开关电源经典设计步骤

开关电源经典设计步骤
开关电源经典设计步骤

开关电源设计步骤

步骤1 确定开关电源的基本参数

① 交流输入电压最小值u min

② 交流输入电压最大值u max

③ 电网频率F l 开关频率f

④ 输出电压V O (V ):已知

⑤ 输出功率P O (W ):已知

⑥ 电源效率η:一般取80%

⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,

Z=1表示发生在次级。一般取Z=0.5

步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB

步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin

① 令整流桥的响应时间tc=3ms

② 根据u ,查处C IN 值

③ 得到V imin

步骤4 根据u ,确定V OR 、V B

① 根据u 由表查出V OR 、V B 值

② 由V B 值来选择TVS

步骤5 根据Vimin 和V OR 来确定最大占空比Dmax

V OR Dmax= ×100% V OR +V Imin -V DS(ON) ① 设定MOSFET 的导通电压V DS(ON)

② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小

步骤6 确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P

K RP u(V) 最小值(连续模式) 最大值(不连续模式)

固定输入:100/115

0.4 1 通用输入:85~265

0.4 1 固定输入:230±35 0.6

1

确定C IN ,V Imin 值 u(V) P O (W) 比例系数(μF/W)C IN (μF) V Imin (V) 固定输入:100/115 已知 2~3 (2~3)×P O ≥90 通用输入:85~265 已知 2~3 (2~3)×P O ≥90 固定输入:230±35 已知 1 P O ≥240 u(V) 初级感应电压V OR (V)钳位二极管 反向击穿电压V B (V)

固定输入:100/115 60 90

通用输入:85~265 135 200 固定输入:230±35 135 200

步骤7确定初级波形的参数

①输入电流的平均值I A VG

P O

I A VG=

ηV Imin

②初级峰值电流I P

I A VG

I P=

(1-0.5K RP)×Dmax

③初级脉动电流I R

④初级有效值电流I RMS

I RMS=I P√D max×(K RP2/3-K RP+1)

步骤8根据电子数据表和所需I P值选择TOPSwitch芯片

①考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值

I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P

步骤9和10计算芯片结温Tj

①按下式结算:

Tj=[I2RMS×R DS(ON)+1/2×C XT×(V Imax+V OR) 2 f ]×Rθ+25℃

式中C XT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容

②如果Tj>100℃,应选功率较大的芯片

步骤11验算I P IP=0.9I LIMIT(min)

① 输入新的K RP且从最小值开始迭代,直到K RP=1

② 检查I P值是否符合要求

③ 迭代K RP=1或I P=0.9I LIMIT(min)

步骤12计算高频变压器初级电感量L P,L P单位为μH

106P O Z(1-η)+ η

L P= ×

I2P×K RP(1-K RP/2)f η

步骤13选择变压器所使用的磁芯和骨架,查出以下参数:

① 磁芯有效横截面积Sj(cm2),即有效磁通面积。

② 磁芯的有效磁路长度l(cm)

③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2)

④ 骨架宽带b(mm)

步骤14为初级层数d和次级绕组匝数Ns赋值

① 开始时取d=2(在整个迭代中使1≤d≤2)

② 取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入)

③ Ns=0.6×(V O+V F1)

④ 在使用公式计算时可能需要迭代

步骤15计算初级绕组匝数Np和反馈绕组匝数N F

① 设定输出整流管正向压降V F1

② 设定反馈电路整流管正向压降V F2

③ 计算N P

V OR

N P=N S×

V O+V F1

④ 计算N F

V FB+V F2

N F=N S×

V O+V F1

步骤16~步骤22设定最大磁通密度B M、初级绕组电流密度J、磁芯的气隙宽度δ,进行迭代。

① 设置安全边距M,在230V交流输入或宽范围输入时M=3mm,在110V/115V交流输

入时M=1.5mm。使用三重绝缘线时M=0

② 最大磁通密度B M=0.2~0.3T

100I P L P

B M=

N P S J

若B M>0.3T,需增加磁芯的横截面积或增加初级匝数N P,使B M在0.2~0.3T范围之内。如B M<0.2T,就应选择尺寸较小的磁芯或减小N P值。

③ 磁芯气隙宽度δ≥0.051mm

δ=40πS J(N P2/1000L P-1/1000A L)

要求δ≥0.051mm,若小于此值,需增大磁芯尺寸或增加N P值。

④ 初级绕组的电流密度J=(4~10)A/mm2

1980

J=

1.27πD2PM×(1000 /25.4)2

4I RMS

若J>10A/mm2,应选较粗的导线并配以较大尺寸的磁芯和骨架,使J<10A/mm2。

若J<4A/mm2,宜选较细的导线和较小的磁芯骨架,使J>4A/mm2;也可适当增加NP 的匝数。

⑤ 确定初级绕组最小直径(裸线)D Pm(mm)

