新技术新工艺-细晶铸造

新技术新工艺-细晶铸造
新技术新工艺-细晶铸造

新技术新工艺--细晶铸造

细晶铸造

国外近二十年来集中力量发展了高温合金定向铸造和单晶铸造技术,主要是为了提高航空发动机高压涡轮叶片的高温工作能力,从而增大发动机的推力,并延长其工作寿命。与此同时,航空发动机的恶劣工况对在中低温条件下工作的低压涡轮叶片、整体叶盘和涡轮机匣等高温合金铸件的低周疲劳寿命提出了更高要求。但是这类铸件在普通熔模精铸工艺生产条件下,一般为粗大的树枝晶或柱状晶,晶粒平均尺寸大于4mm,较典型的为4~9mm。由于晶粒粗大及组织、性能上的各向异性,很容易导致铸件在使用过程中疲劳裂纹的产生和发展,这对于铸件的疲劳性能尤其是低周疲劳性能极为不利,并且造成铸件力学性能数据过于分散,降低了设计容限。随着对发动机的整体寿命和性能要求的进一步提高,改善铸件的中低温疲劳性能及其他力学性能显得十分重要。这便导致了细晶铸造技术的产生和发展。

工业发达国家,尤其是美国和德国,早在20世纪70年代末就开展了高温合金细晶铸造技术的研究和应用,在20世纪80年代中后期该项技术发展趋于成熟,目前正在航空、航天工业领域中扩大其应用范围,如美国Howmet公司利用细晶铸造技术成功地制造了Mod5A、Mar-M247、IN713C、1N718等高温合金整体涡轮,使涡轮的低周疲劳寿命提高了2~3倍。德国、法国在新型号航空发动机上也采用了细晶整体涡轮铸件。国内对高温合金细晶铸造技术的研究从20世纪80年代末开始起步,经过“八五”和“九五”期间的研究和应用,我国航空制造业建立了专门的细晶铸造设备,对高温合金细晶铸造工艺进行了较系统的试验,研制了一批镍基高温合金细晶铸件,并已应用于航空发动机中,在细晶铸造研究领域内取得了重要的进展。

1 细晶铸造的特点和工艺方法

1.1 细晶铸造的特点

细晶铸造技术或工艺(FGCP)的原理是通过控制普通熔模铸造工艺,强化合金的形核机制,在铸造过程中使合金形成大量结晶核心,并阻止晶粒长大,从而获得平均晶粒尺寸小于1.6mm的均匀、细小、各向同性的等轴晶铸件,较典型的细晶铸件晶粒度为美国标准ASTM0~2级。细晶铸造在使铸件晶粒细化的同时,还使高温合金中的初生碳化物和强化相γ'尺寸减小,形态改善。因此,细晶铸造的突出优点是大幅度地提高铸件在中低温(≤760℃)条件下的低周疲劳寿命,并显著减小铸件力学性能数据的分散度,从而提高铸造零件的设计容限。同时该技术还在一定程度上改善铸件抗拉性能和持久性能,并使铸件具有良好的热处理性能。

细晶铸造技术还可改善高温合金铸件的机加工性能,减小螺孔和刀刃形锐利边缘等处产生加工裂纹的潜在危险。因此该技术可使熔模铸件的应用范围扩大到原先使用锻件、厚板机加工零件和锻铸组合件等领域。在航空发动机零件的精铸生产中,使用细晶铸件代替某些锻件或用细晶铸造的锭料来做锻坯已很常见。

1.2 细晶铸造的工艺方法

细晶铸造晶核的增殖来源于合金液中已存在的或外加的固体形核基底成形核心作用,因此,细化晶粒的关键是增加合金液中的形核基底的数量。目前增加形核基底的数量的基本方法大致可分为三大类:热控法或改变铸造参数法(VCP法)、动力学法(或机械法)和化学法。这也是细晶铸造的三类基本工艺方法,如表1所示。

表1 细晶铸造的工艺方法

以达到限制晶粒长大和细化晶粒的

目的一般方法:旋转铸型法、机械振动法、超声波振动法、电磁搅动法等;(2)Grainex法、Mould-Agitation法;(3)

Microcast-X法

工艺参数

铸型温度(t型)、浇注温度)t浇)及精

炼温度(t精)等浇注温度(t铸)和铸型旋转振动参数(速

度、频率)以及铸型冷却速率等

精炼温度(t精)、形核剂加入量

及其加入制度等

晶粒细化典型

尺寸范围

1.60~0.18mm 0.36~0.07mm 1.25~0.12mm

优缺点工艺简单,但铸件容易欠铸、晶粒

度不均匀

晶粒度均匀、合金纯净度高、成形能

力好,但需要建立专用的细晶铸造设

工艺简单,但容易引进杂质、

改变合金成分

适用范围形状简单的小尺寸铸件回转体和厚大截面铸件形状简单的小尺寸铸件近年来美国Howmet公司研制和发展的Grainex(简称GX法)和Microcast-X(简称MX法)细晶工艺代表着国际先进水平的细晶铸造工艺方法,目前已投入生产应用。图1为GX、MX法的晶粒细化典型尺寸范围。

图1 MX、GX法的晶粒细化尺寸范围

其中GX法以动力学法为基础,是高温合金细晶铸造第一代动力学法工艺,它采用较高的过热温度,在合金凝固过程中打碎已凝固的枝晶骨架成为结晶核心,从而细化铸件晶粒。与热控法相比,GX法浇注过热度较大,因而使铸件薄壁部分容易成形,所获得

的铸件纯净度高,晶粒度细小而均匀,通常能达到ASTM0~2级。但晶粒形态仍保留着轻微的树枝状,其缺点是不能全面改善铸件的晶粒形态,仅使厚截面部位晶粒细化。这种方法适用于铸造叶盘和其他一些回转体铸件以及截面厚大的细晶铸件。MX法是Howmet公司开发的第二代动力学法细晶铸造工艺,其特点是将机械扰动与快速凝固相结合以获得晶粒更加细小的晶胞组织,用此法铸造的铸件晶粒度能达ASTM3~5级或更细,可与变形高温合金零件的晶粒度相媲美,因而能以比GX法更大的幅度提高铸件的力学性能。直到目前为止,该工艺仍属不公开的专利。但从有关资料分析,其工艺要点主要包括:①合金精炼后静止降温,使浇注过热度保持在20℃以内。②浇注时对合金液进行机械或电磁感应扰动,使合金液成细小的液滴流注入预热铸型的型腔。③在铸型内扰动合金液并提高铸型对合金液的冷却强度,使铸件在整个截面上都能生成均匀、细小、非枝晶的晶胞组织。MX法现主要用于生产镍基高温合金的熔模铸件、铸锭和可锻坯件。

