氦氖激光管的配气

氦氖激光管的配气
氦氖激光管的配气

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某 种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于 自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被 增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一 周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模 序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫 描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜 构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦 腔)。其中一块反射镜固定不动,另一块反射镜固定在可随 外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀 系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2 总处于共焦状态。 当一束波长为λ的光近轴入射到 干涉仪内时,在忽略球差的条件 下,在共焦腔中经四次反射形成 一条闭合路径,光程近似为4l , 如右图所示 编号为1和1’ 的两组透光强分别为: 1222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即

激光二极管的特性

激光二极管的特性 1、伏安特性 半导体激光器是半导体二极管,具有单向导电性,其伏安特性与二极管相同。反向电阻大于正向电阻,可以通过用万用表测正反向电阻确定半导体激光二极管的极性及检查它的PN结好坏。但在测量时必须用1k以下的档,用大量程档时,激光器二极管的电流太大,容易烧坏。 2、P—I特性 激光二极管的出射光功率P与注入电流I的关系曲线称为P-I 曲线。 注入电流小于阈值电流I th时,激光器的输 出功率P很小,为自发辐射的荧光,荧光的输 出功率随注入电流的增加而缓慢增加。 注入电流大于Ith时,输出功率P随注入 电流的增加而急剧增加,这时P—I曲线基本上 是线性的。当I再增大时,P—I曲线开始弯曲呈非线性,这是由于随着注入电流的增大,使结温上升,导致P增加的速度减慢。 判断阈值电流的方法:在P—I特性曲线中,激光输出段曲线的向下延长线与电流轴的交点为激光二极管的阈值电流。 3、光谱特性

激光二极管的发射光谱由两个因素决定:谐振腔的参数,有源介质的增益曲线。 腔长L确定纵模间隔,宽W和高H决定横模性质。如果W和H 足够小,将只有单横模TEM00存在。 多模激光二极管在其中心波长附近呈现出多个峰值的光谱输出。单纵模激光器只有一个峰值。 工作在阈值以上的1mm腔长的增益导引LD的典型发射光谱 激光二极管是单模或多模还与泵浦电流有关。折射率导引LD,在泵浦电流较小、输出光功率较小时为多模输出;在电流较大、输出光功率较大时则变为单模输出。而增益导引LD,即使在高电流工作

下仍为多模。 折射率导引激光器光谱随光功率的变化发射光谱随注入电流而变化。IIt 发射激光,光谱突然变窄。因此,从激光二极管发射光谱图上可以确定阈值电流。当注入电流低于阈值电流时光谱很宽,当注入电流达到阈值电流时,光谱突然变窄,出现明显的峰值,此时的电流就是阈值电流。 IIt 激光辐射

氦氖激光的生物学作用原理

氦氖激光的生物学作用原理 氦氖激光对机体有独特的生物学作用,利用这些作用,可使氦氖激光广泛应用于临床。本文对氦氖激光照射在机体免疫、血液循环、组织代谢及神经等不同系统功能上的作用进行综述。 标签:氦氖激光;机体免疫;血液循环;组织代谢;综述 激光技术为临床诊断提供了崭新的手段。强激光治疗可至靶组织发生不可逆性损伤,而弱激光治疗则不会。其不同波长不同剂量照射不同部位所产生的作用不同。 1弱氦氖激光照射对血液循环的作用[1] 1.1降低血液粘滞度实验证明,低能量激光可通过降低红细胞聚集性、红细胞压积及血小板聚集率,降低血液的高凝状态。 1.2促进红细胞变形低能量激光能够改善脂蛋白色谱改变,使红细胞磷脂成分增加,磷脂和胆固醇比值正值化,使红细胞变形力增强。 1.3增强血液携氧能力激光照射血液后使血液中多种酶的活性被激发,蛋白质的动能增加,铁卟啉的氧化作用加速。 2弱激光的生物学刺激效应 激光总体上可分为热效应、压强效应、光化学效应及电磁场效应,而弱激光具有另一种作用:生物刺激作用。其生物效应直接产生于辐射而不是热效应。 2.1累积作用小剂量有累积作用,一次大剂量照射或将该剂量分成小剂量多次照射所引起的生物效应相同。 2.2抛物线效应即照射次数有阈值,有一极大值。再增加照射次数刺激作用反而减弱,甚至变为抵制作用。 2.3刺激或抵制弱激光刺激是产生兴奋还是抑制,取决于它的能量密度。一般来说,能量密度越小时表现为兴奋作用,能量密度大时表现为抑制作用。 3对组织代谢的影响 3.1提高多种酶活性[2] 弱激光照射可提高多种酶活性,这些酶类的激活,可提高内源性胰岛素水平,促进糖代谢利用和ATP的产生。 3.2促进细胞增殖效应实验证实低强度激光对成纤维细胞、纤维原细胞、内