⑥ 确定初级绕组最大外径(带绝缘层)D PM(mm)

⑦根据初级层数d、骨架宽带b和安全边距M计算有效骨架宽带be(mm)

be=d(b-2M)

然后计算初级导线外径(带绝缘层)D PM:D PM=be/NP

步骤23确定次级参数I SP、I SRMS、I RI、D SM、D Sm

① 次级峰值电流I SP(A)

I SP=I P×(N P/N S)

②次级有效值电流I SRMS(A)

I SRMS=I SP×√(1-D max)×(K2RP/3-K RP+1)

③输出滤波电容上的纹波电流I RI(A)

I RI=√I2SRMS-I2O波

⑤ 次级导线最小直径(裸线)D Sm(mm)

D Sm=1.13√I SRMS/J

⑥ 次级导线最大外径(带绝缘层)D SM(mm)

b-2M

D SM=

N S

步骤24确定V(BR)S、V(BR)FB

① 次级整流管最大反向峰值电压V(BR)S

V(BR)S=V O+V Imax×N S/N P

② 反馈级整流管最大反向峰值电压V(BR)FB

V(BR)FB=VFB+ V Imax×N F/N P

步骤25选择钳位二极管和阻塞二极管

步骤26选择输出整流管

步骤27利用步骤23得到的I RI,选择输出滤波电容C OUT

① 滤波电容C OUT在105℃、100KHZ时的纹波电流应≥I RI

② 要选择等效串连电阻r0很低的电解电容

③ 为减少大电流输出时的纹波电流I RI,可将几只滤波电容并联使用,以降低电容的r0

值和等效电感L0

④ C OUT的容量与最大输出电流I OM有关

步骤28~29当输出端的纹波电压超过规定值时,应再增加一级LC滤波器

① 滤波电感L=2.2~4.7μH。当I OM<1A时可采用非晶合金磁性材料制成的磁珠;大电

流时应选用磁环绕制成的扼流圈。

② 为减小L上的压降,宜选较大的滤波电感或增大线径。通常L=3.3μH

③ 滤波电容C取120μF /35V,要求r0很小

步骤30选择反馈电路中的整流管

步骤31选择反馈滤波电容

反馈滤波电容应取0.1μF /50V陶瓷电容器

步骤32选择控制端电容及串连电阻

控制端电容一般取47μF /10V,采用普通电解电容即可。与之相串连的电阻可选

6.2Ω、1/4W,在不连续模式下可省掉此电阻。

步骤33选定反馈电路

步骤34选择输入整流桥

①整流桥的反向击穿电压V BR≥1.25√2 u max

③ 设输入有效值电流为I RMS,整流桥额定有效值电流为I BR,使I BR≥2I RMS。计算I RMS

公式如下:

P O

I RMS=

ηu min cosθ

cosθ为开关电源功率因数,一般为0.5~0.7,可取cosθ=0.5

步骤35 设计完毕

在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内。它们是最大磁通密度BM(要求BM=0.2T~0.3T)、磁芯的气隙宽度δ(要求δ≥0.051mm)、初级电流密度J(规定J=4~10A/mm2)。这3个参数在设计的每一步都要检查,确保其在允许的范围之内。

开关电源适配器测试报告

适配器12V/1A测试报告方案基本参数一览 修订更新版本

注: 在原板上进行了以下修改: 1、变压器参数更新(进行成本优化) 2、输入电容修改为15uF/400V 3、输出二极管修改为SR3100 4、可去除次级吸收回路(R21、C7)(纹波指标仍然优秀) 一.说明 此文档是针对FD9020D 12V/1A适配器的测试报告,可用于90~264Vac全电压输入范围下工作。适合12W以内的适配器电源及小家电产品的应用。

二.测试主要项目 1)电气参数测试 2)电性能参数测试 3)转换效率及空载功耗测试 4)常温老化测试 5)关键元件温度测试 三.测试使用的仪器 1.输入交流调压器:AC POWER SOURCE APS-9501 2.输出电子负载:FT6301A 3.示波器:DSO-X-2022A (Agilent Technologies) 4.交流输入功率计:WT210 DIGITAL POWER METER 5.数字万用表34970A 6.红外热成像仪Fluke Ti200 四.方案的实物图 五.主要项目测试记录 基本参数测试数据

