CA6125车床主轴箱设计

CA6125车床主轴箱设计
CA6125车床主轴箱设计

课 程 设 计 说 明 书
学生姓名: 学 专 题
学 号:
院: 机械工程与自动化学院 业: 机械设计制造及其自动化 目: 金属切削机床课程设计 ——车床主轴箱设计
指导教师: 指导教师:
职称: 职称:
2007 年 12 月 7 日
中北大学
课程设计任务书

2007/2008 学年第 1 学期
学 专
院: 机械工程与自动化学院 业: 机械设计制造及 其自动化 学 号:
学 生 姓 名:
课程设计题目:金属切削机床课程设计
——车床主轴箱设计
起 迄 日 期: 课程设计地点: 指 导 教 师: 系 主 任:
下达任务书日期:2007 年 12 月 2 日
课 程 设 计 任 务 书
1.设计目的:
通过本课程设计的训练,使学生初步掌握机床的运动设计(包括主轴箱、变速箱传 动链) ,动力计算(包括确定电机型号,主轴、传动轴、齿轮的计算转速) ,以及关键零 部件的强度校核,获得工程师必备设计能力的初步训练,从而提高分析问题、解决问题 尽快适应工程实践的能力。
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等) :

1. 运动设计: 根据所给定的转速范围及变速级数, 拟定机床主运动传动结构方案(包 括传动结构式、转速分布图)和传动系统图,确定各传动副的传动比,计算齿轮的齿数, 主轴实际转速及与标准转速的相对误差。 2.动力计算:选择电动机型号及转速,确定传动件的计算转速、对主要零件(如皮 带、齿轮、主轴、轴承等)进行计算(初算和验算) 。 3.结构设计 进行主传动系统的轴系、变速机构、主轴组件等的布置和设计并绘制展开图、剖面 图、主要零件工作图。 4.编写设计说明书 1)机床的类型、用途及主要参数 主轴转速范围 nmax = 2000rpm , nmin = 160rpm 变速级数:z=12,电动机功率: N = 3KW 。 2)工件材料:45 号钢 刀具材料:YT15 3)设计部件名称:车床主轴箱
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、 实物样品等〕 :
1.课程设计设计说明书一份(A4>15 页) 2.主轴箱展开图一张 3.主轴箱剖面图一张 4.机床传动系统图一张 5.一个零件工作图(主轴)一张
课 程 设 计 任 务 书
4.主要参考文献:

要求按国标 GB 7714—87《文后参考文献著录规则》书写,例: 1 2 陈易新.金属切削机床课程设计指导书. 北京: 机械工业出版社, 1987.7 范云涨.金属切削机床设计简明手册. 北京: 机械工业出版社,1994.7
5.设计成果形式及要求:
图纸与说明书
6.工作计划及进度:
2007年 12月2日 ~12月2日 12月3日 ~12月3日 12月4日 ~12月6日 12月7日 ~12月7日 12月8日 ~12月8日 发题目、阅读指导书、收集资料。 运动计算、绘制转速图、传动图 动力计算并进行结构设计 整理设计说明书 答辩或成绩考核
系主任审查意见:
签字: 年 月 日


一、 概述 ........................................................................................................................................... 1

1.1 金属切削机床在国民经济中的地位 ................................................................................... 1 1.2 机床课程设计的目的 ........................................................................................................... 1 1.3 车床的规格系列和用处 ...................................................................................................... 1 1.4 操作性能要求 ...................................................................................................................... 1 二、参数的拟定 ................................................................................................................................. 2 2.1 确定转速范围 ...................................................................................................................... 2 2.2 主电机选择 ........................................................................................................................ 2 三、传动设计 ..................................................................................................................................... 2 3.1 主传动方案拟定 ................................................................................................................ 2 3.2 传动结构式、结构网的选择 ............................................................................................ 3 3.2.1 确定传动组及各传动组中传动副的数目 ............................................................. 3 3.2.2 传动式的拟定 ......................................................................................................... 3 3.2.3 结构式的拟定 ......................................................................................................... 3 3.3 转速图的拟定 ....................................................................................................................... 4 四、 传动件的估算 ........................................................................................................................... 4 4.1 V 带传动的计算 ................................................................................................................ 4 4.2 传动轴的估算 .................................................................................................................... 7 4.2.1 传动轴直径的估算 ................................................................................................. 7 4.3 齿轮齿数的确定和模数的计算 ........................................................................................ 8 4.3.1 齿轮齿数的确定 ..................................................................................................... 8 4.3.2 齿轮模数的计算 ..................................................................................................... 8 4.3.4 齿宽确定 .................................................................................................................. 10 4.4 带轮结构设计 .................................................................................................................. 11 五、动力设计 ................................................................................................................................... 11 5.1 主轴刚度验算 ..................................................................................................................... 11 5.1.1 选定前端悬伸量 C ............................................................................................... 11 5.1.2 主轴支承跨距 L 的确定 .................................................................................... 11 5.1.3 计算 C 点挠度 ........................................................................................................ 12 5.2 齿轮校验 ............................................................................................................................ 14 六、结构设计及说明 ....................................................................................................................... 15 6.1 结构设计的内容、技术要求和方案 .............................................................................. 15 6.2 展开图及其布置 .............................................................................................................. 15 6.3 齿轮块设计 ...................................................................................................................... 16 6.3.1 其他问题 .................................................................................................................. 16 6.4 主轴组件设计 .................................................................................................................. 17 七、总结 ........................................................................................................................................... 17 八、参考文献 ................................................................................................................................... 18

一、 概述 1.1 金属切削机床在国民经济中的地位 金属切削机床是用切削的方法将金属毛坯加工成机器零件的机器,它是制造机器的机 器,又称为“工作母机”或“工具机” 。 在现代机械制造工业中,金属切学机床是加工机器零件的主要设备,它所担负的工作 量,约占机器总制造工作量的 40%~60%。机床的技术水平直接影响机械制造工业的产品质 量和劳动生产率。 1.2 机床课程设计的目的 课程设计是在学生学完相应课程及先行课程之后进行的实习性教学环节,是大学生 的必修环节,其目的在于通过机床运动机械变速传动系统的结构设计,使学生在拟定传 动和变速的结构的结构方案过程中,得到设计构思,方案分析,结构工艺性,机械制图, 零件计算,编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌 握基本的设计方法,并培养学生具有初步的结构分析,结构设计和计算能力 1.3 车床的规格系列和用处 普通机床的规格和类型有系列型谱作为设计时应该遵照的基础。因此,对这些基本知 识和资料作些简要介绍。本次设计的是普通型车床主轴变速箱。主要用于加工回转体。
表 1 车床的主参数(规格尺寸)和基本参数 工件最大回 转直径 D max (mm) 正转最高 转速 Nmax ( r ) 电机功率 N(kw) 公比 ? 转速级数 Z
min
11
400
2000
3
1.26
12
1.4 操作性能要求 1)具有皮带轮卸荷装置