在20世纪90年代中期国内研究和开发了属于动力学法范畴的细晶铸造工艺——铸型搅动法(Mould-Agitation法),简称MA法,并建立了ZGX-25型细晶铸造真空感应炉。利用该设备可铸造出外形尺寸达300mm、重量达50kg的细晶铸件。在该设备上不但能用化学法和热控法铸造细晶叶片、细晶整体结构件,而且还可用铸型搅动法生产出纯净度较高的细晶整体叶盘、涡轮等回转体铸件。其工艺原理与GX法相近,如图2所示。

图2 MA法工艺原理示意图

ZGX-25型细晶铸造炉具有预热铸型的加热器,并有能使铸型单向/双向旋转功能的机构。铸型搅动法(MA法)细化铸件晶粒基于在凝固过程中对枝晶破碎、增殖形核质点的原理。具体工艺步骤为:将模壳装卡在专用的铸型系统中,并预热至规定的型壳温度。在对合金熔液精炼干净后,调整好浇注温度,然后浇入型壳中,静止一段时间后,铸型双向搅动,直到凝固完毕。

在金属液凝固过程中,通过铸型搅动使铸型壁上最初形成的枝晶被破碎,破碎的枝

晶分布于整个合金液中,因而创造了有效的形核核心,导致铸件产生细小、均匀和等轴的晶粒。此外,铸型中心到铸型壁的热梯度得到降低,因此不管铸件截面厚度如何变化,都能获得较均匀的等轴晶。

铸型搅动法主要控制的搅动参数为:浇注后合金液在铸型内的静止时间τ静;正转/反转的时间τ正反;正转反转之间换向时间τ换;正转/反转的转速v正反;双向转动的总时间为τ总。实验中通过变化合金的浇注过热温度Δt浇及搅动参数来得到不同的晶粒度。

铸型搅动工艺的优点在于采用比热控法细晶工艺高得多的浇注温度,因而铸件纯净度高,薄壁部位容易成形。相比之下,传统的热控法细晶铸造工艺和硼化物沉淀工艺主要依赖于很低的浇注温度,因而导致了非金属夹杂物的诱入。

2 细晶铸造举例

采用铸型搅动法细晶铸造生产了某航空发动机上在中温条件(470~750℃)下使用的整体涡轮。该整体涡轮直径为147mm,铸件毛重10.5kg,用K418B镍基高温合金铸造,其主要化学成分见表2。

熔模型壳用硅酸乙酯-刚玉砂制壳工艺制成。合金的熔炼和浇注在自制的ZGX-25型细晶铸造真空感应炉内进行。铸型在炉内可双向旋转,对注入型腔内的合金液体施加双向搅动作用。细晶铸造的工艺参数见表3。

表2 K418B合金主要化学成分(质量分数,%)

表3 K418B合金整体涡轮的细晶铸造工艺参数

细晶涡轮经过热等静压(HIP)和热处理。热等静压工艺为:1200℃/150MPa/4h;热处理工艺为:1180℃,2h,空冷+930℃,16h,空冷。在热处理后涡轮的轮毂部位沿轴向切取性能试棒,测定室温和高温抗拉性能、高温持久性能和低周疲劳性能。低周疲劳试验在美国MTS-809电液伺服闭环回路疲劳试验机上进行。为了便于比较,从K418B合金普通铸造涡轮上切取试棒,其处理工艺、测试条件与细晶涡轮相同。

1.细晶铸造对铸件晶粒度形态及显微组织的改善在上述细晶铸造工艺条件下,所获得的K418B合金细晶涡轮各部位晶粒度列于表4。它与普通铸造条件下的涡轮晶粒度对比示于图3。

(工艺技术)第章铸造工艺设计基础

第1章铸造工艺设计基础 § 1-1零件结构的铸造工艺性分析 § 1-2铸造工艺方案的确定 § 1-3铸造工艺参数的确定 § 1-4砂芯设计 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的 前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知 识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 § 1-1零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化 铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1 .铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1 )壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1?表7-5 表1-1砂型铸造时铸件最小允许壁厚(单位:mm) 合金种类铸件最大轮廓尺寸为下列值时/ mm

细晶强化的机理及其应用

J I A N G S U U N I V E R S I T Y 材料强化与质量评定细晶强化的机理及其应用 Fine-grain strengthening mechanism and its application 学院名称:机械工程学院 专业班级:机械1402 学生姓名:XX 指导教师姓名:XX 指导教师职称:副教授 2015年8 月

细晶强化的机理及其应用 摘要:通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性[1]。因此,在实际使用中,人们常用细晶强化的方法来提高金属的力学性能。 关键词:定义、细晶强化机制、细化晶粒本质与途径、细晶强化新方法Fine-grain strengthening mechanism and its application Abstract: polycrystal metal is usually composed of many grain, grain size can be used to represent the number of grain per unit volume, the more the number, grain is fine. Experiments show that the fine grained metal at room temperature than coarse grain metal has higher strength, hardness, plasticity and toughness . Therefore, in the practical use, people often use fine-grain strengthening method to increase mechanical properties of the metal. Keywords:definition, fine-grain strengthening mechanism, refining grain essence new methods and ways, fine-grain strengthening 1引言 通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化[2]。 细晶强化机制包括提高塑性机制和提高强度机制。提高塑性的机制是:晶粒越细,在一定体积内的晶粒数目越多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较为均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度的机制是[3]:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 细化晶粒本质[4]:形成足够多的晶核,使它们在尚未显著长大时便相互接触,完成结晶过程。

熔模铸造工艺流程

熔模铸造工艺流程

模料 制熔模用模料为日本牌号:K512模料 模料主要性能: 灰分≤0.025% 铁含量灰分的10% ≤0.0025% 熔点83℃-88℃(环球法)60℃±1℃ 针入度100GM(25℃)3.5-5.0DMM 450GM(25℃)14.0-18.0DMM 收缩率0.9%-1.1% 比重0.94-0.99g/cm3 颜色新蜡——兰色、深黄色 旧蜡——绿色、棕色 蜡(模)料处理 工艺参数: 除水桶搅拌时温度110-120℃ 搅拌时间8-12小时 静置时温度100-110℃ 静置时间6-8小时 静置桶静置温度70-85℃ 静置时间8-12小时 保温箱温度48-52℃ 时间8-24小时 二、操作程序 1、从脱蜡釜泄出的旧蜡用泵或手工送到除水桶中,先在105-110℃下置6-8小时沉淀,将水分泄掉。