:%(线末端测试):%(线末端测试) 小结:FD9020D 12V/1A适配器能够满载工作在90V~264V范围的工作条件下,板上输出电压范围为~,具有良好的电压调整率及负载调整率。 FD9020D 12V/1A适配器在空载~满载切换时,< VDD <,符合要求。 注:该方案VDD电压综合考虑系统的过功率保护及VDD过压保护功能,VDD电压受变压器的绕制工艺及漏感等参数影响较大,因此,若有更换变压器供应商时,请注意二次评测VDD 电压范围,以更完美匹配方案参数。 福大海矽可随时全方位协助该方案各项参数测试。 3)纹波噪声测试 测试条件:输入电压为220V,满载输出。

低功耗小功率开关电源设计毕业设计

低功耗小功率开关电源设计毕业设 计 南华大学船山学院毕业设计 1 开关电源简介小功率开关电源以其诸多优良的性能,在测控仪器仪表、通信设备、学习与娱乐等诸多电子产品中得到广泛的应用。随着环境和能源问题日益突出,人们对电子产品的环保要求不断提高,对电子产品的能源效率更加关注。设计无污染、低功耗、高效率的绿色模式电源已成为开关电源技术研究的热点。研究一种中小功率开关电源,应用过渡模式有源功率因数校正、准谐振变频功率隔离变换控制和同步整流等多种先进的电源控制技术,以实现绿色开关电源设计的目的。开关电源的基本结构所有事物都要遵循能量守恒定律,开关电源也不例外,实际上,开关电源也要通过以能量形式传递完成的。从能量上看,开关电

源可以分为直流开关电源模式和交流开关电源模式,直流开关电源模式主要是输出为直流信号电能,而交流开关电源模式主要是输出为交流信号电能。直流开关电源模式为当前的主流模式,该开关电源模式的基本组成结构框图如下图所示:交流输入桥式整流滤波LC 组成滤波器DC/DC变换器转换输出整流滤波占空比控制电路DC直流输出放大电路控制电路图开关电源基本组成结构框图上图中可知:开关电源主要整流滤波、DC/DC变换电路、开关占空比控制电路以及控制电路等模块组成。第1页,共29页南华大学船山学院毕业设计交直流输入电压经LC滤波器,再通过桥式整流与母线电解电容平滑后变为直流电压,再经DC/DC变换器转换,再经二极管整流和电解电容的滤波至输出,为了能使电路成为一个闭环工作,在输出端引出一个控制电路再经放大电路到占空比控制电路至DC/DC变换器转换器形成一

个闭环。占空比控制电路中占空比的表示方法如下图所示:图占空比示意图上图中可知:占空比D=Toff/(TOff+Ton),周期T= Ton+Toff,频率f=1/T。传统开关电源的缺陷传统开关电源基本上采用的都是传统电路,传统电路大部分采用的电路芯片都为PWM控制的KA38系列芯片,这当中也要用到开关MOSFET管,还有就是也要加个启动电阻,根据P=U*U/R可知该电路上的待机功耗至少要大于,而低功耗的要求待机功耗至少要小于,甚至有些要小于。如果功耗大,对人口密集的中国来说,电能的损耗无疑是巨大的。另外传统电源存在着某些有害物质,根据我国CCC标准中的《关于在电气电子设备中限制使用某些有害物质指令》,从而没能达到环保的功能。绿色开关电源的发展方向于传统电源存在着诸多的缺陷,为了能量的有效利用,人们从而提出了绿色开关电源,绿色开关电源产品主要向高频、高效率、低功

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

top开关电源设计步骤

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 u(V) K RP 最小值(连续模式) 最大值(不连续模式) 固定输入:100/115 0.4 1 通用输入:85~265 0.4 1 固定输入:230±35 0.6 1 确定C IN ,V Imin 值 u(V) P O (W) 比例系数(μF/W) C IN (μF) V Imin (V) 固定输入:100/115 已知 2~3 (2~3)×P O ≥90 通用输入:85~265 已知 2~3 (2~3)×P O ≥90 固定输入:230±35 已知 1 P O ≥240 u(V) 初级感应电压V OR (V) 钳位二极管 反向击穿电压V B (V) 固定输入:100/115 60 90 通用输入:85~265 135 200 固定输入:230±35 135 200

开关电源测试规范

开关电源测试规范及报告一、电源基本情况 项目名称________________________, PCB板号__________________________ 使用温度范围:____________℃(若没有特殊要求,按照-15~55℃,) 输入电压范围:____________Vac(若没有特殊要求按照90-264Vac) 最大输出功率______W 二、电源原理图