氦氖激光器及电源的选购

氦氖激光器及电源的选购 外腔式氦氖激光器内腔式氦氖激光器氦氖激光器生产厂家 倍压整流电路激光电源变压器电路激光电源开关电路激光电源 激光器的横向模式激光器的纵模间隔氦氖激光器的型号命名 氦氖激光器 从原理上讲氦氖激光器主要由放电管(既充有工作物质氦气与氖气的玻璃管及电极)、输出镜及全反镜(既光学谐振腔)、电源(既激励装置)三部部分组成,但在实际中把它们做成激光器(放电管、输出镜及全反镜)与电源两部分。氦氖激光器按放电管与输出镜、全反镜连接方式的不同可分为外腔式氦氖激光器、内腔式氦氖激光器及半外腔式氦氖激光器(因使用很少故不作介绍)三种。氦氖激光电源从电路上分通常可分为倍压整流电路激光电源、变压器电路激光电源和开关电路激光电源三种。 当激光器工作时,输出镜及全反镜互相平行且与调直的放电管垂直,并保持不变时激光器输出功率最大且稳定,当输出镜及全反镜互相平行且与调直的放电管垂直的状态发生变化,激光器输出功率会产生波动,输出功率会下降,严重时不出光。 1、外腔式氦氖激光器 外腔式氦氖激光器的放电管与输出镜及全反镜非一体。放电管两端被磨成一特殊角度(布鲁斯特角),用两块石英玻璃密封, 两块石英玻璃称为布氏窗。布氏窗(角)使输出激光成线偏振光。 放电管及输出镜、全反镜被安装于放电管的直度及输出镜与全反镜的平行度都可以调节的机壳内,机壳的上下盖有散热孔内。 输出镜、全反镜的平行度调节装是很重要的。输出镜、全反镜的调节螺丝可分为有粗细调(螺距大与小)与无粗细调两种结构,且有外置与内置之分。 无粗细调的输出镜、全反镜调节螺丝螺距通常是0.5mm,调节时调节螺丝稍动一点输出功率起伏就很大,且不可锁定。 有粗细调的输出镜、全反镜调节螺丝粗调螺距是0.75mm,主要是不出光时调光用,且可锁定不动,细调螺距是0.05mm,调节时调节螺丝转动输出功率起伏不会很大。 输出镜、全反镜的调节螺丝置于激光器外部,优点是调节方便,但在人多手杂的实验室,特别是对学生开放的实验及在搬动时不小心碰到调节螺丝、在运输中由于振动调节螺丝与包装箱相碰都容易造成输出镜、全反镜平行度偏差而不出光(特别对螺距是0.5mm 的、不可锁定的调节螺丝)。调节螺丝置于激光器内部,可避免这些事情产生,要调节输出镜、全反镜螺丝可通过调节孔可用螺丝刀调节(一般不用调节)。 外腔式氦氖激光器布氏窗与输出镜、全反镜之间的密封也是很重的,如密封性不好,会造成在使用过程中输出功率不断下降。由于静电作用,放电管极易吸灰,灰尘、潮气会污染布氏窗、输出镜、全反镜。布氏窗与输出镜、全反镜之间的密封,有用无弹性的圆筒状部件(如涤纶薄膜卷成的圆筒等)套在布氏窗与输出镜、全反镜之间的,有用乳胶指套套在布氏窗与输出镜、全反镜之间的,有用模具成型耐老化的硅胶套紧扣在布氏窗与输出镜、全反镜之间的。无弹性的圆成筒状部件密封差,而乳胶指套大半年就老化了,模具成型耐老化的硅胶密封最好。 外腔式氦氖激光器优点是单模输出激光功率大(放电管2米长的氦氖激光器单模输出功率近百毫瓦)、激光线偏震输出。缺点是结构复杂,成本高。价格高。 2、内腔式氦氖激光器

激光二极管

收稿日期:2001-02-15 作者简介:孙番典(1954-  ),男,广东梅州人,华南师大物理系副教授.基金项目:广东省高教厅自然科学基金项目;惠州大学科研基金项目(C20010204). 第21卷第4期 2001年12月惠州大学学报(自然科学版)Journal of Huizhou University (Nat.Sci.)V ol 1211N o 14Dec 12001一组高精度的半导体激光 二极管伺服控制电路 孙番典1 刘俊刁2 熊建文1 李庆春2 (1华南师范大学物理系 广州 510631 2惠州大学理工学院 惠州 516015) 摘 要 介绍一组高精度的半导体激光二极管伺服控制电路。室温下该电路的电流 稳定度达10-3mA ,温度稳定优于10-2K. 关键词 半导体激光二极管;注入电流稳定;精密温度控制 中图分类号:O453 文献标识码:A 文章编号:1007-6107(2001)04-0033-04 引 言 半导体激光二极管以其体积小,重量轻,价格低,寿命长,耗电少及频率可快速调谐等优点,已经在国民经济和一系列高科技领域获得了广泛应用。然而,此种激光器的工作波长与其工作温度、注入电流之间有着强烈的依赖关系,例如,对近红外线半导体激光二极管,工作温度引起的变化约为013nm/K,注入电流引起的变化约为0103nm/mA 。同时,工作温度和注入电流的变化还会导致半导体激光二极管输出功率的不稳定。对于某些高科技领域应用,例如近些年发展起来的相干光纤通讯,对作为发送光源和外差检测的本振光源所用的半导体激光器的频率稳定性有很高的要求,同时,还要求其输出频率可调。又如,在极受重视的激光探潜和大量的激光光谱和原子分子物理研究中,都要求半导体激光器的频率非常稳定。因此,对半导体激光二极管的注入电流和工作温度的精密控制,并在此基础上对激光器的输出频率进行锁定稳频的技术研究就成为非常必要的。 1 注入电流控制电路 为半导体激光二极管提供注入电流的稳定电路,需要具有极高的电流稳定度、能提供一定范围内连续可调的工作电流和接近从零开始起调的精密可调性。此外,由于半导体激光二极管一般不能承受电流突变的浪涌冲击,电路要求能够抑制,消除电流尖峰脉冲或瞬态浪涌