2、蜡料在110-120℃下搅拌8-12小时,去除水份。 3、将脱完水的蜡料送到70-85℃的静置桶中保温静置桶中保温静置8-12小时。 4、也可将少量新蜡加入静置桶中,静置后清洁的蜡料用手工灌到保温箱蜡缸中,保温温度48-52℃,保温时间8-24小时后用于制蜡模。 5、或把静置桶中的回收蜡料输入到气动蜡模压注机的蜡桶中,保温后压制浇道。 三、操用要点 1、严格按回收工艺进行蜡料处理。 2、除水桶、静置桶均应及时排水、排污。 3、往蜡缸灌蜡时,蜡应慢没缸壁流入,防止蜡液中进入空气的灰尘。 4、蜡缸灌满后应及时盖住,避免灰尘等杂物落入。 5、经常检查每一个桶温,防止温度过高现象发生。 6、作业场地要保持清洁。 7、防止蜡液飞溅。 8、严禁焰火,慎防火灾。 压制蜡(熔)模 一、工艺参数 室温20-24℃压射蜡温50-55℃ 压射压力0.2-0.5Mpa 保压时间10-20S 冷却水温度15±3℃ 二、操作程序 1、从保温槽中取出蜡缸,装在双工位液压蜡模压注机上,使用前应去除蜡料中空气及 硬蜡。 2、将模具放在压注机工作台面上定位,检查模具所有芯子位置是否正确,模具注蜡口 与压注机射蜡嘴是否对正。 3、检查模具开合是否顺利。 4、打开模具,喷薄薄一层分型剂。 5、按照技术规定调整压注机时间循环,包括压射压力、压射温度、保压时间、冷却时 间等。

最新(原文)细晶强化的机理及其应用

细晶强化的机理及其应用 摘要:本文讲述了细晶强化的含义及其微观机理,介绍了三种推导Hall-Petch关系式的物理模型,并说明了微量碳在钢铁材料中细晶强化时对Hall-Petch关系式中σ0和k的影响。本文还介绍了一种细晶强化金属材料的新方法-不对称挤压法。 关键词:细晶强化,Hall-Petch关系式,位错。 1 引言 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。 细晶强化的关键在于晶界对位错滑移的阻滞效应。位错在多晶体中运动时,由于晶界两侧晶粒的取向不同,加之这里杂质原子较多,也增大了晶界附近的滑移阻力,因而一侧晶粒中的滑移带不能直接进入第二个晶粒,而且要满足晶界上形变的协调性,需要多个滑移系统同时动作。这同样导致位错不易穿过晶界,而是塞积在晶界处,引起了强度的增高。可见,晶界面是位错运动的障碍,因而晶粒越细小,晶界越多,位错被阻滞的地方就越多,多晶体的强度就越高,已经有大量实验和理论的研究工作证实了这一点。另外,位错在晶体中是三维分布的,位错网在滑移面上的线段可以成为位错源,在应力的作用下,此位错源不断放出位错,使晶体产生滑移。位错在运动的过程中,首先必须克服附近位错网的阻碍,当位错移动到晶界时,又必须克服晶界的障碍,才能使变形由一个晶粒转移到另一个晶粒上,使材料产生屈服。因此,材料的屈服强度取决于使位错源运动所需的力、位错网给予移动位错的阻力和晶界对位错的阻碍大小。晶粒越细小,晶界就越多,障碍也就越大,需要加大外力才能使晶体产生滑移。所以,晶粒越细小,材料的屈服强度就越大。 细化晶粒是众多材料强化方法中唯一可在提高强度的同时提高材料塑性、韧性的强化方法。其提高塑性机制为:晶粒越细,在一定体积内的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度机制为:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 2 细晶强化的经典理论 一般而言,细晶试样不但强度高,而且韧性也好。所以细晶强化成为金属材料的一种重要强化方式,获得了广泛的应用。在大量试验基础上,建立了晶粒大小与金属强度的定量关系的一般表达式为: σy=σ0+kd-n (1)式中,σy为流变应力,σ0为晶格摩擦力,d为晶粒直径,k为与材料有关的参数,指数n常

熔模铸造工艺流程-图文.

熔模铸造工艺流程 模具制造 制溶模及浇注系 统 模料处理 模组焊接 模组清洗 上涂料及撒砂 涂料制备 重

复 型壳干燥(硬化 多 次 脱蜡 型壳焙烧 浇注 熔炼 切 割 浇 口 抛 光 或 机

工 钝化 修整焊补 热处理 最后清砂 喷丸或喷砂 磨内

口 震 动 脱 壳 模料 制熔模用模料为日本牌号:K512模料 模料主要性能: 灰分≤0.025% 铁含量灰分的10% ≤0.0025% 熔点 83℃-88℃(环球法)60℃±1℃ 针入度 100GM(25℃)3.5-5.0DMM 450GM(25℃)14.0-18.0DMM 收缩率 0.9%-1.1% 比重 0.94-0.99g/cm3 颜色新蜡——兰色、深黄色 旧蜡——绿色、棕色

蜡(模)料处理 工艺参数: 除水桶搅拌时温度 110-120℃ 搅拌时间 8-12小时 静置时温度 100-110℃ 静置时间 6-8小时 静置桶静置温度 70-85℃ 静置时间 8-12小时 保温箱温度 48-52℃ 时间 8-24小时 二、操作程序 1、从脱蜡釜泄出的旧蜡用泵或手工送到除水桶中,先在105-110℃下置6-8小时沉淀,将水分泄掉。 2、蜡料在110-120℃下搅拌8-12小时,去除水份。 3、将脱完水的蜡料送到70-85℃的静置桶中保温静置桶中保温静置8-12小时。 4、也可将少量新蜡加入静置桶中,静置后清洁的蜡料用手工灌到保温箱蜡缸中,保温温度48-52℃,保温时间8-24小时后用于制蜡模。

5、或把静置桶中的回收蜡料输入到气动蜡模压注机的蜡桶中,保温后压制浇道。 三、操用要点 1、严格按回收工艺进行蜡料处理。 2、除水桶、静置桶均应及时排水、排污。 3、往蜡缸灌蜡时,蜡应慢没缸壁流入,防止蜡液中进入空气的灰尘。 4、蜡缸灌满后应及时盖住,避免灰尘等杂物落入。 5、经常检查每一个桶温,防止温度过高现象发生。 6、作业场地要保持清洁。 7、防止蜡液飞溅。 8、严禁焰火,慎防火灾。 压制蜡(熔)模 一、工艺参数 室温20-24℃压射蜡温50-55℃ 压射压力0.2-0.5Mpa 保压时间10-20S 冷却水温度15±3℃ 二、操作程序