三、带载能力与纹波测试 1. 测试方法 分别在不同输入电压下(额定电压、最小电压、最大电压),不同的环境温度(室温、最低温度、最高温度),测试各输出支路的负载电流为空载/半载/满载时的电压值与纹波,保存典型波形图。若实际电路中某支路不会出现空载情况,可不测空载。满载时的负载电流取实际最大工作电流的1.2倍。 2. 测试记录 输出1:反馈主路设计输出___V, 最大负载____A,电压允许范围_____,纹波允许范围______ 输出2:设计输出___V, 最大负载____A,电压允许范围_____,纹波允许范围_______ 输出3:设计输出___V, 最大负载____A,电压允许范围_____,纹波允许范围________

四、整流二极管反向耐压测试 1. 测试方法 分别在不同输入电压下(额定电压、最小电压、最大电压),不同的环境温度(室温、最低温度、最高温度),测试各输出支路在满载时整流二极管的反向峰值电压,保存典型波形图。 2. 测试记录 五、VDS电压测试 1. 测试方法 分别在不同输入电压下(额定电压、最大电压),测试电源芯片的MOSFET的VDS在变压器为空载/半载/满载时的峰值电压,保存典型波形图。分别测试5次启动过程和稳态过程。

各种开关电源介绍-开关电源设计知识大全

开关电源介绍 一、基础知识: 新型变压器:磁性元件,新型磁材料和新型变压器的开发。如集成磁路,平面型磁心,超薄型变压器;以及新型变压器如压电式,无磁芯印制电路变压器等,使开关电源的尺寸重量都可减少许多。 硬开关的条件下MOSFET和IGBT开关损耗分析: 1).开通损耗方面:由于MOSFET的输出电容大,器件处于断态时,输入电压加在输出电容上,输出电容储存较大能量。在相继开通时这些能量全部消耗在器件内,开通损耗大。器件的开通损耗和输出电容成正比,和频率成正比和输入电压的平方成正比[12]。而IGBT的输出电容比MOSFET小得多,断态时电容上储存的能量较小,故开通损耗较小。 2).关断损耗方面:MOSFET属单极型器件,可以通过在施加栅极反偏电压的方法,迅速抽走输入电容上的电荷,加速关断,使MOSFET关断时电流会迅速下降至零,不存在拖尾电流,故关断损耗小[10];而IGBT由于拖尾电流不可避免,且持续时间长(可达数微秒),故关断损耗大。 综合以上分析,硬开关条件下MOSFET的开关损耗主要是由开通损耗引起,而IGBT则主要是由关断损耗引起。因此使用MOSFET作为主开关器件的电路,应该工作于ZVS条件下,这样在器件开通前,漏极和源极之间的电压先降为零,输出电容上储存能量很小,可以大大降低MOSFET的开通损耗;而使用IGBT作为主开关器件的电路,应该工作于ZCS条件下,这样在器件关断前,流过器件的电流先降为零,可以大大降低因拖尾电流造成的关断损耗。 软开关:当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 变流器:把输入的电源,进行电压、电流变换,达到规定的要求后输出给用电设备。 DC-DC:直流变压器。斩波器。 为什么反激开关电源只能适合小功率?200W以下。正激开关电源适合大功率开关电源? 高效率小体积(高功率密度)一直是DC-DC变换器用户的追求,也是设计的要点。提高功率密度最有效的方式就是提高开关频率,线圈和变压器对高速变化的磁力线感应灵敏度高、特别高效率,衰减特别小,传递效率特别高,而对低频变化的磁力线灵敏度低、衰减大,传递效率差,因此高频下的磁芯体积会大幅度减小,但频率的提高会使开关管的开关损耗加大,对变换器的效率造成影响。如何在高频下减小开关管的开关损耗,是DC-DC变换器是否能实现高效率高功率密度的关键,在这种背景下,高频软开关技术逐渐成为研究的热点,LLC谐振变换器是在串联谐振变换器的基础上增加了一个与负载并联的电感,是目前效率最高的开关电源。