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2 /121,)1)(1(arccos )(12' 'R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ? ?????????????--?=?=?=?+?2 /12111)1)(1(arccos 1' R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长 与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦腔)。其中一块反射镜固定不动,另一块反射镜固定在可随外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2总处于共焦状态。 当一束波长为λ的光近轴入射到干涉仪内时,在忽略球差的条件下,在共焦腔中经四次反射形成一条闭合路径,光程近似为4l ,如右图所示 编号为1和1’ 的两组透光强分别为: 1 222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即 λπβ/22?=ul

如何分辩激光整机的好与坏

如何分辩激光整机的好与坏 哪些是我们必须慎重考虑的因素?怎么才能判定哪个品牌更好呢? 1)售后服务: 激光雕刻机的激光管,反射镜片都是消耗品,有一定使用寿命,到期之后需要更换。这就需要厂家提供有力的售后服务保证,可以及时的提供这些耗材。有些用户为了贪图便宜,从一些小厂以很低的价格购买激光雕刻机,半年以后,激光雕刻机需要更换激光管,和厂家一联系,发现人去楼空。 a)步进电机:关系到激光雕刻机的雕刻精度,有的厂家选择的是进口步进电机,有的是合资厂生产的步进电机,有的是杂牌电机。 b)激光镜片:关系到激光雕刻机的功率大小,分进口镜片,国产镜片,国产镜片里面又分采用进口材料生产的和采用国产材料生产的两种,价格差距很大,使用效果和使用寿命差距也很大。 c)激光管:这是激光雕刻机的心脏。由于进口激光管的价格非常昂贵,一般都在几万元,所以大部分国产激光雕刻机都采用国产激光管。国产的激光管也是良莠不齐,价格差距很大。好的激光管使用寿命一般在3000小时左右。 d)机械装配质量:有的厂家为了降低成本,采用很薄的铁皮制作机器外壳,用户一般看不出来,可是时间一长,机架会发生变形,影响激光雕刻机的雕刻精度。好的激光雕刻机应该采用框架结构,使用优质型钢焊接而成,并用优质冷轧钢板来制作机壳。用户购买机器时候,看看是否使用框架结构及机壳铁皮的厚度、强度就能发现质量的好坏。 下面从购买激光雕刻机用途方面说明一下:

a)雕刻橡皮板,用于纸箱印刷: 大部分激光雕刻机都可以用来雕刻橡皮板,你就没有必要选择那些名目繁多,速度很快的机器,因为那些名目繁多的功能你很少不上;雕刻速度快也用不上,因为雕刻橡皮板速度快了雕刻的深度就不能满足印刷需求了。推荐:购买适合雕刻橡皮板的激光雕刻机,价格便宜,回程投资快。 b)雕刻工艺品: 大部分激光雕刻机都可以用来雕刻工艺品,要根据要求来选择: 雕刻竹简,木板,小饰物:选择小型机器,如300X400幅面的,价格便宜,精度高雕刻木盒,酒盒:选择500X700, 600x900幅面的机器,并且要有升降平台,否则长的木盒放不进去。 雕刻竹筒,茶叶筒:选择500X700, 600x900幅面的机器,并且要有升降平台,并且配备旋转雕刻装置。 雕刻大型木版画:选择选择600x900幅面的机器,并要求有升降平台,并且机器前后可以通料,这样雕刻大尺寸的木板也可以游刃有余。 制作贺年卡:选择500X700, 600x900幅面的机器,并且要有切割平台,切割速度快的机器,否则纸片边缘绘发黄。 c)切割亚克力板 大部分激光雕刻机都可以用来切割亚克力板,但是笔者建议还是选择专用的激光切割机,因为激光切割机是针对激光切割进行了优化设计,切割效果非常好。如果你还是坚持够购买普通的激光雕刻机,那一定要选择一款具有“刀床“装置激光雕刻机。切记:不要相信某些厂家说什么60w,80w的机器可以切20mm厚的亚克力,这是不可能的,即使勉强可以切穿,那切割边缘也是惨不忍睹了。正常的数值:60w

氦氖激光束的模式分析..