熔模铸造的工艺流程

熔模铸造的工艺流程 时间:2010-04-21 10:18来源:unknown 作者:36 点击:9次 2009年07月15日 熔模铸件尺寸精度较高,一般可达DT4-6(砂型铸造为DT10~13,压铸为 DT5~7),当然由于熔模铸造的工艺过程复杂,影响铸件尺寸精 2009年07月15日 熔模铸件尺寸精度较高,一般可达DT4-6(砂型铸造为DT10~13,压铸为 DT5~7),当然由于熔模铸造的工艺过程复杂,影响铸件尺寸精度的因素较多,例如模料的收缩、熔模的变形、型壳在加热和冷却过程中的线量变化、合金的收缩率以及在凝固过程中铸件的变形等,所以普通熔模铸件的尺寸精度虽然较高,但其一致性仍需提高(采用中、高温蜡料的铸件尺寸一致性要提高很多)。压制熔模时,采用型腔表面光洁度高的压型,因此,熔模的表面光洁度也比较高。此外,型壳由耐高温的特殊粘结剂和耐火材料配制成的耐火涂料涂挂在熔模上而制成,与熔融金属直接接触的型腔内表面光洁度高。所以,熔模铸件的表面光洁度比一般铸造件的高,一般可达Ra.1.6~3.2μm。熔模铸造最大的优点就是由于熔模铸件有着很高的尺寸精度和表面光洁度,所以可减少机械加工工作,只是在零件上要求较高的部位留少许加工余量即可,甚至某些铸件只留打磨、抛光余量,不必机械加工即可使用。由此可见,采用熔模铸造方法可大量节省机床设备和加工工时,大幅度节约金属原材料。 熔模铸造方法的另一优点是,它可以铸造各种合金的复杂的铸件,特别可以铸造高温合金铸件。如喷气式发动机的叶片,其流线型外廓与冷却用内腔,用机械加工工艺几乎无法形成。用熔模铸造工艺生产不仅可以做到批量生产,保证了铸件的一致性,而且避免了机械加工后残留刀纹的应力集中。中国精密铸造、中国铜合金精密铸造、中国不锈钢铸造生产企业,新疆精密铸造欢迎您。 1)适应范围广。铸造法几乎不受铸件大小、厚薄和形状复杂程度的限制 , 铸造的壁厚可达 0.3 ~ 1000mm, 长度从几毫米到十几米 , 质量从几克到 300t 以上。最适合生产形状复杂 , 特别是内腔复杂的零件 , 例如复杂的箱体、阀体、叶轮、发动机汽缸体、螺旋桨等。 2)铸造法能采用的材料广 , 几乎凡能熔化成液态的合金材料均可用于铸造。如铸钢、铸铁飞各种铝合金、铜合金、续合金、铁合金及钵合金等铸件。对于塑性较差的脆性合金材料 ( 如普通铸铁等 ) , 铸造是惟一可行的成形工艺 , 在工业生产中以铸铁件应用最广 , 约占铸件总产量的 70% 以上。 3)铸件具有一定的尺寸精度。一般情况下 , 比普通锻件、焊接件成形尺寸精确。 4)成本低廉、综合经济性能好、能源、材料消耗及成本为其它金属成形方法所不及。

铸造工艺设计基础

铸造工艺设计基础 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5 砂型铸造时铸件最小允许壁厚(单位:㎜)1-1 表

砂型铸造工艺流程

砂型铸造工艺流程 砂型铸造工艺流程图 制作木模-造型-熔化-浇注-落砂-冒口拆除-检验入库 熔模铸造工艺 失蜡铸造现在称为熔模铸造。这是一种很少切割或不切割的铸造工艺,是铸造行业的一项优秀技术。它被广泛使用。它不仅适用于各种类型和合金的铸造,而且可以生产出比其他铸造方法具有更高尺寸精度和表面质量的铸件,甚至复杂的、耐高温的、难以加工的、其他铸造方法难以铸造的铸件也可以通过熔模精密铸造来铸造。 熔模铸造是在古代蜡模铸造的基础上发展起来的。作为一个古老的文明,中国是最早使用这项技术的国家之一。早在公元前几百年,中国古代劳动人民就创造了这种失传的铸蜡技术,用来铸造钟鼎和具有各种精美图案和文字的器皿,如春秋时期曾侯乙墓的青铜板。曾侯乙墓雕像板的底座是多条龙缠绕在一起,首尾相连,上下交错,形成一个中间镂空的多层云纹图案。这些图案很难用普通的铸造工艺来制作,而失蜡法的铸造工艺可以利用石蜡无强度、易雕刻的特点,用普通的工具雕刻出与曾侯乙墓的雕像板相同的石蜡工艺品,然后加入浇注系统,经过上漆、脱蜡、浇注,得到精美的曾侯乙雕像板 现代熔模铸造法在20世纪40年代实际应用于工业生产当时,航空喷气发动机的发展要求制造具有复杂形状、精确尺寸和光滑表面的耐热合金部件,如叶片、叶轮和喷嘴。由于耐热合金材料难以加工,零件形状复杂,因此不可能或难以用其他方法制造。因此,需要找到一

种新的精确的成型工艺。因此,现代熔模铸造法借鉴了古代传下来的失蜡铸造法,通过对 材料和工艺的改进,在古代工艺的基础上取得了重要的发展。因此,航空工业的发展促进了熔模铸造的应用,熔模铸造的不断改进也为航空工业进一步提高性能创造了有利条件。 中国在20世纪50年代和60年代开始将熔模铸造应用于工业生产此后,这种先入为主的铸造技术得到了极大的发展,并已广泛应用于航空、汽车、机床、船舶、内燃机、燃气轮机、电信仪器、武器、医疗器械、切割工具等制造业,以及工艺品的制造。所谓的 熔模铸造工艺简单地指用易熔材料(如蜡或塑料)制作易熔模型(称为熔模或模型),在其上涂覆几层特殊的耐火涂层,干燥并硬化形成整体外壳,然后用蒸汽或温水将外壳上的模型熔化,然后将外壳放入砂箱中,在其周围填充干砂,最后将模具放入穿透式烘烤器中进行高温烘烤(例如,当使用高强度外壳时,脱模后的外壳可以不造型直接烘烤)、模具或外壳 熔模铸件尺寸精度高,一般可达CT4-6(砂型铸造CT10~13,压铸CT5~7)。当然,由于熔模铸造工艺过程复杂,影响铸件尺寸精度的因素很多,如模具材料的收缩、熔模的变形、加热和冷却过程中模壳的线性变化、合金的收缩率以及铸件在凝固过程中的变形等。因此,普通熔模铸件的尺寸精度相对较高,但其一致性仍有待提高(使用中高温蜡材料的铸件的尺寸一致性有待提高)用 压制熔体模具时,采用型腔表面光洁度高的型材,因此熔体模具的

铸造工艺基础要点

铸造工艺基础知识 一、铸造方法 常见的铸造方法有以下几种: 1、砂型铸造:砂型铸造是将原砂和粘结剂、辅助材料按一定比例混 制好以后,用模型造出砂型,浇入液体金属而形成铸 件的一种方法。砂型铸造是应用最普遍的一种铸造方 法。 2、熔模铸造:熔模铸造又称“失蜡铸造”,通常是在蜡模表面涂上数 层耐火材料,待其硬化干燥后,将其中的蜡模熔去而 制成型壳,再经过焙烧,然后进行浇注,而获得铸件 的一种方法。由于获得的铸件具有较高的尺寸精度和 表面粗糙度,所以又称“熔模精密铸造”。 3、金属型铸造:金属型铸造又称硬模铸造,它是将液体金属用重力 浇注法浇入金属铸型,以获得铸件的一种铸造方法。 所以又称“重力铸造”。 4、低压铸造:低压铸造是液体金属在压力作用下由下而上的充填型 腔,以形成铸件的一种方法。由于所用的压力较低, 所以叫低压铸造。 5、压力铸造:压力铸造简称压铸,是在高压作用下,使液态或半液 态金属以较高的速度充填压铸型型腔,并在压力作用 下凝固而获得铸件的一种方法。