2)手动操纵双向摩擦片离合器实现主轴的正反转及停止运动要求 3)主轴的变速由变速手柄完成
二、参数的拟定 2.1 确定转速范围 查金属切削机床表 7-1 得:160r/min,200r/min,250r/min,315r/min,400r/min, 500r/min,630r/min,800r/min,1000r/min,1250r/min,1600r/min,2000r/min. 2.2 主电机选择 合理的确定电机功率,使机床既能充分发挥其使用性能,满足生产需要,又不致使电 机经常轻载而降低功率因素。 已知电动机的功率是 3KW,根据《车床设计手册》附录表 2 选 JO2-32-4,额定功率 3 kw , 满载转速 1430 r min ,最大额定转距 2.2 N m 。
三、传动设计 3.1 主传动方案拟定 拟定传动方案,包括传动型式的选择以及开停、幻想、制动、操纵等整个传动系统的 确定。传动型式则指传动和变速的元件、机构以及组成、安排不同特点的传动型式、变速 类型。 传动方案和型式与结构的复杂程度密切相关,和工作性能也有关系。因此,确定传动 方案和型式,要从结构、工艺、性能及经济等多方面统一考虑。 传动方案有多种,传动型式更是众多,比如:传动型式上有集中传动,分离传动;扩 大变速范围可用增加传动组数,也可用背轮结构、分支传动等型式;变速箱上既可用多速 电机,也可用交换齿轮、滑移齿轮、公用齿轮等。 显然,可能的方案有很多,优化的方案也因条件而异。此次设计中,我们采用集中传

动型式的主轴变速箱。
3.2
传动结构式、 传动结构式、结构网的选择 结构式、结构网对于分析和选择简单的串联式的传动不失为有用的方法,但对于分析
复杂的传动并想由此导出实际的方案,就并非十分有效。 3.2.1 确定传动组及各传动组中传动副的数目 级数为 Z 的传动系统由若干个顺序的传动组组成,各传动组分别有 Z1 、 Z 2 、……个传 动副。即 Z = Z 1 Z 2 Z 3 LL 传动副中由于结构的限制以 2 或 3 为合适,即变速级数 Z 应为 2 和 3 的因子:
Z = 2 a × 3b ,可以有三种方案:
12=3×2×2;12=2×3×2;12=2×2×3; 3.2.2 传动式的拟定 12 级转速传动系统的传动组,选择传动组安排方式时,考虑到机床主轴变速箱的具体 结构、装置和性能。 主轴对加工精度、表面粗糙度的影响很大,因此主轴上齿轮少些为好。最后一个传动 组的传动副常选用 2。 综上所述,传动式为 12=2×3×2。 3.2.3 结构式的拟定 对于 12=2×3×2 传动式,有 6 种结构式和对应的结构网。分别为:
12 = 21 × 32 × 2 6 , 12 = 2 3 × 31 × 2 6 , 12 = 2 6 × 31 × 2 3
12 = 2 2 × 34 × 21 ,
12 = 2 6 × 32 × 21
12 = 21 × 34 × 2 2
初选 12 = 21 × 32 × 26 的方案。

3.3 转速图的拟定
图 1 正转转速图
图 2 主传动系图
四、 传动件的估算 4.1 三角带传动的计算 三角带传动中,轴间距 A 可以加大。由于是摩擦传递,带与轮槽间会有打滑,宜可缓 和冲击及隔离振动,使传动平稳。带轮结构简单,但尺寸大,机床中常用作电机输出轴的 定比传动。

(1)选择三角带的型号 根据公式: Pca = K a P = 1.1× 5.5 = 6.05 KW 式中 P---电动机额定功率, K a --工作情况系数 查《机械设计》图 8-8 因此选择 A 型带,尺寸参数为 B=80mm, bd =11mm,h=10, ? = 40° 。 (2)确定带轮的计算直径 D1 , D2 带轮的直径越小带的弯曲应力就越大。为提高带的寿命,小带轮的直径 D1 不宜过小,即
D1 ≥ Dmin 。查《机械设计》表 8-3,8-7 取主动轮基准直径 D1 =100m
由公式 D2 = 式中:
n1 D1 (1 ? ε ) n2
n1 -小带轮转速, n2 -大带轮转速, ε -带的滑动系数,一般取 0.02。
所以 D2 =
1440 × 140 (1 ? 0.02 ) = 220.5mm ,由《机械设计 A》表 8-7 取园整为 224mm。 800
(3)确定三角带速度 按公式 V =
π D1n1
60 × 1000
=
3.14 ×125 × 1440 = 9.42 m s 60 × 1000
(4)初定中心距 带轮的中心距,通常根据机床的总体布局初步选定,一般可在下列范围内选取: 根据 经验公式 0.7 ( D1 + D2 ) < A0 < 2 ( D1 + D2 ) mm 取 2 × (125 + 224 ) = 698mm ,取 A0 =600mm. (5)三角带的计算基准长度 L0
L0 = 2 A0 +
π
2
(D1 + D2 ) + (D2 ? D1 )
4 A0
2
L0 = 2 × 600 +
( 224 ? 125 ) = 1751.93mm 3.14 × (125 + 224 ) + 2 4 × 700
2

由《机械设计》表 8-2,圆整到标准的计算长度 (6)验算三角带的挠曲次数
u= 1000mv = 10.31 ≤ 40 次 ,符合要求。 s L
L = 1800mm
(7)确定实际中心距 A
A = A0 +
L ? L0 = 600 + 1800 ? 1752) 2 = 624mm ( ÷ 2
(8)验算小带轮包角 α
α1 ≈ 1800 ?
D2 ? D1 × 57.50 = 1170.90 > 1200 ,主动轮上包角合适。 A
(9)确定三角带根数 Z 根据《机械设计》式 8-22 得
z=
传动比
pca p0 + ?p0 kα kl
i=
v1 = 1440 / 800 = 1.8 v2
查表 8-5c,8-5d 得 ?p0 = 0.15KW, p0 = 1.32KW 查表 8-8, kα =0.98;查表 8-2, kl =0.96
Z=
6.05 = 4.3 (1.32 + 0.15 ) × 0.98 ×1.01
所以取 Z = 5 根 (10)计算预紧力 查《机械设计》表 8-4,q=0.1kg/m
pca ? 2.5 ? ? 1? + qv 2 ? vz ? kα ? 6.05 ? 2.5 ? = 500 × ? 1? + 0.1× 7.54 2 ? 7.54 × 5 ? 0.98 ? = 130.1N F0 = 500