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源适配器测试报告模板

适配器12V/1A测试报告 方案基本参数一览 输入电压90~264Vac (恒压<±1%)输出规格12V/1A 输出纹波29mV@220Vac满载转换效率85.11% @220Vac,满载 待机功耗<110mW 拓扑结构反激式 VDD电压15.48V~26.48V(正常范围)CS波形正常 VDS峰值519V@264Vac<600V FB纹波237mV(正常范围) 其他说明:本测试报告针对XXX12V1A适配器成本优化方案(变压器资料如下图),福大海矽竭诚为客户提供完善到位的服务。 变压器版本:V2(20150831) 1、各绕组绕制参数见下表所示EE19立式骨架 绕序绕 组 线径*根数 脚位圈数套管(L) 绝缘胶带 9.0mm/Ts 绕线方式 进 脚 出 脚 Ts 进出 1 N1 ¢0.19mm*1(2UEW) 2 3 68 加套管 2 N2 ¢0.35mm*2(TEX-E) 三层绝缘线 10 8 21 加套 管 加套 管 3 N3 ¢0.19mm*1(2UEW) 3 1 68 5 N4 ¢0.19mm*1(2UEW) 5 4 28 制作说明: 1. 骨架EE19立式脚距4mm 排距10.3mm PC40磁芯Ae为23mm2 2. 电感量Lp(1→2)=2mH,漏感为Lp的5%以下 3. 初级对次级打3000V AC漏电流<2mA/60s 4. 初级对磁芯打15000V AC漏电流<2mA/60s 5. 次级对磁性打15000V AC漏电流<2mA/60s 6. DC500V绕组与磁芯之间1min大于100mΩ 7. DC500V绕组与绕组之间1min大于100mΩ 注:PIN3、PIN6、PIN7、PIN9需剪脚 版本更新说明: 1、初始版本V1(20150721) 2、版本V2(20150831)调整初次级匝数,次级由飞线改为插脚,去掉铜带屏蔽,去掉磁芯接地(进行成本优化)

关于开关电源设计时的基本问题解答

关于开关电源设计时的基本问题解答 如何为开关电源电路选择合适的元器件和参数?很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题,元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。 开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。 输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些器件的选择基本上就是要满足性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。低的开关频率带来的结果则是相反的。 对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。 一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。如何调试开关电源电路?有一些经验可以共享给大家:(1)电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。(2)一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。

开关电源测试报告

电源测试报告 一、功率因数与效率测试 1、使用仪器设备:AC SOURCE(交流电源)、电子负载、万用表、功率表; 2、测试条件:输入电压220Vac,输入频率50Hz/60Hz,输出带最大负载1.7A、常温25℃; 3、测试方法: 1)、依规格设定测试条件;输入电压、输入频率、最大负载; 2)、从功率表中读取Pin and PF值,并读取输出电压计算Pout; 3)、功率因数=Pin/(Vin*Iin),效率=Pout/Pin*100﹪; 4、测试数据 二、能效测试 1、使用仪器设备:AC SOURCE(交流电源)、电子负载、万用表、功率表; 2、测试条件:输入电压220Vac,输入频率50Hz/60Hz,输出负载分别为1.7A,1.275A,0.85A,0.425A; 3、测试方法: 1)、在测试前将产品在标称负载条件下预热1分钟; 2)、按负载大小由大到小分别记录220V ac/50Hz/60Hz输入时的输入功率(Pin),输入电流(Iin),输出电压(Vo1,Vo2),功率因数(PF),然后计算各负载下的效率; 3)、在空载时记录输入功率与输入电流。 4、测试数据 三、纹波与噪声测试 1、使用仪器设备:AC SOURCE(交流电源)、电子负载、示波器; 2、测试条件:输入电压220Vac,输入频率50Hz/60Hz,负载分别为1.7A,1.275A,0.85A,0.425A,0A,常温25℃; 3、测试方法:按测试回路接好各测试仪器,设备,及待测品,测电源在各负载下的纹波与噪声; 4、测试数据及最大幅值的波形。 四、上升/下降时间测试 1、使用仪器设备:AC SOURCE(交流电源)、电子负载、示波器; 2、测试条件:输入电压220Vac,输入频率50Hz/60Hz,负载为1.7A;

小功率直流开关电源的设计

小功率直流开关电源的设计 1.电路结构选择 图1.组成框图 输入电路 输入电路包括线性滤波电路、浪涌电流控制电路和整流电路。起作用是把输入电网的交流电转化为符合要求的开关电源直流输入电源。 变换电路 变换电路含开关电路、输出隔离电路等,是电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。这一级的开关功率管是其核心器件。 控制电路 控制电路的作用是向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。 开关稳压电源与传统的线性稳压电源相比具有体积小、重量轻、效率高等优点,已成为稳压电源的主流产品。为使电源结构简单、紧凑,工作可靠、减少成本,小功率开关稳压电源常采用单端反激型或单端正激型电路。与单端反激型相比,单端正激型开关电流小、输出纹波小、更容易适应高频化。用电流型PWM 控制芯片UC3843构成的单端正激型开关稳压电源的主电路如图2所示。