6、离心铸造:离心铸造是将液体金属浇入旋转的铸型中,使液体金 属在离心力的作用下充填铸型和凝固成形的一种铸造 方法。 7、连续铸造:连续铸造是将熔融的金属不断浇入一种叫做结晶器的 特殊金属型中,凝固了的铸件连续不断的从结晶器的 另一端拉出,从而获得任意长度或特定长度铸件的一 种方法。 8、消失模铸造:消失模铸造是采用泡沫气化模造型,浇注前不用取 出模型,直接往模型上浇注金属液,模型在高温下 气化,腾出空间由金属液充填成型的一种铸造方法。 也叫“实型铸造”。 二、零件结构的铸造工艺性分析 零件结构的铸造工艺性通常指的是零件的本身结构应符合铸造生产的要求,既便于整个铸造工艺过程的进行,又利于保证产品质量。 对产品零件图进行分析有两方面的作用:第一,审查零件结构是否符合铸造生产的工艺要求。因为零件的设计者往往不完全了解铸造工艺。如发现结构设计有不合理的地方,就要与有关方面进行研究,在不影响使用要求的前提下,予以改进。这对简化工艺过程、保证质量及降低成本均有极大作用。第二,在既定的零件结构条件下,考虑在铸造过程中可能出现的主要缺陷,在工艺设计中采取相应工艺措施予以避免。 (一)从避免缺陷方面审查铸件结构的合理性

熔模铸造型壳强度与硬化工艺改进

熔模铸造型壳强度与硬化工艺改进 作者:东风汽车公司精密铸造厂李海树 摘要:通过对型壳强度性能的要求与不同硬化剂的分析,在粘结剂和耐火材料不变的情况下,应用氯化铵与结晶氯化铝混合硬化工艺,取得较好的经济效果。关键词:熔模铸造型壳强度硬化剂 制造型壳是熔模铸造工艺中的一个关键工序,它不仅决定着铸件的尺寸精度和表面粗糙度,而且直接影响铸件的制造成本和生产效率。多年的实践证明,由于型壳残留强度大,给铸件清砂与碱煮工序带来困难,我厂每年碱煮工序消耗蒸气4 688.6 t(费用达25.79万元),烧碱26.8 t(费用达9.28万元),制壳工序消耗结晶氯化铝162.14 t(费用达42.16万元),占用了大量的生产资金。因此,对影响型壳强度性能的结晶氯化铝硬化工艺进行了改进,应用氯化铵与结晶氯化铝混合硬化工艺,并取得较好的经济效果。 1型壳强度与硬化剂的关系分析 从制壳、浇注到清理的不同工艺阶段,型壳有三种不同的强度指标,即常温强度、高温强度和残留强度。三种强度之间有一定的关系,但形成机制和影响因素不完全相同。例如:若常温强度不足,在制壳过程中易掉件,在脱蜡过程中易变形或破裂;若高温强度不足,在焙烧和浇注过程中会发生型壳变形和跑火(漏钢);若残留强度过高,直接影响型壳的脱壳性和铸件清砂的难易程度。 如何调整型壳三种强度间的关系,使其具有高的常温强度、足够的高温强度和尽可能低的残留强度是我们所希望的。根据制壳工艺的现状,在粘结剂和耐火材料不变的情况下,对常用硬化剂的分析与改进十分必要。 1.1氯化铵硬化剂的特点分析 氯化铵作为水玻璃型壳的硬化剂,其硬化反应式如下: 2NH4Cl+Na2O.mSiO2.nH2O→ mSiO2.(n-1)H2O+2NaCl+2NH3↑+2H2O 反应结果生成的SiO2胶体将型壳中的石英粉和砂粒牢固地粘结在一起,使型壳获得强度。 氯化铵是应用最早的水玻璃型壳硬化剂,其主要优点是扩散硬化速度快,制壳周期短,型壳残留强度低,脱壳性好。同结晶氯化铝硬化剂相比,型壳高温强度差,存放期间容易生茸毛,硬化反应时析出氨气污染空气,劳动条件差,设备腐蚀比较严重。 1.2结晶氯化铝硬化剂的特点分析 结晶氯化铝作为水玻璃型壳的硬化剂,在硬化过程中,氯化铝与水玻璃是相互中

铸造工艺设计步骤

铸造工艺设计: 就是根据铸造零件的结构特点,技术要求,生产批量和生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程.设计依据: 在进行铸造工艺设计前,设计者应掌握生产任务和要求,熟悉工厂和车间的生产条件,这些是铸造工艺设计的基本依据.设计内容: 铸造工艺设计内容的繁简程度,主要决定于批量的大小,生产要求和生产条件.一般包括下列内容: 铸造工艺图,铸件(毛坯)图,铸型装配图(合箱图),工艺卡及操作工艺规程.设计程序: 1零件的技术条件和结构工艺性分析;2选择铸造及造型方法;3确定浇注位置和分型面;4选用工艺参数;5设计浇冒口,冷铁和铸肋;6砂芯设计;7在完成铸造工艺图的基础上,画出铸件图;8通常在完成砂箱设计后画出;9综合整个设计内容.铸造工艺方案的内容: 造型,造芯方法和铸型种类的选择,浇注位置及分型面的确定等.铸件的浇注位置是指浇注时铸件在型内所处的状态和位置.分型面是指两半铸型相互接触的表面.确定砂芯形状及分盒面选择的基本原则,总的原则是: 使造芯到下芯的整个过程方便,铸件内腔尺寸精确,不至造成气孔等缺陷,使芯盒结构简单.1保证铸件内腔尺寸精度;2保证操作方便;3保证铸件壁厚均匀;4应尽量减少砂芯数目;5填砂面应宽敞,烘干支撑面是平面;6砂芯形状适应造型,制型方法.铸造工艺参数通常是指铸型工艺设计时需要确定的某些数据.1铸件尺寸公差: 是指铸件各部分尺寸允许的极限偏差,它取决于铸造工艺方法等多种因素.2主见重量公差定义为以占铸件公称质量的百分率为单位的铸件质量变动的允许值.3机械加工余量: 铸件为保证其加工面尺寸和零件精度,应有加工余量,即在铸件工艺设计时预先增加的,而后在机械加工时又被切去的金属层厚度,称为机械加工余量,简称加工余量.代号用MA,由精到粗分为ABCDEFGH和J9个等级。