4.2
传动轴的估算 传动轴除应满足强度要求外,还应满足刚度的要求,强度要求保证轴在反复载荷和扭
载荷作用下不发生疲劳破坏。机床主传动系统精度要求较高,不允许有较大变形。因此疲 劳强度一般不失是主要矛盾,除了载荷很大的情况外,可以不必验算轴的强度。刚度要求 保证轴在载荷下不至发生过大的变形。因此,必须保证传动轴有足够的刚度。 4.2.1 传动轴直径的估算 d ≥ KA 4 Pη mm Nj K-键槽系数 A-系数
其中:P-电动机额定功率
η -从电机到该传动轴之间传动件的传动效率的乘积;
n j -该传动轴的计算转速。
计算转速 n j 是传动件能传递全部功率的最低转速。各传动件的计算转速可以从转速图 上,按主轴的计算转速和相应的传动关系确定。 查《机械制造装备设计》表 3-8 取 I,IV 轴的 K=1.05,A=100;II,III 轴是花键轴, 取 K=1.06,A=2.0。 所以 d1 = (92 × 1.05) 4
5.5 × 0.96 mm = 25.3mm 800 × 1.5

取 30mm
d 2 = (92 × 1.05) 4
5.5 × 0.96 × 0.99 × 0.98 mm = 27.4mm , 250
取 35mm
d3 = (92 ×1.05) 4
5.5 × 0.96 × 0.99 × 0.98 × 0.99 × 0.98 mm = 38.5mm , 取 40mm 125
此轴径为平均轴径,设计时可相应调整。

4.3 4.3.1
齿轮齿数的确定和模数的计算 齿轮齿数的确定和模数的计算 齿轮齿数的确定 当各变速组的传动比确定以后,可确定齿轮齿数。对于定比传动的齿轮齿数可依据机
械设计手册推荐的方法确定。对于变速组内齿轮的齿数,如传动比是标准公比的整数次方 时,变速组内每对齿轮的齿数和 S z 及小齿轮的齿数可以从表 3-6(机械制造装备设计)中 选取。一般在主传动中,最小齿数应大于 18~20。采用三联滑移齿轮时,应检查滑移齿轮 之间的齿数关系:三联滑移齿轮的最大齿轮之间的齿数差应大于或等于 4,以保证滑移是 齿轮外圆不相碰。 第一组齿轮: 传动比: u1 = 1 = 1 , u2=1/1.26,u3=1/1.58
?0
查《机械制造装备设计》表 3-6,齿数和 S z 取 72
Z1 =36, Z 2 =42, Z 3 =32,Z4=36,Z5=32,Z6=42;
第二组齿轮: 传动比: u1 = 1 = 1 ,u2=1/2,
?0
齿数和 S z 取 72: 第三组齿轮:
Z7=36,Z8 =24,Z9=36,Z10=48;
传动比:u1=1.58,u2=1/2.52 齿数和 S z 取 72: 4.3.2 齿轮模数的计算 Z11=43,Z12 =20,Z13=27,Z14=50;
(1) 一般同一变速组中的齿轮取同一模数,选择负荷最重的小齿轮按简化的接触疲劳强 度公式计算 m j = 16338 3
( i ± 1) × N d
?m × Z × i × ?σ j ? × n j ? ?
2 1 2
[ mm]

式中: m j ——按疲劳接触强度计算的齿轮模数 [ mm ] N d ——驱动电机功率 [ KW ] n j ——计算齿轮的计算转速 [ rpm]
Z1 ——小齿轮齿数
i ——大齿轮齿数和小齿轮齿数之比 i ≥ 1
?m ——齿宽系数, ? m =
?σ j ? ——许用接触应力 ? ?
B (B 为齿宽,m 为模数) ? m = 6 10 , m
[ MPa ]
传动组 a 模数: ma = 16338 3
1.6 × 2.0 = 1.93 6 × 27 ×1.6 × 6002 ×1250
2
传动组 b 模数: mb = 16338 3
3 × 2.0 = 2.39 6 × 24 × 2 × 6002 × 800
2
传动组 c 模数: mc = 16338 3
5 × 2.0 = 4.12 6 × 18 × 4 × 6002 × 400
2
故选取标准模数 ma = 2.5, mb = 2.5, mc = 3 。 (4)标准齿轮: α = 20度,h *α = 1,c* = 0.25
从机械原理 表 10-2 查得以下公式 齿顶圆 d a = ( z1 + 2h * a )m 分度圆 d = mz 齿根高 h f = (h * a + c * )m 齿轮的具体值见表
齿轮尺寸表 齿轮 齿数 z 模数 m 分度圆 d 齿顶圆 齿根圆 齿顶高 齿根高
齿根圆 d f = ( z1 + 2h*a + 2c* )m 齿顶高 ha = h * a m
da
90 95
df
83.75
ha
2.5
hf
3.125
1
36
2.5

2
40
2.5
100
105
93.75
2.5
3.125
3
32
2.5
80
85
73.75
2.5
3.125
4
36
2.5
90
95
83.75
2.5
3.125
5 6 7 8 9 10 11 12 13 14
32 40 36 24 36 48 43 20 27 50
2.5 2.5 2.5 2.5 2.5 2.5 3 3 3 3
80 100 90 60 90 120 129 60 81 150
85 105 95 65 95 125 132 63 84 153
73.75 93.75 83.75 53.75 83.75 113.75 125.25 56.25 87.25 146.25
2.5 2.5 2.5 2.5 2.5 2.5 3 3 3 3
3.125 3.125 3.125 3.125 3.125 3.125 3.75 3.75 3.75 3.75
4.3.4 齿宽确定 由公式 B = ? m m (?m = 6 10, m为模数 ) 得:
第一套啮合齿轮 BI = ( 6
10 ) × 3 = 18 30mm
第二套啮合齿轮 BII = ( 6 10 ) × 3 = 18 30mm 第三套啮合齿轮 BIII = ( 6 10 ) × 3 = 18 30mm 一对啮合齿轮,为了防止大小齿轮因装配误差产生轴向错位时导致啮合齿宽减小而增大轮 齿的载荷,设计上,应主动轮比小齿轮齿宽大