图2主电路的结构 实用的单端正激型开关稳压电源必须加磁通复位电路,以泄放励磁电路的能量。如图2所示,开关管Q导通时D1导通,副边线圈N2向负载供电,D4截止,自馈电线圈Nf电流为零;Q关断时D1截止,D4导通,Nf经电容C1滤波后向UC3843供电,同时原边线圈N1上产生的感应电动势使D3导通,并加在RC上。由于变压器中的磁场能量可通过Nf泄放,而不像一般的RCD磁通复位电路消耗在电阻上,这可减少发热,提高效率。 2.电源技术规格 输入电压:AC110/220V; 输入电压变动范围:90V~240V; 输入频率:50/60Hz; 输出电压:12V; 输出电流:2.5A; 工作频率的选择:UC3843的典型工作频率为20kHz~500kHz。开关频率的选择决定了变换器的许多特性。开关频率越高,变压器、电感器体积越小,电路的动态响应也越好。但随着频率的提高,诸如开关损耗,门极驱动损耗,输出整流管的损耗会越来越突出,而且频率越高,对磁性材料的选择和参数设计要求会越苛刻,另外,高频下线路的寄生参数对线路的影响程度难以预料,整个电路的稳定性,运行特性以及系统的调试会比较困难。本电路中,选Rt=1.8kΩ,Ct=10nF。由 UC3843A定时电阻,电容与振荡器频率的关系曲线图,可得开关频率为f=85kHz,周期T=11.8μs; 占空比:设计无工频变压器的单端正激型开关电源时,一般占空比D最大不超过0.5,这里选择Dmax=0.5。则Tonmax=T·Dmax=5.9μs。 3.电源设计 3.1变压器和输出电感的设计

开关电源测试规范

开关电源测试规范 (2007-12-22 17:15) 分类:电源技术类文章 开关电源测试规范 一、安全标准检查工作指导 5 1、高压测试 5 2、低输入电压产品使用1800VAC作高压测试 5 3、绝缘测试 5 4、漏电流测试 5 5、接地测试 5 6、输入电流测试 5 7、输入端的剩余电压 5 8、各输出端的最大VA 5 9、异常操作测试 6 9.2、特低输入电压测试 6 9.3、特高电压测试 6 9.4、过载测试 6 9.5、长时间的过压保护测试 6 9.6、适配器内可熔断电阻的安全测试 7 10、异常处理测试 7 10.1、严格的跌落测试(对于AC适配器) 7 10.2、严格的震动测试(对于AC适配器) 7 11、可见的潜在安全问题检查 7 11.1、输贴片电容的检查 7 11.2、AC输入线的检查 7 11.3、DC输出线的检查 7 11.4、热组件 8 12、可燃性检查 8 13、各种检查 8 13.1、组件检查 8 13.2、标贴检查 8 13.3、空间及爬电距离 8 二、环境条件测试 8 1、高温测试 8 2、低温操作测试 8 3、高湿操作测试 8 4、高低温储存循环测试 8 5、高湿储存测试 8 6、振动测试 9 6.1、非工作状态测试 9 6.2 工作状态振动测试 9 7、跌落测试 9 三、静态工作特性测试 9 1、输出电压与电流调整范围 (需在高、低、常温下进行测试) 9 2、效率测试 (高、低、常温三种条件下进行) 10

3、起机输入电压测试 (高、低、常温三种条件下进行) 10 4、输入电压临界电测试(高、低、常温三种条件下进行) 10 5、输出电压电流特性曲线测试 (高,低,常温三种条件下进行) 10 6、输出共模噪音电压测试 (在规格中有要求才做) 10 7、可听噪音测试 10 四、动态性能测试 10 1、浪涌电流测试 10 1.1、室温冷起机 10 1.2、室温热起机 11 2、开关机时输出电压过冲与欠冲测试 11 3、开机延时及输及电压间跟从测试 11 4、开机维持时间 12 5、阶跃负载响应测试 (此测试项须进行低温、常温、高温三种条件的测试) 12 6、POWER GOOD /FAIL TEST 12 五、开短路测试 12 1、测试范围 12 2、测试标准 13 3、测试方法(TEST METHOD) 13 3.1、开短路测试(Open short method) 14 3.2、在测试过程中和测试后要观察的项目(Utems to observe doing or after open short) 14 六、可靠性测试 15 1、电解电容寿命的检测 15 2、RUBYCON公司的电容寿命计算公式 16 3、温升测试 16 3.1、外壳温升 16 3.2、零件温升 16 3.3、火牛温升 17 3.4、电容温升测试 17 3.5、高温开关机测试 17 3.6、MTBF(平均无故障时间计算) 17 3.7、组件失效率的计算 17 七、组件使用率测试工作指导 18 1、测试范围 18 2、测试条件 18 3、用率要求 18 4、测试方法 18 4.1、电阻 19 4.2、电解电容使用率测试 19 4.3、电容 20 4.4、陶瓷电容 20 4.5、晶体三极管和场效应管 20 4.6、二极管 20 4.7、稳压二极管 20