熔模铸造工艺流程

熔 模 铸 造 工 艺 流 程 料 模料 主 要 性 能: 灰 分 ≤0.025% 铁含量 灰分的10% ≤0.0025% 熔 点 83℃-88℃(环球法)60℃±1℃ 针入度 100GM (25℃)3.5-5.0DMM 450GM (25℃)14.0-18.0DMM 收缩率 0.9%-1.1% 比 重 0.94-0.99g/cm 3 颜 色 新蜡——兰色、深黄色 旧蜡——绿色、棕色 蜡(模)料处理 工艺参数: 除水桶 搅拌时温度 110-120℃ 搅拌时间 8-12小时 静置时温度 100-110℃ 静置时间 6-8小时 静置桶 静置温度 70-85℃ 静置时间 8-12小时 保温箱 温 度 48-52℃ 时 间 8-24小时 二、操作程序

1、从脱蜡釜泄出的旧蜡用泵或手工送到除水桶中,先在105-110℃下置6-8小时沉淀,将水分泄掉。 2、蜡料在110-120℃下搅拌8-12小时,去除水份。 3、将脱完水的蜡料送到70-85℃的静置桶中保温静置桶中保温静置8-12小时。 4、也可将少量新蜡加入静置桶中,静置后清洁的蜡料用手工灌到保温箱蜡缸中,保温温度 48-52℃,保温时间8-24小时后用于制蜡模。 5、或把静置桶中的回收蜡料输入到气动蜡模压注机的蜡桶中,保温后压制浇道。 三、操用要点 1、严格按回收工艺进行蜡料处理。 2、除水桶、静置桶均应及时排水、排污。 3、往蜡缸灌蜡时,蜡应慢没缸壁流入,防止蜡液中进入空气的灰尘。 4、蜡缸灌满后应及时盖住,避免灰尘等杂物落入。 5、经常检查每一个桶温,防止温度过高现象发生。 6、作业场地要保持清洁。 7、防止蜡液飞溅。 8、严禁焰火,慎防火灾。 压制蜡(熔)模 一、工艺参数 室温20-24℃压射蜡温50-55℃ 压射压力0.2-0.5Mpa 保压时间10-20S 冷却水温度15±3℃ 二、操作程序 1、从保温槽中取出蜡缸,装在双工位液压蜡模压注机上,使用前应去除蜡料中空气及硬 蜡。 2、将模具放在压注机工作台面上定位,检查模具所有芯子位置是否正确,模具注蜡口与压 注机射蜡嘴是否对正。 3、检查模具开合是否顺利。 4、打开模具,喷薄薄一层分型剂。 5、按照技术规定调整压注机时间循环,包括压射压力、压射温度、保压时间、冷却时间 等。 6、每次循环完毕,抽出芯子,打开模具,小心取出蜡模,按要求放入冷却水中或存放盘 中。注意有下列缺陷的蜡模应报废: A因模料中卷入空气,蜡模局部有鼓起的;B蜡模任何部位有缺角的; C蜡模有变形不能简单修复的;D尺寸不符合规定的。 7、清除模具上残留的模料,注意只能用竹刀,不可用金属刀片清除残留模料,防止模具型腔 及分型面受损。 8、合上模具,进行下次压制蜡模。 每班下班或模具使用完毕,应用软布或棉棒清理模具,使用螺钉紧固好模具。 9、如发现模具有损伤或不正常,应立即报告领班,由领班处理。

原文细晶强化的机理及其应用

细晶强化的机理及其应用 摘要:本文讲述了细晶强化的含义及其微观机理,介绍了三种推导Hall-Petch关系式的物理模型,并说明了微量碳在钢铁材料中细晶强化时对Hall-Petch关系式中σ0和k的影响。本文还介绍了一种细晶强化金属材料的新方法-不对称挤压法。 关键词:细晶强化,Hall-Petch关系式,位错。 1 引言 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。 细晶强化的关键在于晶界对位错滑移的阻滞效应。位错在多晶体中运动时,由于晶界两侧晶粒的取向不同,加之这里杂质原子较多,也增大了晶界附近的滑移阻力,因而一侧晶粒中的滑移带不能直接进入第二个晶粒,而且要满足晶界上形变的协调性,需要多个滑移系统同时动作。这同样导致位错不易穿过晶界,而是塞积在晶界处,引起了强度的增高。可见,晶界面是位错运动的障碍,因而晶粒越细小,晶界越多,位错被阻滞的地方就越多,多晶体的强度就越高,已经有大量实验和理论的研究工作证实了这一点。另外,位错在晶体中是三维分布的,位错网在滑移面上的线段可以成为位错源,在应力的作用下,此位错源不断放出位错,使晶体产生滑移。位错在运动的过程中,首先必须克服附近位错网的阻碍,当位错移动到晶界时,又必须克服晶界的障碍,才能使变形由一个晶粒转移到另一个晶粒上,使材料产生屈服。因此,材料的屈服强度取决于使位错源运动所需的力、位错网给予移动位错的阻力和晶界对位错的阻碍大小。晶粒越细小,晶界就越多,障碍也就越大,需要加大外力才能使晶体产生滑移。所以,晶粒越细小,材料的屈服强度就越大。 细化晶粒是众多材料强化方法中唯一可在提高强度的同时提高材料塑性、韧性的强化方法。其提高塑性机制为:晶粒越细,在一定体积内的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度机制为:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 2 细晶强化的经典理论 一般而言,细晶试样不但强度高,而且韧性也好。所以细晶强化成为金属材料的一种重要强化方式,获得了广泛的应用。在大量试验基础上,建立了晶粒大小与金属强度的定量关系的一般表达式为: σy=σ0+kd-n (1)

熔模铸造工艺操作流程及操作要点

熔模铸造工艺操作流程及操作要点 所谓熔模工艺,简单说就是用易熔材料(例如蜡料或塑料)制成可熔性模型(简称熔模或模型),在其上涂覆若干层特制的耐火涂料,经过干燥和硬化形成一个整体型壳后,再用蒸汽或热水从型壳中熔掉模型,然后把型壳置于砂箱中,在其四周填充干砂造型,最后将铸型放入焙烧炉中经过高温焙烧(如采用高强度型壳时,可不必造型而将脱模后的型壳直接焙烧),铸型或型壳经焙烧后,于其中浇注熔融金属而得到铸件。 熔模铸造工艺操作程序 1、从保温槽中取出蜡缸,装在双工位液压蜡模压注机上,使用前应去除蜡料中空气及硬蜡。 2、将放在压注机工作台面上定位,检查模具所有芯子位置是否正确,模具注蜡口与压注机射蜡嘴是否对正。 3、检查模具开合是否顺利。 4、打开模具,喷薄薄一层分型剂。 5、按照技术规定调整压注机时间循环,包括压射压力、压射温度、保压时间、冷却时间等。 6、每次循环完毕,抽出芯子,打开模具,小心取出蜡模,按要求放入冷却水中或存放盘中。 注意有下列缺陷的蜡模应报废: A 因模料中卷入空气,蜡模局部有鼓起的; B 蜡模任何部位有缺角的; C 蜡模有变形不能简单修复的; D 尺寸不符合规定的。 7、清除模具上残留的模料,注意只能用竹刀,不可用金属刀片清除残留模料,防止模具型腔及分型面受损。 8、合上模具,进行下次压制蜡模。每班下班或模具使用完毕,应用软布或棉棒清理模具,使用螺钉紧固好模具。9、如发现模具有损伤或不正常,应立即报告领班,由领班处理。 熔模铸造工艺操作要点 1、模具型腔不要喷过多的分型剂。 2、压制熔(蜡)模循环参数建立后,不要轻易变动。如压出的蜡模质量有问题,必须立即