氦氖激光束的模式分析 1958年法国人柯勒斯(Connes)根据多光束的干涉原理,提出了一种共焦球面干涉仪。到了60年代,这种共焦系统广泛用作激光器的谐振腔。同时,由于激光科学的发展,迫切需要对激光器的输出光谱特性进行分析。全息照相和激光准直要求的是单横模激光器;激光测长和稳频技术不仅要求激光器具有单横模性质,而且还要求具有单纵模的输出。于是在共焦球面干涉仪的基础上发展了一种球面扫描干涉仪。这种干涉仪以压电陶瓷作扫描元件或用气压进行扫描,其分辨率可达107以上。 共焦腔结构有许多优点。首先由于共焦腔具有高度的模简并特性,所以不需要严格的模匹配,甚至光的行迹有些离轴也无甚影响。同时对反射镜面的倾斜程度也没有过分苛刻的要求,这一点对扫描干涉仪是特别有利的。由于共焦腔衍射损失小而且在反射镜上的光斑尺寸很小,因此可以大大降低对反射面的加工要求,便于批量生产、推广使用。 【实验目的】 1.了解扫描干涉仪原理,掌握其使用方法。 2.学习观测激光束横模、纵模的实验方法。 【实验仪器】 WGL-4 型氦氖激光器模式实验装置 (含氦氖激光器及其电源、扫描干涉仪、高速光电接收器及其电源、锯齿波发生器、示波器。) 【实验原理】 一、激光器模的形成 激光是由受激辐射产生的。在光子作用下,当高能级的粒子向低能级跃迁时,产生一个和入射光子频率,相位及传播方向相同的光子,称为受激辐射。 在热平衡情况下,原子的能量按玻尔兹曼分布。当原子受外界能量激励时(称泵浦),从低能级跃迁到高能级,泵浦方式可能是光激励,碰撞激励,热激励,化学激励等。介质经过泵浦可出现高能级粒子布居数超出低能级的情况,这种违反玻尔兹曼分布的情况称为粒子数反转。在实现粒子数反转的情况下,受激辐射可以大于受激吸收,从而产生光放大。因此,实现粒子数反转是激光产生的基本条件。 He—Ne激光器的工作物质是He 、Ne混合气体,泵浦方式为气体放电。气体放电引起粒子碰撞,碰撞激发He原子,He原子的能量经共振转移交给Ne原子,使Ne 原子的3S2、2S2能级的粒子布居数超过比它低的3P4、2P4能级。3S2—2P4的能级间距所相应的波长为6328?。 激光器的三个基本组成部分是增益介质、谐振腔和激励能源。如果用某种激励方式,在介质的某一对能级间形成粒子数反转分布,由于自发辐射和受激辐射的作用,将有一定频率的光波产生,在腔内传播,并被增益介质逐渐增强、放大,如图1所示。实际上,由于能级总有一定的宽度以及其它因素的影响,增益介质的增益有一个频率 分布,如图1所示,图中) G为光的增益系数。只有频率落在这个范围内的光在介质 ( 中传播时,光强才能获得不同程度的放大。但只有单程放大,还不足以产生激光,要产生激光还需要有谐振腔对其进行光学反馈,使光在多次往返传播中形成稳定、持续

氦氖激光治疗仪

医疗设备申购报告 名称:氦氖激光治疗仪(40mw) 数量:1台每台价位:9千--1万左右。 经济效益: 收费标准:激光针 (编号430000019) 价位:26元 每次照射时间:15-20分钟 (它的功率是40W,相当于24小时耗电量是一度,耗电量几乎可以忽略不计) 例: 每例病人每天2次,40分钟收费是52元 若平均每天5例人次,每天收入是260元,每周是1820元,每月是7280元,每年是87360元。 社会效益: 它通过对创伤面照射起到杀菌和加快愈合,减少病人住院日,减低病人经济负担。 氦氖激光治疗仪JH30型氦氖激光治疗仪机器简介:配有光学转向镜头与扩束镜头,激光束可作任意方向旋转,光斑6~100mm可调,配有二分叉光纤壹支,可作穴位照射,有定位控制,照射角度:水平360度垂直120度. 激光治疗原理: JH30型HeNe激光治疗仪采用现代激光与传统针灸结合作用于人体,通过照射经络穴位调整内阴阳平衡和气血运行,从而达到治疗目的。治疗优越性:激光针灸具有针感强,疗效显著,无接触感染,无痛,无副作用之功效,本机即可激光直射输出,作激光扩束照射治疗,也可采用二份叉光纤输出,对人体多穴位进行激光理疗。主要用途:颈周炎、肩周炎、骨炎、腱鞘炎、皮肤溃疡、烧伤、带状疱疹、对创伤面照射起到杀菌和加快愈合的作用,特别对老烂脚效果更为明显。骨科:关节炎、骨折、手术患者等均有一定的疗效。 性能指标: 激光器类型:封离型氦氖激光器 工作波长: 632.8nm 激光输出功率: 40 mW 光纤输出末端功率: 14mW x 2 光斑模式: 多模 功率不稳定度: 优于+/-10% 稳定工作电流: 18+/-1毫安 定时时间: 0------60分钟 工作电源: AC220伏+/-10% 50赫+/-1赫