关于开关电源设计

一种基于TOP227Y 的脉冲开关电源设计 摘要:在研究脉冲开关电源技术的基础上 ,提出一种基于 TOP227Y的脉冲开关电源设计。首先给出脉冲开关电源的 总体结构 ,分析其工作原理 ,对系统中高频变压器、主电路、控制电路进行设计。接着介绍 TOP227Y芯片的工作原理及各个 功能块的主要作用 ,最后设计系统总电路图。 关键词:PWM;TOP227Y;开关电源;高频变压器 Design of Pulse Switch Power Supply Based on TOP227Y Abstract:A pulse switch power supply based on TOP227Yis introduced in the paper ,after analsing its working principle , the whole structure of switch power supply is also designed ,the main design content consists of the high frequency trans former ,the main circuit and the control circuit ,then the working principle and the main action of each function module of TOP227Yare introduced in the paper ,finally the whole circuit of system is designed. Keywords:PWM;TOP227Y;switch power supply;high frequency transformer 脉冲电源是各种电源设备中比较特殊的一种,它的电压或电流波形为脉冲状。其实质上是一种通断的直流电源,其基本工作原理是首先经过慢储能 ,使初级能源具有足够的能量,然后向中间储能和脉冲成形系统电或流入能量 ,能量经化 等复杂过程之后 ,形成脉冲电源。随着开关电源的发展 ,电源的小型化、模块化、智能化越来越受到人们的关注。各种电源控制芯片如雨后春笋纷纷涌现 ,美国电源集成 PI 公司相继推出 TOP系列芯片 ,这些芯片集脉冲信号控制电路和功率开关器件 MOSEFT 于一体 ,具有高集成度、最简外围电路、最佳性能指标等特点,能组成高效率无工频变压器的隔离式开关电源。所以,本文设计基于 TOP227Y芯片控制的开关电源。 一、绪论 1.设计的目的及意义 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型

小功率开关电源的设计_综述

网络教育学院《电源技术》课程设计 题目:小功率开关电源的设计 学习中心:东港奥鹏 层次:高中起点专科 专业:电气工程及其自动化 年级:09 年春季 学号: 学生: 辅导教师:刘鹏 完成日期:2011年2月25日

1.电路结构选择 图1.组成框图 输入电路 输入电路包括线性滤波电路、浪涌电流控制电路和整流电路。起作用是把输入电网的交流电转化为符合要求的开关电源直流输入电源。 变换电路 变换电路含开关电路、输出隔离电路等,是电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。这一级的开关功率管是其核心器件。 控制电路 控制电路的作用是向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。 开关稳压电源与传统的线性稳压电源相比具有体积小、重量轻、效率高等优点,已成为稳压电源的主流产品。为使电源结构简单、紧凑,工作可靠、减少成本,小功率开关稳压电源常采用单端反激型或单端正激型电路。与单端反激型相比,单端正激型开关电流小、输出纹波小、更容易适应高频化。用电流型PWM 控制芯片UC3843构成的单端正激型开关稳压电源的主电路如图2所示。 图2主电路的结构

实用的单端正激型开关稳压电源必须加磁通复位电路,以泄放励磁电路的能量。如图2所示,开关管Q导通时D1导通,副边线圈N2向负载供电,D4截止,自馈电线圈Nf电流为零;Q关断时D1截止,D4导通,Nf经电容C1滤波后向UC3843供电,同时原边线圈N1上产生的感应电动势使D3导通,并加在RC上。由于变压器中的磁场能量可通过Nf泄放,而不像一般的RCD磁通复位电路消耗在电阻上,这可减少发热,提高效率。 2.电源技术规格 输入电压:AC110/220V; 输入电压变动范围:90V~240V; 输入频率:50/60Hz; 输出电压:12V; 输出电流:2.5A; 工作频率的选择:UC3843的典型工作频率为20kHz~500kHz。开关频率的选择决定了变换器的许多特性。开关频率越高,变压器、电感器体积越小,电路的动态响应也越好。但随着频率的提高,诸如开关损耗,门极驱动损耗,输出整流管的损耗会越来越突出,而且频率越高,对磁性材料的选择和参数设计要求会越苛刻,另外,高频下线路的寄生参数对线路的影响程度难以预料,整个电路的稳定性,运行特性以及系统的调试会比较困难。本电路中,选Rt=1.8kΩ,Ct=10nF。由 UC3843A定时电阻,电容与振荡器频率的关系曲线图,可得开关频率为f=85kHz,周期T=11.8μs; 占空比:设计无工频变压器的单端正激型开关电源时,一般占空比D最大不超过0.5,这里选择Dmax=0.5。则Tonmax=T·Dmax=5.9μs。 3.电源设计 3.1变压器和输出电感的设计 根据电源规格、输出功率、开关频率,选择PQ26/25磁芯,磁芯截面积 Se=1.13cm2,磁路有效长度le=6.4cm,磁芯材料为MXO2000,饱和磁通密度 Bs=0.4T。取变压器最大工作磁感应强度Bmax=Bs/3=0.133T,则电感系数AL值为: AL=(0.4πμrSe/le)10-6=4.44(μH/N2) 变压器原边线圈匝数为: N1=UImin×Tonmax/Bmax×Se式中UImin为最小直流输入电压。考虑到交流输