所以 B1 = 18mm, B2 = 18mm , B3 = 18mm , B4 = 18mm ,
B5 = 25mm, B6 = 20mm, B7 = 25mm, B8 = 18mm, B9 = 25mm, B10 = 20mm ,
B11 = 18mm, B12 = 20mm, B13 = 20mm, B14 = 18mm
4.4
带轮结构设计 查《机械设计》P156 页,当 d d ≤ 300mm时,采用腹板式 。D 是轴承外径,查《机械零件
手册》确定选用深沟球轴承 6211,d=55mm,D=100mm。带轮内孔尺寸是轴承外径尺寸 100mm。 齿《机械设计》表 8-10 确定参数得:
bd = 8.5, ha = 2.0, h f = 9.0, e = 12, f = 8, δ min = 5.5, ? = 38o
带轮宽度: B = ( z ? 1) e + 2 f = ( 5 ? 1) × 8 + 2 × 7 = 64mm 分度圆直径: d d = 280mm ,
d1 = 1.9 D = 1.8 ×100mm = 180mm, C ' = 5 / 28 × B = 11.4 ≈ 12mm ,
L = B = 64mm,
五、动力设计 5.1 主轴刚度验算
5.1.1
选定前端悬伸量 C
参考《机械装备设计》P121,根据主轴端部的结构,前支承轴承配置和密封装置的型 式和尺寸,这里选定 C=120mm.
5.1.2
主轴支承跨距 主轴支承跨距 L 的确定
一般最佳跨距 L0 = ( 2 3) C = 240
420mm , 考虑到结构以及支承刚度因磨损会不断降

低,应取跨距 L 比最佳支承跨距 L0 大一些,再考虑到结构需要,这里取 L=600mm。
5.1.3 计算 C 点挠度 1)周向切削力 Pt 的计算
2 × 955 × 104η N d pt = Djn j
其中 N d = 5.5 KW ,η = 0.96 × 0.987 ,
D j = ( 0.5 0.6 ) Dmax = ( 0.5 0.6 ) × 400 = 200 × 240mm, 取D j = 240, n j = 31.5r / min 故 pt = 2 × 955 × 104 × 0.82 × 5.5 = 1.15 × 104 N ,故 P = 1.12 Pt = 1.736 × 104 N 。 240 × 35.5
Pr = 0.45 Pt = 6.98 × 103 N , Pf = 0.35Pt = 5.43 × 103 N
1) 驱动力 Q 的计算 参考《车床主轴箱指导书》 ,
Q = 2.12 × 107 N nzn
其中
N = N dη = 5.5 × 0.96 × 0.987 = 4.58 KW , z = 72, m = 3, n = 35.5r / min
所以
Q = 2.12 × 107 × 4.58 = 1.13 ×10 4 N 4 × 72 × 35.5
3)轴承刚度的计算 这里选用 4382900 系列双列圆柱子滚子轴承 根据 C = 22.222 × 1.50.103 × d 0.8 求得:

C A = 22.222 × 1.50.103 × 700.8 = 8.48 × 105 N / mm CB = 22.222 × 1.50.103 × 1000.8 = 9.224 × 105 N / mm
4)确定弹性模量,惯性距 I; I c ;和长度 a, b, s 。 ①轴的材产选用 40Cr,查《简明机械设计手册》P6,有
E = 2.1× 105 MPa
②主轴的惯性距 I 为:
I=
π ( D 4外 ? D 4内 )
64
= 4.27 × 106 mm 4
主轴 C 段的惯性距 Ic 可近似地算:
Ic =
π ( D 41 ? 0.64 D 41 )
64
= 6.25 × 106 mm 4
③切削力 P 的作用点到主轴前支承支承的距离 S=C+W,对于普通车床,W=0.4H, (H 是车床中心高,设 H=200mm)。 则: S = 120 + 0.4 × 200 = 200mm ④根据齿轮、轴承宽度以及结构需要,取 b=60mm ⑤计算切削力 P 作用在 S 点引起主轴前端 C 点的挠度
ycsp
? 3sc 2 ? c 3 Lsc ( L + S )( L + C ) sc ? = P? + + + ? mm 2 3EI CAL C A L2 ? ? 6 EI c
代入数据并计算得 ycsp =0.1299mm。 ⑥计算驱动力 Q 作用在两支承之间时,主轴前端 C 点子的挠度 ycmq
? ?bc ( 2 L ? b )( L ? b ) ( L + C )( L ? b ) bc ? ycmq = Q ? + + ? mm 2 6 EIL CB L C A L2 ? ?
计算得: ycmq =-0.0026mm

⑦求主轴前端 C 点的终合挠度 yc 水平坐标 Y 轴上的分量代数和为 ycy = ycsp cos θ p + ycmq cos θ q + ycm cos θ m ,
其中θ p = 66o ,θ q = 270o ,θ m = 180o ,计算得: ycy =0.0297mm. ycz = 0.0928mm 。综合挠度
yc = ycy 2 + ycz 2 = 0.118mm 。 综 合 挠 度 方 向 角 α yc = arc tg
ycz = 72.25o , 又 ycy
[ y ] = 0.0002 L = 0.0002 × 600 = 0.12mm 。因为 yc < [ y ] ,所以此轴满足要求。
5.2 齿轮校验 在验算算速箱中的齿轮应力时,选相同模数中承受载荷最大,齿数最小的齿轮进接触 应力和弯曲应力的验算。这里要验算的是齿轮 2,齿轮 7,齿轮 12 这三个齿轮。 齿轮 12 的齿数为 18,模数为 4,齿轮的应力:
1)接触应力:
2088 × 104 Qf = zm
( u + 1) kβ kv ka ks N
uBn j
u----大齿轮齿数与小齿轮齿数之比;
kβ ---齿向载荷分布系数; kv ----动载荷系数; k A ----工况系数; ks ----寿命系数
查 《机械装备设计》 10-4 及图 10-8 及表 10-2 分布得 k HB = 1.15, k FB = 1.20; kv = 1.05, k A = 1.25 表 假定齿轮工作寿命是 48000h,故应力循环次数为
N = 60njLh = 60 × 500 × 1× 48000 = 1.44 ×109 次 查《机械装备设计》图 10-18 得 K FN = 0.9, K HN = 0.9 ,所以:
σf =
2088 × 10 18 × 4
3
? 72 ? 2 ? + 1? × 1.15 × 1.05 ×1.25 × 0.9 × 7.5 × 0.96 × 0.98 ? 18 ? = 1.024 ×103 MPa 72 × 21× 500 18
2)弯曲应力:

