在国际数学奥林匹克竞赛(IMO)上屡获佳绩,多次获得团体总分第一名的优异成绩。还介绍华罗庚在数论中的伟大成就,如“华氏定理”、“华氏不等式”。在介绍华罗庚、闵嗣鹤等数论学者甘为人梯,举办数论讨论班,指导年轻数学家(如王元、陈景润、潘承洞等)摘取“数学王冠上的宝石”的高贵品质,对学生进行师德教育。在讲到高次不定方程时,介绍费马大定理,1637 年前后由法国数学家费马提出,一代又一代数学家历经350多年的不懈努力,到1993年由英国数学家怀尔斯最后证明,来激发学生勇于探索,科学求实的学习风气。 2.结合中学数学教学,改革初等数论的教学内客。作为一个高等师范院校,数学与应用数学专业的培养目标是德、智、体、美等全面发展的合格中学数学师资及其他数学专门人才,我们数学系的大多数毕业生要从事中学数学教学,因此,我们的教学要注重与中学数学教学结合起来。如整除、素数和合数、约数和倍数、奇数和偶数、平方数、同余、不定方程、[x]、数的非十进制、欧拉函数等内容与中学联系比较紧密,而且是中学数学奥林匹克竞赛的常客。据统计,被誉为“世界青年智能大赛”的国际数学奥林匹克竞赛(IMO)的试题中主要用于数论知识来解的约占30%,因此也有人把数论称为是锻炼人思维的体操。对这些知识我们要重点进行讲解,并补充一些中学数学竞赛的题目给他们分析讲解,提高学生的解题能力。同时我们开设了选修课《竞赛数学》,为提高学生以后从事辅导中学生数学奥林匹克创造了一定条件。原根与指标也是初等数论中的重要内容,但与中学内容联系比较少,我们采取简单介绍的方法进行讲解。 二、改革初等数论教学方法,加强学生创新精神和实践能力培养 1.加强实践环节,提高数学系高师生的授课能力。初等数论课中的部分内容,如整除、素数与合数、奇数与偶数、同余等概念,在其他课程中已有涉及,只是没有初等数论中讲得详细、系统,因而学生已有了一定的了解。对于这部分内容我们采取让学生讲、分组讨论,由学生对这节课教学内容、教学方法进行 评论,提出自己的建议,并对如何上这节课进行阐述,最后由老师进行总结、点拨。这样突出了学生的主导性,提高了学生学习的积极性,加强了学生实践能力

数论论文

关于欧拉定理问题及其应用 摘要:从欧拉定理的证明为切入口,探讨欧拉定理证明所体现数学思想方法,在此基础上探究其应用。 关键词:欧拉定理,数学思想方法,应用。 在初等数论中,关于欧拉定理问题的理解、应用以及体现出的数学思想方法是理解数学中其他知识的基础,但目前各种教材对这类问题的提出和总结的不够,尤其对它所体现的数学思想方法。为了加深对欧拉定理的有关理解,本文从欧拉定理的证明为切入口,探讨欧拉定理证明所体现数学思想方法,在此基础上探究其应用。 一、欧拉定理和其推论的证明 (一)欧拉定理的证明及其体现的数学思想方法 1.定理(Euler):设n是大于1的整数,(a,n)=1,则a^φ(n) ≡ 1 (mod n) 证明:首先证明下面这个命题: 对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是φ(n)个n的素数,且两两互素,即n 的一个化简剩余系,(或称简系,或称缩系), 考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} 则S = Zn 1) 由于a,n互质,xi也与n互质,则a*xi也一定于p互质,因此任意xi,a*xi(mod n) 必然是Zn的一个元素 2) 对于Zn中两个元素xi和xj,如果xi ≠ xj 则a*xi(mod n) ≠ a*xi(mod n),这个由a、p互质和消去律可以得出。 所以,很明显,S=Zn 既然这样, (a*x1 ×a*x2×...×a*xφ(n))(mod n) = (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n) = (x1 × x2 × ... ×xφ(n))(mod n) 考虑上面等式左边和右边 左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n) 右边等于x1 × x2 × ... ×xφ(n))(mod n)

高中数学竞赛资料-数论部分

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学 竞赛第一题) (2) ①设n Z ∈,证明213 1n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++能整除123n ????(1956年上海首届数学竞赛 第一题) (3) 证明:3 231 122 n n n + +-对于任何正整数n 都是整数,且用3除时余2。(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数214 143 n n ++不可约简。(1956年首届国际数学奥林匹克竞赛第一题) (5) 令(,, ,)a b g 和[,, ,]a b g 分别表示正整数,, ,a b g 的最大公因数和最小公倍数,试证: [][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占 18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。 这说明:数论题在命题者心目中总是占有一定的分量。如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。 3.请看近年来国内外重大竞赛中出现的数论题: (1)方程3 2 3 652x x x y y ++=-+的整数解(,)x y 的个数是( ) A 、 0 B 、1 C 、3 D 、无穷多 (2007全国初中联赛5) (2)已知,a b 都是正整数,试问关于x 的方程()2 1 02 x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。 (2007全国初中联赛12)