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

多用途小功率开关电源设计 毕业设计

多用途小功率开关电源设计毕业设计

目录 1 绪论 (2) 1.1 引言 (3) 1.2开关电源市场情况 3 1.3 开关电源的技术性能 (4) 1.4 设计的指标 (6) 2 开关电源电路的工作原理 (7) 2.1 开关电源的电路组成 (7) 2.2 输入电路的原理及常见电路 (8) 2.3 功率变换电路 (8) 2.4 输出整流滤波电路 (10) 2.5 稳压环路原理 (11) 2.6 短路保护电路 (12) 2.7 输出端限流保护 (14) 3 基于TL494开关电源的实现 (15) 3.1 芯片选择 (15) 3.2 整个控制电路的设计 (19) 3.3 整个系统框图 (27) 4 可靠性分析 (28) 4.1 影响开关电源可靠性的因素 (28) 4.2 可靠性设计的原则 (31) 4.3 可靠性设计 (32) 4.4 电源的热设计 (33) 5 总结 (354) 参考文献 (365) 2

1 绪论 1.1 引言 随着电力电子技术的告诉发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 1.2 开关电源市场情况 据Frost&Saullivan公司的资料显示,1999年,全球开关电源市场的规模从1992年的84亿美元猛增至166亿美元,平均年增长率为10%。这是由于作为电源和开关电源最主要用户的计算机及其外转设备市场的不断发展,以通讯通信业的异军突起,促进了开关电源市场的日益增长,使全球开关电源市场呈现出十分美好的前景。 目前,在计算机、电子仪器仪表和通信设备中应用得最多的开关电源, 3

开关电源测试报告

Pass / Fail: According to specification 4 hours storage at 0℃, and operating at 40℃ . : Not Specified Test Equipment: TOPNOTCH OTC-2B-N Open Chamber . : Not Tested CHROMA Series AC Source / DC Load

A. INPUT CHARACTERIZATION INPUT CURRENT/POWER/EFFICIENCY/POWER FACTOR Test conditions: The unit is set at maximum load and the input voltage is varied from the minimum to the maximum value. Efficiency is computed and Power Factor is either computed or measured after 10 minutes warm up at least. Test equipment: Chroma Model 8000 Power Supply Auto Test System Chroma Model # 6590 9KVA Low Impedance AC Source Chroma Model # 630X0 DC Load Chroma Model # 6630 Power Analyzer Pass/Fail criteria: The unit test shall meet the specification requirements. Test result: PASS @25C Vin(Vac)Freq(Hz)Iin(A)Pin(W)Vout(V)Pout(W)Pd(W)PF Eff(%) Vin(Vac)Freq(Hz)Iin(A)Pin(W)Vout(V)Pout(W)Pd(W)PF Eff(%)

开关电源设计设计

开关电源设计设计

开关电源设计 摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务。信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于芯片UC3842的小功率高频开关电源系统设计。 关键词开关电源;半桥全桥;高频变压器 - II -

目录 摘要...................................................................................................................... I 第1章绪论 (1) 1.1 课题背景 (1) 1.2 研究的目的及意义 (2) 1.2.1 课题研究的目的 (2) 1.2.2课题研究的意义 (2) 第2章开关电源输入电路设计 (3) 2.1 电压倍压整流技术 (3) 2.1.1 交流输入整流滤波电路原理 (3) 2.1.2 倍压整流技术 (3) 2.2 输入保护器件保护 (4) 2.2.1 浪涌电流的抑制 (4) 2.2.2 热敏电阻技术分析 (5) 2.3 本章小结 (6) 第3章开关电源主电路设计 (7) 3.1 单端反激式变换器电路的工作原理 (7) 3.2 开关晶体管的设计 (8) 3.3 变压器绕组的设计 (10) 3.4 输入整流器的选择 (11) 3.5 输出滤波电容器的选择 (12) 3.6 本章小结 (12) 第4章开关电源控制电路设计 (13) 4.1 芯片简介 (13) 4.1.1 芯片原理 (13) 4.1.2 UC3842内部工作原理简介 (13) 4.2 工作描述 (14) 4.3 UC3842常用的电压反馈电路 (18) 4.4 本章小结 (20) 结论 (21) 致谢 (22) 参考文献 (23) - II -

相关文档
最新文档