Qw =
191× 105 kβ kv ka k s N zm 2 BYn j
查《金属切削手册》有 Y=0.378,代入公式求得: Qw =158.5Mpa 查 《机械设计》 10-21e,齿轮的材产选 40Cr ( 渗碳 ) , 图 大齿轮、 小齿轮的硬度为 60HRC, 故有 ?σ f ? = 1650 MPa ,从图 10-21e 读出 [σ w ] = 920MPa 。因为: ? ?
σ f < ?σ f ? , σ w < [σ w ] ,故满足要求,另外两齿轮计算方法如上,均符合要求。 ? ?
六、结构设计及说明 6.1 结构设计的内容、 结构设计的内容、技术要求和方案 设计主轴变速箱的结构包括传动件 (传动轴、 轴承、 带轮、 齿轮、 离合器和制动器等) 、 主轴组件、操纵机构、润滑密封系统和箱体及其联结件的结构设计与布置,用一张展开图 和若干张横截面图表示。课程设计由于时间的限制,一般只画展开图。 主轴变速箱是机床的重要部件。设计时除考虑一般机械传动的有关要求外,着重考虑 以下几个方面的问题。 精度方面的要求,刚度和抗震性的要求,传动效率要求,主轴前轴承处温度和温升的 控制,结构工艺性,操作方便、安全、可靠原则,遵循标准化和通用化的原则。 主轴变速箱结构设计时整个机床设计的重点,由于结构复杂,设计中不可避免要经过反 复思考和多次修改。在正式画图前应该先画草图。
6.2
展开图及其布置 展开图就是按照传动轴传递运动的先后顺序,假想将各轴沿其轴线剖开并将这些剖切
面平整展开在同一个平面上。 I 轴上装的摩擦离合器和变速齿轮。有两种布置方案,一是将两级变速齿轮和离合器 做成一体。齿轮的直径受到离合器内径的约束,齿根圆的直径必须大于离合器的外径,负

车床主轴箱设计说明书

中北大学 课程设计任务书 15/16 学年第一学期 学院:机械工程与自动化学院 专业:机械设计制造及其自动化 学生姓名:王前学号:1202014233 课程设计题目:《金属切削机床》课程设计 (车床主轴箱设计) 起迄日期:12 月21 日~12 月27 日课程设计地点:机械工程与自动化学院 指导教师:马维金讲师 系主任:王彪 下达任务书日期: 2012年12月21日

课程设计任务书

课程设计任务书

目录 1.机床总体设计 (5) 2. 主传动系统运动设计 (5) 2.1拟定结构式 (5) 2.2结构网或结构式各种方案的选择 (6) 2.2.1 传动副的极限传动比和传动组的极限变速范围 (6) 2.2.2 基本组和扩大组的排列顺序 (6) 2.3绘制转速图 (7)

2.5确定带轮直径 (8) 2.6验算主轴转速误差 (8) 2.7 绘制传动系统图 (8) 3.估算传动件参数确定其结构尺寸 (10) 3.1确定传动见件计算转速 (10) 3.2确定主轴支承轴颈尺寸 (10) 3.3估算传动轴直径 (10) 3.4估算传动齿轮模数 (10) 3.5普通V带的选择和计算 (11) 4.结构设计 (12) 4.1带轮设计 (12) 4.2齿轮块设计 (12) 4.3轴承的选择 (13) 4.4主轴主件 (13) 4.5操纵机构、滑系统设计、封装置设计 (13) 4.6主轴箱体设计 (13) 4.7主轴换向与制动结构设计 (13) 5.传动件验算 (14) 5.1齿轮的验算 (14) 5.2传动轴的验算 (16) 5.3花键键侧压溃应力验算 (19)

CA6150车床主轴箱箱体工装工艺及夹具设计

编号 无锡太湖学院 毕业设计(论文) 题目:CA6150车床主轴箱箱体工装 工艺及夹具设计 信机系机械工程及自动化专业 学号: 学生姓名: 指导教师: 2013年5月25日

无锡太湖学院本科毕业设计(论文) 诚信承诺书 本人郑重声明:所呈交的毕业设计(论文)CA6150车床主轴箱箱体工装工艺及夹具设计是本人在导师的指导下独立进行研究所取得的成果,其内容除了在毕业设计(论文)中特别加以标注引用,表示致谢的内容外,本毕业设计(论文)不包含任何其他个人、集体已发表或撰写的成果作品。 班级: 学号: 作者姓名: 2013 年5 月25 日

无锡太湖学院 信机系机械工程及自动化专业 毕业设计论文任务书一、题目及专题: 1、题目CA6150车床主轴箱箱体工装工艺及夹具设计 2、专题 二、课题来源及选题依据 课题来源为无锡腾飞机械有限公司。 该课题主要是为了对本科阶段所学的机械加工工艺课程,机械设计,机械夹具设计课程等内容按照机床夹具设计的加工工序的要求,针对实际使用过程中的机床驱动,及工件夹紧问题,要能灵活运用机械制造装备设计的知识,设计出有效夹紧装置。从而实现箱体加工工艺机床驱动与夹紧的半自动控制。 在设计专用夹具时,要根据提高生产效率,表面加工质量,满足产品工作要求的情况下,应尽可能多的标准件,提高其互换性要求,以降低产品的设计产品成本,提高批量生产的效益。 三、本设计(论文或其他)应达到的要求: ①了解主轴箱的工作过程; ②熟悉有关标准、规格、手册和资料的应用; ③拟定主轴箱箱体的机械加工工艺方案,并进行多方案对比分析,

进行优化设计; ④对现代加工机床所需的快速夹紧系统具有初步分析能力和改进设计的能力; ⑤理论联系实际的工作方法和独立工作能力深化和提高; ⑥设计绘制主轴箱箱体工作图若干; ⑦编制设计说明书1份。 四、接受任务学生: 班姓名 五、开始及完成日期: 自2012年11月12日至2013年5月25日 六、设计(论文)指导(或顾问): 指导教师签名 签名 签名 教研室主任 〔学科组组长研究所所长〕签名 系主任签名 2012年11月12日

CA6140车床滤油器体的设计(有cad图)