氦氖激光器模式分析

模式分析 一.氦-氖(He-Ne)激光器简介 氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。内腔式激光器的腔镜封装在激光管两端。 二.氦-氖(He-Ne)激光器的工作原理 氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。 三.He-Ne激光器结构及谐振腔 He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。激光管由放电管、电极和光学谐振腔组成。放电管是氦一氖激光器的心脏,它是产生激光的地方。放电管通常由毛细管和贮气室构成。放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。放电管一般是用GG17玻璃制成。输出功率和波长要求稳定性好的器件可用热胀系数小的石英玻璃制作。He-Ne激光管的阳极一般用钨棒制成,阴极多用电子发射率高和溅射率小的铝及其合金制成。为了增加电子发射面积和减小阴极溅射,一般都把阴极做成圆筒状,然后用钨棒引到管外。He-Ne激光器由于增益低,谐振腔一般用平凹腔,平面镜为输出端,透过率约1%~2%,凹面镜为全反射镜。He-Ne激光管的结构形式是多种多样的,按谐振腔与放电管的放置方式不同可分内腔式、外腔式和半内腔式。 四.氦-氖(He-Ne)激光器的速率方程

增加激光雕刻机寿命的方法

增加激光雕刻机寿命的方法 一:水的更换与水箱的清洁 建议:每星期清洗水箱与更换循环水一次 注意:机器工作前一定保证激光管内充满循环水。 循环水的水质及水温直接影响激光管的使用寿命,建议使用纯净水,并将 水温控制在35℃以下。如超过35℃需更换循环水,或向水中添加冰块降低水温,(建议用户选择冷却机,或使用两个水箱)。 清洗水箱:首先关闭电源,拔掉进水口水管,让激光管内的水自动流入水 箱内,打开水箱,取出水泵,清除水泵上的污垢。将水箱清洗干净,更换好循 环水,把水泵还原回水箱,将连接水泵的水管插入进水口,整理好各接头。把 水泵单独通电,并运行2-3分钟(使激光管充满循环水)。 二、风机清洁 风机长时间的使用,会使风机里面积累很多的固体灰尘,让风机产生很大 噪声,也不利于排气和除味。当出现风机吸力不足排烟不畅时,首先关闭电源,将风机上的入风管与出风管卸下,除去里面的灰尘,然后将风机倒立,并拔动 里面的风叶,直至清洁干净,然后将风机安装好。 三:镜片的清洁 (建议每天工作前清洁,设备须处于关机状态) 雕刻机上有3块反射镜与1块聚焦镜(1号反射镜位于激光管的发射出口处,也就是机器的左上角,2号反射镜位于横梁的左端,3号反射镜位于激光头固定部分的顶部,聚焦镜位于激光头下部可调节的镜筒中),激光是通过这些镜片反射、聚焦后从激光头发射出来。镜片很容易沾上灰尘或其它的污染物,造成激 光的损耗或镜片损坏,1号与2号镜片清洗时勿须取下,只需将蘸有清洗液的 擦镜纸小心地沿镜片中央向边缘旋转式擦拭。3号镜片与聚焦镜需要从镜架中 取出,用同样的方法擦拭,擦拭完毕后原样装回即可。 注意:1.镜片应轻轻擦拭,不可损坏表面镀膜;2.擦拭过程应轻拿轻放, 防止跌落;3.聚焦镜安装时请务必保持凹面向下。 四、导轨的清洁 (建议每半个月清洁一次,关机操作) 导轨、直线轴作为设备的核心部件之一,它的功用是起导向和支承作用。 为了保证机器有较高的加工精度,要求其导轨、直线具有较高的导向精度和良 好的运动平稳性。设备在运行过程中,由于被加工件在加工中会产生大量的腐 蚀性粉尘和烟雾,基这些烟雾和粉尘长期大量沉积于导轨、直线轴表面,对设 备的加工精度有很大影响,并且会在导轨直线轴表面形成蚀点,缩短设备使用 寿命。为了让机器正常稳定工作,确保产品的加工质量,要认真做好导轨、直 线轴的日常维护。 注意:清洁导轨请准备——干棉布、润滑油 雕刻机的导轨分为直线导轨、滚轮导轨,在YM系列当中X方向采用了直线导轨、Y方向采用滚轮导轨。 直线导轨的清洁:首先把激光头移动到最右侧(或左侧),找到如上图所示 直线导轨,用干棉布擦拭直到光亮无尘,再加上少许润滑油(可采用缝纫机油,切勿使用机油),将激光头左右慢慢推动几次,让润滑油均匀分布即可。