五大细晶强化

金属强化机制 一.固溶强化 通过溶入某种溶质元素形成固溶体(固溶体:就是固体溶液,是溶质原子溶入溶剂中所形成的晶体,保持溶剂元素的晶体结构)而使金属强度硬度提高的现象称为固溶强化。分为间隙固溶强化(尺寸比较小的间隙原子引起的强化如:Fe 与 C ,N ,O ,H 形成间隙固溶体)和置换固溶强化(尺寸比较大的置换原子引起的强化如:Fe与Mn、Si 、Al 、Cr 、Ti 、Nb等形成置换固溶体)。 1.固溶强化机制: 运动的位错与溶质原子之间的交互作用的结果。 由于形成固溶体的溶质原子和溶剂原子的尺寸和性质不同,溶质原子的溶入必然引起一些现象,例如:溶质原子聚集在位错周围钉扎住位错(弹性交互作用);溶质原子聚集在层错处,阻碍层错的扩展与束集(化学交互作用);位错与溶质间形成偶极子(电学交互作用)。这些现象都增加了位错运动的阻力,使金属的滑移变形变得更加困难,从而提高了金属的强度和硬度。 2.固溶强化的规律: (1)溶质元素在溶剂中的饱和溶解度愈小,其固溶强化效果愈好 (2)溶质元素溶解量增加,固溶体的强度也增加 例如:对于无限固溶体,当溶质原子浓度为50%时强度最大;而对于有限固溶体,其强度随溶质元素溶解量增加而增大 (3)形成间隙固溶体的溶质元素(如C、N、B等元素在Fe中)其强化作用大于形成置换固溶体(如Mn、Si、P等元素在Fe中)的溶质元素。但对韧性、塑性的削弱也很显著,而

置换式固溶强化却基本不削弱基体的韧性和塑性。 (4)溶质与基体的原子大小差别愈大,强化效果也愈显著。 3. 实例: 纯Cu 中加入19%的Ni ,可使合金的强度由220MPa 提高到380~400MPa ,硬度由44HBS 升高到70HBS ,而塑性由70%降低到50%,降幅不大。若按其它方法(如冷变形加工硬化)获得同样的强化效果,其塑性将接近完全丧失。 二. 细晶强化 金属的晶粒越细,单位体积金属中晶界和亚晶界面积越大,金属的强度越高,这就是细晶强化,主要分为晶界强化和亚晶界强化两大类。 (1) 晶界强化 实验证明,金属的屈服强度与其晶粒尺寸之间有下列关系: 此式称为霍耳-配奇公式(Hall-Petch 公式)。 式中: σi ——为常数,相当于单晶体的屈服强度; D ——为多晶体中各晶粒的平均直径; K ——为晶界对强度影响程度的常数,与晶界结构有关。 σs ——开始发生塑性变形的最小应力 σi 包含着不可避免的残留元素如Mn 、Si 、N 等对位错滑动的阻力。对于铁素体一珠光体组织的低碳钢经过实验确定了这些元素的作用,因此Hall —Petch 公式可以改写为: 式中各元素含量以百分含量代入,各项的系数也就是这些元素的固溶强化系数,即每1%重量百分数可以提高的屈服强度。σ0为单晶纯铁的屈服强度,实际上铁中总是含有微量碳的。σ0值随不同的处理而异。空冷时σ0 =86.24MPa ,炉冷时为60.76MPa 。D 为等轴铁素体晶粒平均截线长,以mm 为单位。 铁素体晶粒细化对提高屈服强度的效果是明显的,D 小时,D 的很小变化将使D -1/2产生较大的变化。上式适用于钢中珠光体含量<30%的组织。 当珠光体量大于30%时,珠光体对材料强度的影响不能忽视,Hall —Petch 公式可以改写为 式中f F 、f P 是铁素体和珠光体的体积百分数,即f F + f P =1;σ0.2和σP 相应为纯铁素体钢和纯珠光体钢的屈服强度。 由公式看出,曲线斜率f F K 1随含碳量提高而变小,从而降低了细化铁素体晶粒的强化作用。相反含碳量提高使珠光体量增加,珠光体对σs 的贡献加大。由此可得出结论:与细化晶粒有关的提高钢强度的方法中,钢中含碳量愈低其强化效果愈大;相反在组织中珠光体愈多在微合金化或控制轧制制度下所得到的细化晶粒效果也就愈差。 (2) 亚晶强化 低温加工的材料因动态、静态回复形成亚晶,亚晶的数量、大小与变形温度、变形量有关。 亚晶强化的原因是位错密度增高。亚晶本身是位错墙,亚晶细小位错密度也高。另外有些亚晶间的位向差稍大,也如同晶界一样阻止位错运动。 1. 细晶强化机制: 晶界是位错运动过程中的障碍。晶界增多,对位错运动的阻碍作用增强,致使位错在晶界处塞积(即位错密度增加),金属的强度增加;在单个晶粒内部,塞积的位错群的长度减 2 /11-+=D K i s σσ8.9)51.18.2913.87.3(2/10?++++=-D N Si Mn s σσ2 /112.0-++=D K f f f F P P F s σσσ

熔模铸造工艺流程

熔模 铸造工 艺流程 旧蜡 ---- 绿色、棕色 蜡(模)料处理 工艺参数: 除水桶 搅拌时温度110-120 C 搅拌时间 8-12 小时 静置时温度 100-110 C 静置时间 6-8 小时 静置桶 静置温度 70-85 C 静置时间 8-12 小时 保温箱 温度 48-52 C 时间 8-24 小时 二、 操作程序 模料处理 涂料制备 重 —? 复 多 次 磨 内 浇 口 * K512模料 模料主要性能: 灰分 铁含量 熔点 针入度 型壳干燥 (硬化) 蜡 厂 ~注—又 后 , £ 1 砂 模* 理 料卜 熔 料 牌 焊 补 模 为 号: 灰分的10% < % 83 100GM C -88 C (环球法)60C±「C (25C) 450GM(25C )收缩率 %% 颜色 新蜡 兰色、 深黄色 < % 抛 光 或 机 加 工