目录 序言 (1) 一、零件的分析及生产类型的确定 (1) 1、零件的作用 (1) 2、零件的工艺分析 (3) 3、零件的生产类型 (3) 二、零件毛坯的设计 (4) 1、选择毛坯 (4) 2、毛坯尺寸公差与机械加工余量的确定 (4) 3、确定毛坯尺寸 (5) 4、设计毛坯图 (7) 三、零件的加工工艺设计 (9) 1、定位基准的选择 (9) 2、零件表面加工方法的选择 (9) 3、拟订工艺路线 (10) 4、工艺方案的比较与分析 (12) 四、工序设计 (14) 1、选择加工设备与工艺装备 (14) 2、确定工序尺寸 (17) 3、数控加工工序 (21) a)夹具的设计 (22) 1、工件的定位 (22) 2、夹紧装置 (25) 3、定位误差分析 (25) 4、对刀装置 (26) 5、夹具体 (26) 6、结构特点 (27) 六、设计小结 (27) 七、参考文献 (28)

序言 综合模块(机制工艺及夹具)毕业设计是在学完了机械制造技术基础和大部分专业课,并进行了生产实习的基础上进行的又一个实践性教学环节。这次设计使我能综合运用机械制造技术基础中的基本理论,并结合生产实习中学到的实践知识,独立地分析和解决了零件机械制造工艺问题,设计了机床专用夹具这一典型的工艺装备,提高了结构设计能力,为今后的毕业设计及未来从事的工作打下了良好的基础。 这次毕业设计中,我所选的零件是“CA6140车床滤油器体”,完成该零件的机械加工工艺规程的编制及工艺装备的设计,滤油器在车床上是个必不可少的部件,它有着过滤油液及缓冲的作用。因此在加工时,零件的配合部分需进行精加工,保证其配合准确,提高车床的综合性能,又因为被加工零件的结构比较复杂,加工难度大,需进行专用夹具的设计与装配。 由于能力所限,经验不足,设计中还有许多不足之处,希望老师多加指教。 一、零件的分析及生产类型的确定 4、零件的作用 “CA6140车床滤油器体”如图1所示。它位于车床主轴箱上

车床主轴箱课程设计12级转速

目录 一、机床总体设计---------------------------------------------------------------------2 1、机床布局--------------------------------------------------------------------------------------------2 2、绘制转速图-----------------------------------------------------------------------------------------4 3、防止各种碰撞和干涉-----------------------------------------------------------------------------5 4、确定带轮直径--------------------------------------------------------------------------------------5 5、验算主轴转速误差--------------------------------------------------------------------------------5 6、绘制传动系统图-----------------------------------------------------------------------------------6 二、估算传动件参数确定其结构尺寸-------------------------------------------7 1、确定传动见件计算转速--------------------------------------------------------------------------7 2、确定主轴支承轴颈尺寸--------------------------------------------------------------------------7 3、估算传动轴直径-----------------------------------------------------------------------------------7 4、估算传动齿轮模数--------------------------------------------------------------------------------8 5、普通V带的选择和计算-------------------------------------------------------------------------8 三、机构设计--------------------------------------------------------------------------10 1、带轮设计-------------------------------------------------------------------------------------------10 2、齿轮块设计----------------------------------------------------------------------------------------10 3、轴承的选择----------------------------------------------------------------------------------------10 4、主轴主件-------------------------------------------------------------------------------------------10 5、操纵机构-------------------------------------------------------------------------------------------10 6、滑系统设计----------------------------------------------------------------------------------------10 7、封装置设计----------------------------------------------------------------------------------------10 8、主轴箱体设计-------------------------------------------------------------------------------------11 9、主轴换向与制动结构设计----------------------------------------------------------------------11 四、传动件验算-----------------------------------------------------------------------11 1、齿轮的验算----------------------------------------------------------------------------------------11 2、传动轴的验算-------------------------------------------------------------------------------------13 五、设计感想--------------------------------------------------------------------------15 六、参考文献--------------------------------------------------------------------------16

机床主轴箱设计说明书

机床主轴箱设计说明书 一、机床的型号及用途 1、规格 选用型号 CA6140、规格 Φ320×1000 2、用途 CA6140型卧式车床万能性大,适用于加工各种轴类、套筒类、轮盘类零件上的回转表面。可车削外圆柱面、车削端面、切槽和切断、钻中心孔、钻孔、镗孔、铰孔、车削各种螺纹、车削外圆锥面、车削特型面、滚花和盘绕弹簧等。加工围广、结构复杂、自动化程度不高,所以一般用于单件、小批生产。 二、 机床的主参数和其他主要技术要求 1、主参数和基本参数 1) 主参数 机床主参数系列通常是等比数列。普通车床和升降台铣床的主参数均采用公比为1.41的数列,该系列符合国际ISO 标准中的优先系列。 普通车床的主参数D 的系列是:250、320、400、500、630、800、1000、1250mm 。 2) 基本参数 除主参数外,机床的基本是指与被加工工件主要尺寸有关的及与工、夹、量具标准有关的一些参数,这些主参数列入机床的参数标准,作为设计时依据。 3)普通车床的基本参数 普通车床的基本参数应符合《普通车床参数国家标准》见参考文献 【一】中表2的规定,有下列几项数; 刀架上最大工件回转直径1D (mm ) 由于刀架组件刚性一般较弱,为了提高生产效率,国外车床刀架溜板厚度有所增加,在不增加中心高时,1D 值减少的趋势。我国作为参数标准的1D 值,基本上取12D D >/,这样给设计留一定的余地,设计时,在刀架刚度允许的条件下能保证使用要求,可以取较大的1D 值。所以查参考文献【一】(表2)得1D =160mm 。 主轴通孔直径d ﹙mm ﹚

普通车床主轴通孔径主要用于棒料加工。在机床结构允许的条件下,通孔直径尽量取大些。参数标准规定了通孔直径d的最小值。所以由参考文献 【一】(表二)d=36mm。 主轴头号 普通车床采用短锥法兰式主轴头,这种形式的主轴头精度高,装卸方便。 主轴端部及其结构合面得型式和基本尺寸要符合《法兰式车床主轴端部尺寸部标注》的规定。根据机床主参数值大小采用不同号数的主轴头(4~15号),号值数等于法兰直径的1/25.4而取其整数值。所以由参考文献【一】(表2)可知主轴头号取4.5 装刀基面至主轴中心距离h(mm) 为了使用户,提高刀具的标准化程度,根据机械工业部工具研究所的刀 具杆标准,规定了h=22mm。 最大工件长度L (mm) 最大工件长度L是指尾座在床身处于最后位置,尾座顶尖套退入尾座孔时容纳的工件长度。为了有利组织生产,采用分段等差的长度数列。所以由参考文献【一】(表2)得L=1000mm。 2、主传动的设计 1)主轴极限的确定 由课程设计任务书中给出的条件可知: Z=40 r/min min Z=1800 r/min max 2)公比的确定 主轴极限转速的确定后,根据机床的使用性能和结构要求,选择主轴转速数列的公比值,因为中型通用机床,常用的公比为1.26或是1.41,再根据极限转速,按参考文献【一】中表2—1选出标准转速数列公比 =1.41。 3)主轴转速级数的确定 按任务书要求Z=12 按标准转速数列为40、56、80、115、160、225、315、445、625、880、1250、1800r/min 4)主传动电动机功率的确定 电动机的额定功率为: N =4kW 额