氦氖激光器实验论文

共焦球面扫描干涉仪调整及高斯光束变换与测量实验 刘岩1, 贾艳1 (1.东北师范大学,吉林长春 130000) 摘要:本文介绍了氦氖激光器的原理及其相关的基本结构,并系统的做了氦氖激光器系列实验中的共焦球面扫描干涉仪调整实验和高斯光束变换与测量实验。 关键词:氦氖激光器;共焦球面扫描;高斯光束;干涉仪 中图分类号:G3 文献标识码:A 引言 虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被收激吸收所掩盖,未能在实验中观察到。直到1960年,第一台红宝石激光器才面世,他标志了激光技术的诞生。激光器由光学谐振腔、工作物质、激励系统构成,相对一般光源,激光有良好的方向性,也就是说,光能量在空间的分布高度集中在光的传播方向上,但它也有一定的发散度。在激光的横截面上,光强是以高斯函数型分布的,故称作高斯光束。同时激光还具有单色性好的特点,也就是说,它可以具有非常窄的谱线宽度。受激辐射后经过谐振腔等多种机制的作用和相互干涉,最后形成一个或者多个离散的、稳定的谱线,这些谱线就是激光的模。在激光生产与应用中,如定向、制导、精密测量、焊接、光通讯等,我们常常需要先知道激光器的构造,同时还要了解激光器的各种参数指标。因此,激光原理与技术综合实验是光电专业学生的必修课程。 1 实验原理 1.1氦氖激光器原理与结构 氦氖激光器(简称He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。对He-Ne 激光器而言增益介质就是在毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言,腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。内腔式He-Ne激光器的腔镜封装在激光管两端,而外腔式He-Ne激光器的激光管、输出镜及全反镜是安装在调节支架上的。调节支架能调节输出镜与全反镜之间平行度,使激光器工作时处于输出镜与全反镜相互平行且与放电管垂直的状态。在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。氦氖激光器激励系统采用开关电路的直流电源,体积小,份量轻,可靠性高,可长时间运行。 图1 氦氖激光器原理图 1.2 高斯光束的基本性质 众所周知,电磁场运动的普遍规律可用Maxwell方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: () 2 2 2() [] 2() 00 , () r z kr i R z A A r z e e z ω ψ ω ω --- =?(1) 式中,A0为振幅常数;ω(z)定义为场振幅减小到最大值的e-1的r值称为腰斑,它是高斯光束光斑半径的最小值;ω(z)、R(z)、Ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:

3-氦氖激光器的参数测量

氦氖激光器的参数测量(参考讲义) 一台激光器的小信号增益系数,腔内损耗α,饱和光强及最佳透过率是重要的激光参数,直接影响着激光器的输出功率。本实验在外腔激光器中用全反射腔镜,激光输出是通过在腔内插入可旋转平行板,利用平行板的反射率与入射角的关系,使激光的输出功率随平行板的旋转角度而改变,旋转平行板等效于可变透射率的输出镜。通过测量激光输出功率与等效透射率的关系,用作图法获得以上参数。 0G s I opt Γ一、 实验原理 光谱线的宽度一般由以下几部分组成:自然增宽N v Δ,碰撞增宽 ,和多谱勒增宽 ,自然增宽和碰撞增宽属均匀增宽线型,多谱勒增宽属非均匀增宽线型,自然增宽与谱线上下能级寿命成反比,如下式所示 ????????+=Δττπν121121N (1) 式中1τ,2τ分别为上、下能级寿命。碰撞增宽与气体压力p 成正比,如下式所示 ap =Δρν (2) 式中a 为压力加宽系数,因不同气体不同谱线而异。多谱勒增宽由激发谱线的粒子速度分布决定,与介质温度T 及原子量M 有关,还与激发谱线的中心频率0ν成正比,如下式所示 ()02/17/1016.7ννM T D ?×=Δ (3) 式中0ν为谱线中心频率。对某一谱线究竟哪种增宽起主要作用,属哪种线型有具体的物理条件决定。 1. 不同线型的增益饱和特性 激光介质的增益吸收关于是随腔内光强的增加而下降的,这种现象叫做增益饱和,不同线型其增益饱和行为不同。以均匀增宽为主的线型其增益饱和特性由下式描述: )()/1()2/()()2/()(002202 v G I I v v v v v G s v +Δ+?Δ= (4) 式中为腔内光强趋于零时频率中心处的益系数,叫做小信号增益系数。 为线型宽度,为频率为)(00v G v Δv I v 的激光强度,为饱和光强。s I s I 与下列物理量的关系)1(为