1、从脱蜡釜泄出的旧蜡用泵或手工送到除水桶中,先在105-110C下置6-8小时沉淀, 将水分泄掉。 2、蜡料在110-120 C下搅拌8-12小时,去除水份。 3、将脱完水的蜡料送到70-85 C的静置桶中保温静置桶中保温静置8-12小时。 4、也可将少量新蜡加入静置桶中,静置后清洁的蜡料用手工灌到保温箱蜡缸中,保温温度48-52 C,保温时间8-24小时后用于制蜡模。 5、或把静置桶中的回收蜡料输入到气动蜡模压注机的蜡桶中,保温后压制浇道。 三、操用要点 1、严格按回收工艺进行蜡料处理。 2、除水桶、静置桶均应及时排水、排污。 3、往蜡缸灌蜡时,蜡应慢没缸壁流入,防止蜡液中进入空气的灰尘。 4、蜡缸灌满后应及时盖住,避免灰尘等杂物落入。 5、经常检查每一个桶温,防止温度过高现象发生。 &作业场地要保持清洁。 7、防止蜡液飞溅。 8、严禁焰火,慎防火灾。 压制蜡(熔)模 一、工艺参数 室温20-24 C 压射蜡温50-55 C 压射压力保压时间10-20S 冷却水温度15± 3C 二、操作程序 1、从保温槽中取出蜡缸,装在双工位液压蜡模压注机上,使用前应去除蜡料中空 气及硬蜡。 2、将模具放在压注机工作台面上定位,检查模具所有芯子位置是否正确,模具注 蜡口与压注机射蜡嘴是否对正。 3、检查模具开合是否顺利。 4、打开模具,喷薄薄一层分型剂。 5、按照技术规定调整压注机时间循环,包括压射压力、压射温度、保压时间、冷 却时间等。 6、每次循环完毕,抽出芯子,打开模具,小心取出蜡模,按要求放入冷却水中或 存放盘中。注意有下列缺陷的蜡模应报废: A因模料中卷入空气,蜡模局部有鼓起的;B蜡模任何部位有缺角的; C蜡模有变形不能简单修复的;D尺寸不符合规定的。 7、清除模具上残留的模料,注意只能用竹刀,不可用金属刀片清除残留模料,防止模具型腔及分 型面受损。 8、合上模具,进行下次压制蜡模。

熔模铸造工艺流程

熔模铸造工艺流程集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

熔 模 铸 造 工 艺 流 程 重 复 多 次 号:K512模料 模料主要性能: 灰 分 ≤% 铁含量 灰分的10% ≤% 熔 点 83℃-88℃(环球法)60℃±1℃ 针入度 100GM (25℃)450GM (25℃)收缩率 %% 比 重 颜 色 新蜡——兰色、深黄色 旧蜡——绿色、棕色 蜡(模)料处理 工艺参数: 除水桶 搅拌时温度 110-120℃ 搅拌时间 8-12小时 静置时温度 100-110℃ 静置时间 6-8小时

静置桶静置温度 70-85℃ 静置时间 8-12小时 保温箱温度 48-52℃ 时间 8-24小时 二、操作程序 1、从脱蜡釜泄出的旧蜡用泵或手工送到除水桶中,先在105-110℃下置6-8小时沉淀,将水分泄掉。 2、蜡料在110-120℃下搅拌8-12小时,去除水份。 3、将脱完水的蜡料送到70-85℃的静置桶中保温静置桶中保温静置8-12小时。 4、也可将少量新蜡加入静置桶中,静置后清洁的蜡料用手工灌到保温箱蜡缸中,保温温度48-52℃,保温时间8-24小时后用于制蜡模。 5、或把静置桶中的回收蜡料输入到气动蜡模压注机的蜡桶中,保温后压制浇道。 三、操用要点 1、严格按回收工艺进行蜡料处理。 2、除水桶、静置桶均应及时排水、排污。 3、往蜡缸灌蜡时,蜡应慢没缸壁流入,防止蜡液中进入空气的灰尘。 4、蜡缸灌满后应及时盖住,避免灰尘等杂物落入。 5、经常检查每一个桶温,防止温度过高现象发生。 6、作业场地要保持清洁。 7、防止蜡液飞溅。 8、严禁焰火,慎防火灾。 压制蜡(熔)模 一、工艺参数 室温20-24℃压射蜡温50-55℃ 压射压力保压时间10-20S 冷却水温度15±3℃ 二、操作程序 1、从保温槽中取出蜡缸,装在双工位液压蜡模压注机上,使用前应去除蜡料中空 气及硬蜡。 2、将模具放在压注机工作台面上定位,检查模具所有芯子位置是否正确,模具注 蜡口与压注机射蜡嘴是否对正。 3、检查模具开合是否顺利。 4、打开模具,喷薄薄一层分型剂。 5、按照技术规定调整压注机时间循环,包括压射压力、压射温度、保压时间、冷 却时间等。 6、每次循环完毕,抽出芯子,打开模具,小心取出蜡模,按要求放入冷却水中或 存放盘中。注意有下列缺陷的蜡模应报废:

铸造工艺课程设计

目录 绪论 (1) 1.铸造工艺方案的确定 (2) 1.1零件结构工艺性分析 (2) 1.1.1零件基本信息及技术要求 (2) 1.1.2零件结构组成分析 (2) 1.1.3零件所用材质性能分析 (2) 1.1.4零件结构工艺总结 (3) 1.2造型方法与铸型种类的选择 (3) 1.2.1造型方法 (3) 1.2.2铸型种类 (3) 1.3砂芯种类与制芯方法的选择 (4) 1.3.1砂芯种类的选择 (4) 1.3.2制芯方法的选择 (5) 1.4分型面和浇注位置确定 (5) 1.4.1分型面的确定 (5) 1.4.2浇注位置的确定 (6) 2.铸造工艺参数的确定 (6) 2.1尺寸公差和加工余量公差的确定 (6) 2.1.1尺寸公差的确定 (6) 2.1.2加工余量公差的确定 (7) 2.2机械加工余量和铸件基本尺寸的确定 (7) 2.2.1机械加工余量的确定 (7) 2.2.2铸件基本尺寸的确定 (8) 2.3收缩率和起模斜度的确定 (8) 2.3.1收缩率的确定 (8) 2.3.2起模斜度的确定 (9) 2.4其它工艺参数的确定 (10) 3.砂芯设计 (10) 3.1砂芯的基本知识 (10) 3.2芯头设计 (10) 3.3型芯尺寸的确定 (11) 4.浇注系统设计 (12) 4.1浇注系统的作用 (12) 4.2浇注系统类型的选择 (12) 4.3浇注时间的确定 (12) 4.4阻流元(内浇道)截面的计算 (12) 4.5各浇道截面比例关系,截面形状及尺寸的确定 (13) 4.6浇注系统图 (13) 5.冒口冷铁设计 (14) 5.1冒口的设计 (14)

5.2冷铁的设计 (14) 6.铸造工艺设备设计 (14) 6.1工艺装备的基础知识 (14) 6.2工艺装备的选用 (15) 6.2.1模样的选用 (15) 6.2.2模板的选用 (15) 6.2.3芯盒的选用 (16) 6.2.4砂箱的选用 (16) 7.铸型的装配 (17) 7.1铸型的装配 (17) 7.2铸型的紧固 (17) 8. 结论 (18) 9. 附录1.铸造工艺图 (18) 参考文献 (19)

相关文档
最新文档