CA6140机床主轴箱的设计

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 目录 第一章引言 第二章机床的规格和用途 第三章机床主要参数的确定 第四章传动放案和传动系统图的拟定 第五章主要设计零件的计算和验算 第六章结论 第七章参考资料编目

第一章引言 普通车床是车床中应用最广泛的一种,约占车床类总数的65%,因其主轴以水平方式放置故称为卧式车床。 CA6140型普通车床的主要组成部件有:主轴箱、进给箱、溜板箱、刀架、尾架、光杠、丝杠和床身。 主轴箱:又称床头箱,它的主要任务是将主电机传来的旋转运动经过一系列的变速机构使主轴得到所需的正反两种转向的不同转速,同时主轴箱分出部分动力将运动传给进给箱。主轴箱中等主轴是车床的关键零件。主轴在轴承上运转的平稳性直接影响工件的加工质量,一旦主轴的旋转精度降低,则机床的使用价值就会降低。 进给箱:又称走刀箱,进给箱中装有进给运动的变速机构,调整其变速机构,可得到所需的进给量或螺距,通过光杠或丝杠将运动传至刀架以进行切削。 丝杠与光杠:用以联接进给箱与溜板箱,并把进给箱的运动和动力传给溜板箱,使溜板箱获得纵向直线运动。丝杠是专门用来车削各种螺纹而设置的,在进行工件的其他表面车削时,只用光杠,不用丝杠。同学们要结合溜板箱的内容区分光杠与丝杠的区别。 溜板箱:是车床进给运动的操纵箱,内装有将光杠和丝杠的旋转运动变成刀架直线运动的机构,通过光杠传动实现刀架的纵向进给运动、横向进给运动和快速移动,通过丝杠带动刀架作纵向直线运动,以便车削螺纹。 第二章机床的规格和用途 CA6140机床可进行各种车削工作,并可加工公制、英制、模数和径节螺纹。 主轴三支撑均采用滚动轴承;进给系统用双轴滑移共用齿轮机构;纵向与横向进给由十字手柄操纵,并附有快速电机。该机床刚性好、功率大、操作方便。 第三章主要技术参数 工件最大回转直径: 在床面上………………………………………………………-----……………400毫米在床鞍上…………………………………………………………-----…………210毫米工件最大长度(四种规格)……………………………----…750、1000、1500、2000毫米主轴孔径…………………………………………………-----……………………… 48毫米主轴前端孔锥度…………………………………………-----…………………… 400毫米主轴转速范围: 正传(24级)…………………………………………----…………… 10~1400转/分反传(12级)……………………………………---…-……………… 14~1580转/分加工螺纹范围:

《金属切削机床》课程设计--C616型车床主轴箱设计(全套图纸)

目录 全套图纸加174320523 各专业都有 1.概述和机床参数确定 (1) 1.1机床运动参数的确定 (1) 1.2机床动力参数的确定 (1) 1.3机床布局 (1) 2.主传动系统运动设计 (2) 2.1确定变速组传动副数目 (2) 2.2确定变速组的扩大顺序 (2) 2.3绘制转速图 (3) 2.4确定齿轮齿数 (3) 2.5确定带轮直径 (3) 2.6验算主轴转速误差 (4) 2.7绘制传动系统图 (4) 3.估算传动件参数确定其结构尺寸 (5) 3.1确定传动转速 (5) 3.2确定主轴支承轴颈尺寸 (6) 3.3估算传动轴直径 (6) 3.4估算传动齿轮模数 (6) 3.5普通V带的选择和计算 (7) 4.结构设计 (8) 4.1带轮设计 (8) 4.2齿轮块设计 (8) 4.3轴承的选择 (9) 4.4主轴组件 (9) 4.5操纵机构、滑系统设计、封装置设计 (9) 4.6主轴箱体设计 (9)

4.7主轴换向与制动结构设计 (9) 5.传动件验算 (10) 5.1齿轮的验算 (10) 5.2传动轴的刚度验算 (12) 5.3花键键侧压溃应力验算 (16) 5.4滚动轴承的验算 (16) 5.5主轴组件验算 (17) 6. 主轴位置及传动示意图 (20) 7.总结 (20) 8.参考文献 (21) 1.概述 1机床课程设计的目的 机床课程设计,是在金属切削机床课程之后进行的实践性教学环节。其目的在于通过机床运动机械变速传动系统的结构设计,使学生在拟定传动和变速的结构的结构方案过程中,得到设计构思,方案分析,结构工艺性,机械制图,零件计算,编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并培养学生具有初步的结构分析,结构设计和计算能力。轻型车床是根据机械加工业发展需要而设计的一种适应性强,工艺范围广,结构简单,制造成本低的万能型车床。它被广泛地应用在各种机械加工车间,维修车间。它能完成多种加工工序;车削内圆柱面,圆锥面,成形回转面,环形槽,端面及内外螺纹,它可以用来钻孔,扩孔,铰孔等加工。 1.1 机床运动参数的确定 (1)确定公比φ及Rn 已知最低转速n min =45rpm,最高转速n max =1980rpm,变速级数Z=12,则公比: φ= (n max /n min )1/(Z-1) =(1980rpm/45rpm)1/(12-1)≈1.41 转速 调整范围: Rn=n max /n min =44 (2)求出转速系列 根据最低转速45r/min,最高转速max n=1980r/min,公比φ=1.41,按《金属切屑机床》(戴曙编)表7-1选出标准转速数列: 2000 1400 1000 710 500 355 250 180 125 90 63 45 1.2机床动力参数的确定 已知电动机功率为N=4kw,根据《金属切削机床简明手册》(范云涨、陈兆年编)表11-32选择主电动机为Y112M-4,其主要技术数据见下表1: 表1 Y90L-4技术参数