简析延长激光管寿命

. 简析延长激光管的寿命要延长激光管的寿命,须注意以下几点: 、尽量减少激光器开启关闭的次数。 1 2 、在能达到切割要求的情况下,尽量减小使用功率。 3、非工作时间,关闭激光器。 4、尽量保证工作场所的温湿度满足设备使用要求。使用工业循环恒温水箱。 5、镜片保持清洁,不要有灰尘、污垢。以免损耗激光能量。 激光切割中常见问题及解决办法激光切割中常见问题及解决办法 切割穿孔技术 1. 任何一种热切割技术,除少数情况可以从板边缘开始外,一般都必须在板上穿一个小孔。之前在激光冲 压复合机上是用冲头先冲出一个孔,然后再用激光从小孔处开始进行切割。对于没有冲压装置的激光切割机有两种穿孔的基本方法:然后由与激光束同轴的氧流很快将熔融材爆破穿孔——材料经连续激光的照射后在中心形成一个凹坑,料去除形成一个孔。一般孔的大小与板厚有关,爆破穿孔平均直径为板厚的一半,因此对较厚的板爆破穿孔孔径较大,且不圆,不宜在加工精度要求较高的零件上使用,只能用于废料上。此外由于穿孔所用的氧气压力与切割时相同,飞溅较大。脉冲穿孔——采用高峰值功率的脉冲激光使少量材料熔化或汽化,常用空气或氮气作为辅助气体,以减 少因放热氧化使孔扩展,气体压力较切割时的氧气压力小。每个脉冲激光只产生小的微粒喷射,逐步深入,因此厚板穿孔时间需要几秒钟。一旦穿孔完成,立即将辅助气体换成氧气进行切割。这样穿孔直径较小,其穿孔质量优于爆破穿孔。为此所使用的激光器不但应具有较高的输出功率;更重要的是光束的时间和空间特激光器不能适应激光切割的要求。此外脉冲穿孔还须要有较可靠的气路控制系统,以CO2性,因此一般横流实现气体种类、气体压力的切换及穿孔时间的控制。在采用脉冲穿孔的情况下,为了获得高质量的切口,从工件静止时的脉冲穿孔到工件等速连续切割的过 渡技术应加以重视。从理论上讲通常可改变加速段的切割条件,如焦距、喷嘴位置、气体压力等,但实际上由于时间太短改变以上条件的可能性不大。在工业生产中主要采用改变激光平均功率的办法比较现实,具体种效果最好。方法是改变脉冲宽度;改变脉冲频率;同时改变脉冲宽度和频率。实际结果表明,第3 2.切割加工小孔(直径小与板厚)变形情况的分析 (软而是用脉冲穿孔这是因为机床(只针对大功率激光切割机)在加工小孔时不是采取爆破穿孔的方式, 穿刺)的方式,这使得激光能量在一个很小的区域过于集中,将非加工区域也烧焦,造成孔的变形,影响加工质量。这时我们应在加工程序中将脉冲穿孔(软穿刺)方式改为爆破穿孔(普通穿刺)方式,加以解决。而对于较小功率的激光切割机则恰好相反,在小孔加工时应采取脉冲穿孔的方式才能取得较好的表面光洁度。激光切割低碳钢时,工件出现毛刺的解决方法 3. 激光切割的工作和设计原理,分析得出以下几点原因是造成加工件产生毛刺的主要原因:激光CO2根据 焦点的上下位置不正确,需要做焦点位置测试,根据焦点的偏移量进行调整;激光的输出功率不够,需要检查激光发生器的工作是否正常,如果正常,则观察激光控制按钮的输出数值是否正确,加以调整;切割的线.. . 速度太慢,需要在操作控制时加大线速度;切割气体的纯度不够,需要提供高质量的切割工作气体;激光焦点偏移,需要做焦点位置测试,根据焦点的偏移量进行调整;机床运行时间过长出现的不稳定性,此时需要关机重新启动。激光切割加工不锈钢和敷铝锌板时,工件有毛刺产生的分析 4. 以上情况的出现,首先考虑切割低碳钢时出现毛刺的因素,但不可简单地加快切割速度,因为增加速度 有时会出现板材切割不穿的情况,此种情况在加工敷铝锌板时尤为突出。这时应综合考虑机床的其他因素加以解决,如喷嘴是否要更换,导轨运动不稳定等。激光未完全切割透状态的分析 5. 分析后可以发现下面的几种情况是产生加工不稳定的主要情况:激光头喷嘴的选择与加工板厚不匹配; 5mm激光切割机切割激光切割线速度过快,需要操作控制减小线速度;另外,还需要特别注意的是,在L3030 ″焦距的激光镜片。以上碳素钢板时需要更换7.5 切割低碳钢时出现非正常火花的解决方法 6.