初等数论相关问题

初等数论相关求解问题 ——计算机辅助研究 日期:2010年11月29日星期一作者:青海师范大学数学系08A班程康初等数论是研究数的规律,特别是整数性质的数学分支。它以算术方法为主要研究方法,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。换言之,初等数论就是用初等、朴素的方法去研究数论。 由于自然数的后继性,即它的无穷大性,给我们实际研究工作带来了困难,因此本文介绍如何用计算机来辅助研究初等数论相关问题,并列举实例予以说明。 实例一:完全数 完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。 例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,1+2+3=6。第二个完全数是28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,1+2+4+7+14=28。后面的数是496、8128等等。 例如: 6=1+2+3 28=1+2+4+7+14 496=1+2+4+8+16+31+62+124+248 8128=1+2+4+8+16+32+64+127+254+508+1016+2032+4064 ...... 对于“4”这个数,它的真因子有1、2,其和是3。由于4本身比其真因子之和要大,这样的数叫做亏数。对于“12”这个数,它的真因子有1、2、3、4、6,其和是16。由于12本身比其真因子之和要小,这样的数就叫做赢数。那么有没有既不盈余,又不亏欠的数呢?即等于它自己的所有真因子之和的数,这样的数就叫做完全数。 完全数有许多有趣的性质: 1、它们都能写成连续自然数之和 例如: 6=1+2+3 28=1+2+3+4+5+6+7 496=1+2+3+……+30+31 2、每个都是调和数 它们的全部因数的倒数之和都是2,因此每个完全数都是调和数。例如: 1/1+1/2+1/3+1/6=2

高中数学竞赛资料-数论部分

初等数论简介 绪言:在各种数学竞赛量出现数论题,题目的容几乎涉及到初等数论的所有专题。 1. 请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学 竞赛第一题) (2) ①设n Z ∈,证明213 1n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++能整除123n ????(1956年首届数学竞赛第 一题) (3) 证明:3 231 122 n n n + +-对于任何正整数n 都是整数,且用3除时余2。 (1956年、市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数214 143 n n ++不可约简。(1956年首届国际数学奥林匹克竞赛第一题) (5) 令(,, ,)a b g 和[,, ,]a b g 分别表示正整数,, ,a b g 的最大公因数和最小公倍数,试证: [][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。 这说明:数论题在命题者心目中总是占有一定的分量。如果将有一定“数论味”的计数型题目统计在,那么比例还会高很多。 3.请看近年来国外重大竞赛中出现的数论题: (1)方程3 2 3 652x x x y y ++=-+的整数解(,)x y 的个数是( ) A 、 0 B 、1 C 、3 D 、无穷多 (2007全国初中联赛5) (2)已知,a b 都是正整数,试问关于x 的方程()2 1 02 x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。 (2007全国初中联赛12)

同余式的简单介绍

关于a x≡b(modm)的解法 1.当(a,m)≡1时: (1)若a,b1时:用d去除同于式,再用(a,m)=1去解 <1>同余取倍法:(期刊-核心期刊和田师专科学校学报) JOURNAL OF HOTAN TEA CHERS COLLEGE 2009年第03期 <2>一次同余式的初等变换解法:(山西大学学报:自然科学版)——袁虎延 <3>一次同余式的逐级满足法 <4>观察法解一次同余式 <5>Euler定理解一次同余式

<6>把同余式化为不定方程的解法 <7>减少模数的方法解一次同余式 <8>欧几里得法解一次同余式 <9>分式法解一次同余式 <10>威尔逊定理算法解一次同余式 <下面仔细介绍> 代数/数论/组合理论/《.黑龙江科技信息》2008年19期》摘要一次同余式解法的特点及其分析——作者:李婷只讨论(a,m )=1时,同余式ax ≡b(modm)有以下七种解法 (一)(1)观察法:在模m 的完全剩余系0,1,、、、,m-1中考虑同余式的解 1.,当m 较小时,可用观察法,直接快速的得出方程的解 eg 2x ≡1(mod3) 因为(2,3)=1所以有一个解,x ≡2(mod3)为其解 2.当系数较大时,可用同余性质 ,将同余式系数减小,而且用带余除法定理,保证系数在一个固定范围内作为模m 的系数,进而用观察法,可快速得到方程的解。 (二)Euler 定理;设m 是大于1的整数,(a,,m )=1,则a 1 ≡)(m ψ(modm )由Euler 定理,有a 1≡)(m ψ(modm ),而a x ≡b(m0dm)可得a )(m ψx ≡ba 1-))((m ?(modm ) x ≡ba 1-))((m ?(modm)为所求的解。 eg:8x ≡9(mod11)

相关文档
最新文档