氦氖激光治疗皮肤溃疡的疗效观察

氦氖激光治疗皮肤溃疡的疗效观察 发表时间:2012-11-22T11:38:22.610Z 来源:《医药前沿》2012年第22期供稿作者:石红梅陆伟玲 [导读] 目的分析氦氖激光治疗皮肤溃疡的疗效。方法 92例皮肤溃疡者分为治疗组46例,对照组46例,治疗组采用局部清创和外敷药物的同时应用氦氖激光治疗,对照组仅用局部清创加外用药敷法,15天后两组比较疗效。 石红梅陆伟玲(云南省玉溪市中医院外Ⅱ科 653100) 【摘要】目的分析氦氖激光治疗皮肤溃疡的疗效。方法 92例皮肤溃疡者分为治疗组46例,对照组46例,治疗组采用局部清创和外敷药物的同时应用氦氖激光治疗,对照组仅用局部清创加外用药敷法,15天后两组比较疗效。结果治疗组的痊愈率,有效率和痊愈平均时间明显优于对照组(p<0.05 p<0.05 p<0.05)。结论氦氖激光治疗皮肤溃疡能提高疗效,缩短病程,减少不良反应。【关键词】氦氖激光皮肤溃疡 【中图分类号】R454.2 【文献标识码】A 【文章编号】2095-1752(2012)22-0175-02 皮肤溃疡是临床上常见的皮肤病,其病程迁移,病灶反复难愈,我科于2010年11月—2012年9月对92例皮肤溃疡者采用局部清创+外敷药物的基础上加用氦氖激光照射,取得良好疗效。 1、资料与方法 1.1 一般资料皮肤溃疡92例,男54例,女、38例,年龄11-72岁,平均病程1.3个月(3d-2年)龟头及阴部溃疡34例,小腿溃疡18例,胸背部溃疡11例,髋臀部溃疡15例,颈部溃疡6例,溃疡面积0.5x1cm-8x10cm,病种包括术后切口感染,外伤创面不愈,烧伤后化脓感染,骨髓炎等。全部患者分为治疗组46例,对照组46例。 1.2 治疗组先用3%双氧水清洗创面,0.9%外用生理盐水清洗后,采用多功能氦氖激光治疗仪照射,波长63 2.8nm,输出功率10mW,光纤维垂直于溃疡面照射,光源距溃疡面5-10cm,若有分泌物应及时用无菌棉签蘸干,每次照射15-20分钟,每日1次,10次为1个疗程,疗程间隔5天,溃疡面积较大者采用分点分块依次照射,照射完后用碘伏纱或凡士林纱布覆盖溃疡面,对照组仅局部清创和外敷药物同时疗法,且每日换药一次,两组患者在治疗期停用其它一切药物治疗,并在治疗15天后进行疗效对比。 1.3 评定标准痊愈:溃疡面完全愈合、疱状消失;有效:溃疡面变浅,愈合面积极达1/2,自觉疱状明显减轻;无效:溃疡面及自觉疱状无好转。痊愈加显效例数的百分比为有效率。 1.4 统计学处理 计量资料以X±S 表示,均数比较采用 X2 检验。 2、结果 两组经过15天治疗后,两组痊愈率和有效率比较,差异均有显著性 x2=5.8413 p<0.05;x2 =4.61 p<0.05 见表1;两组患者痊愈平均时间比较,差异均有显著性p<0.05 见表2。 表1 治疗组与对照组痊愈率和有效率比较 组别痊愈显效好转无效有效率 治疗组 34(73.91) 6(13.04) 4(57.00) 2(4.35) 86.95 对照组 20(43.47) 10(21.74) 8(17.39) 8(17.39) 65.21 表2 治疗组与对照组痊愈平均时间比较 组别痊愈时间平均愈合时间 ≤5天 5--10天 10—15天 治疗组 17 11 6 6.94± 3.22 对照组 2 6 12 11.47±2.96 3、讨论 氦氖激光属低功率激光,其生物特性有(1)低输出率,对组织有较深的穿透力。(2)无光热效应,对组织结构无任何伤害,激光对组织产生的生物效应是由激光的生物刺激来实现的[1],而激光的生物刺激所引起的上皮细胞,成纤维细胞的增聚,以及激光对炎性细胞、微血管及神经未梢而刺激效应,是促进溃疡愈合的关键,大量研究表明:氦氖激光可促进照射部位的微血管扩张,血流加速,增加静脉回流,改善并纠正微循环障碍等。氦氖激光还具有激活酶的活性和氧代谢,从而促进组织新陈代谢,增加ATP,蛋白质,糖原合成,恢复细胞功能,为溃疡愈合提供能量和物质基础。近研究表明,氦氖激光照射后可增加免疫球蛋白和补体,提高机体免疫力[2]。总之,氦氖激光照射促进溃疡愈合,是氦氖激光照射的局部生物刺激效应加系统生物刺激效应而得到的综合生物刺激效应的结果[3]。本文的结果表明,治疗皮肤溃疡,氦氖激光疗效显著,无痛苦及副作用。 参考文献 [1]骆清铬.低功率激光治疗作用机理的探讨[J].中国激光医学杂志,1994,3(1):39-41. [2]高养华.氦氖激光的免疫学反应[J].激光杂志,1990,11(1):33-39. [3]杨淑兰,顾玉英,刘凡光.氦氖激光照射促进皮肤溃疡愈合研究现状[J].现代康复,2004,4(9):1382-1383.

相关文档
最新文档