#C6136机床主轴箱设计说明书14896

C6136型机床主轴箱课程设计说明书系别:交通和机械工程学院 专业:机械设计制造及其自动化 班级:机械10-4班 姓名:富连宇 学号:1008470434 吗 指导老师:赵民 目录 一、设计目的 (1) 二、机床主要技术要求 (1) 三、确定结构方案 (1) 四、运动设计 (1) 4.1确定极限转速 (1) 4.2拟订结构式 (1) 4.3绘制转速图 (2) 4.4 确定齿轮齿数 (2) 4.5 验算主轴转速误差: (3) 4.6 绘制传动系统图 (3) 五、动力设计 (3) 5.1 V带的传动计算 (3) 5.2各传动轴的估算 (4) 5.3齿轮模数确定和结构设计: (5) 5.4摩擦离合器的选择和计算: (6) 5.5结构设计 (7) 六、齿轮强度校核 (8) 6.1、各齿轮的计算转速 (8) 6.2、齿轮校核 (9) 七、主轴刚度校核 (9) 八、主轴最佳跨度确定 (10) 8.1计算最佳跨度 (10) 8.2校核主轴挠度 (10) 8.2主轴图:(略)见附图2 (10) 九、各传动轴支持处轴承选用 (10) 十、键的选择和校核 (10) 1)、轴IV的传递最大转矩 (10) 十一、润滑和密封 (11) 十二、总结 (11) 十三、参考文献 (11) 十四、附 (12)

一、设计目的 通过机床主运动机械变速传动系统得结构设计,在拟定传动和变速的结构方案过程中,得到设计构思、方案分析、结构工艺性、机械制图、零件计算、编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并具有初步的结构分析、结构设计和计算能力。可使我们学会理论联系实际的工作方法,培养独立工作的能力;学会基本的设计的方法;熟悉手册、标准、资料的运用;加强机械制图、零件计算、编写技术文件的能力,学会设计说明书的编写。为接下去的毕业设计、毕业论文积累经验。 二、机床主要技术要求 [1]车床类型为C6136型车床主轴变速箱(采用机械传动结构)。 [2]加工工件最大直径:360mm [3]加工工件最大长度:1500mm [4] 主轴通孔直径:40-50mm [5]主轴前锥孔:莫式5号 [6]主轴采用三相异步电机 [7]主电动机功率为n电额:4kw [8]转速nmin:33.5r/min mmax:1700 r/min n额:1000r/min [9]主轴变速系统实现正传12级变速,反转6级变速(采用摩擦离合器) 三、确定结构方案 [1] 主轴传动系统采用V带、齿轮传动; [2]传动形式采用集中式传动; [3]主轴换向制动采用双向片式摩擦离合器和带式制动器; [4]变速系统采用多联滑移齿轮变速。 四、传动方案 4.1确定极限转速 转速n min:33.5r/min n max:1700 r/min n额:1000r/min 4.2拟订结构式 1)确定变速组传动副数目: 传动副中由于结构的限制以2或3为合适,即变速级数Z应为2和3的因子,为实现12级主轴转速变化的传动系统可以以下多种传动副组合: ①12=3x2x2 ②12=2x2x3 ③12=2ⅹ3ⅹ2等 18级转速传动系统的传动组,选择传动组安排方式时,考虑到机床主轴箱的具体结构、装置性能,主轴上的传动副数主轴对加工精度、表面粗糙度的影响很大,因此主轴上的齿轮少些为好。按照1 符合变速级数、级比规律 2 传动件前多后少3 结构网前密后疏4 第二扩大组变速范围r=8满足变速范围要求

车床主轴箱设计---参考.

中北大学 信息商务学院 课程设计说明书 学生姓名:学号: 系:机械自动化系 专业:机械设计制造及其自动化 题目:机床课程设计 ——车床主轴箱设计 指导教师:马维金职称: 教授 黄晓斌职称: 副教授 2013年12月28日

目录 一、传动设计 1.1电机的选择 1.2运动参数 1.3拟定结构式 1.3.1 确定变速组传动副数目 1.3.2确定变速组扩大顺序 1.4拟定转速图验算传动组变速范围 1.5确定齿轮齿数 1.6确定带轮直径 1.6.1确定计算功率Pca 1 .6.2选择V带类型 1.6.3确定带轮直径基准并验算带速V 1.7验算主轴转速误差 1.8绘制传动系统图 二、估算主要传动件,确定其结构尺寸 2.1确定传动件计算转速 2.1.1主轴计算转速 2.1.2各传动轴计算转速 2.1.3各齿轮计算转速 2.2初估轴直径 2.2.1确定主轴支承轴颈直径 2.2.2初估传动轴直径 2.3估算传动齿轮模数 2.4片式摩擦离合器的选择及计算 d 2.4.1决定外摩擦片的内径 2.4.2选择摩擦片尺寸 2.4.3计算摩擦面对数Z 2.4.4计算摩擦片片数 2.4.5计算轴向压力Q 2.5V带的选择及计算 a 2.5.1初定中心距 L 2.5.2确定V带计算长度L及内周长 N

2.5.3验算V带的挠曲次数 2.5.4确定中心距a 2.5.5验算小带轮包角 α 1 2.5.6计算单根V带的额定功率 P r 2.5.7计算V带的根数 三、结构设计 3.1带轮的设计 3.2主轴换向机构的设计 3.3制动机构的设计 3.4齿轮块的设计 3.5轴承的选择 3.6主轴组件的设计 3.6.1各部分尺寸的选择 3.6.1.1主轴通孔直径 3.6.1.2轴颈直径 3.6.1.3前锥孔尺寸 3.6.1.4头部尺寸的选择 3.6.1.5支承跨距及悬伸长度 3.6.2主轴轴承的选择 3.7润滑系统的设计 3.8密封装置的设计 四、传动件的验算 4.1传动轴的验算 4.2键的验算 4.2.1花键的验算 4.2.2平键的验算 4.3齿轮模数的验算 4.4轴承寿命的验算 五、设计小结 六、参考文献

C6150车床主轴箱箱体加工工艺及夹具说明书

目录 摘要 (2) 第一章绪论 (4) 1.1机械制造的重要性 (4) 1.2夹具的发展历史 (5) 1.3小结 (6) 第二章零件的工艺性分析 (7) 2.1零件的作用 (7) 2.2分析C6150车床主轴箱箱体零件的技术要求 (7) 2.3确定毛坯类型 (8) 2.4毛坯余量的确定 (9) 第三章工艺规程设计 (14) 3.1加工阶段划分的作用 (14) 3.2制定加工方案即机械加工工艺路线的确定 (15) 3.2.1工序的合理组合 (15) 3.2.2工序的分散与集中 (15) 3.3定位基准的选择 (18) 3.4工序计算 (20) 第四章夹具设计 (48) 4.1加工中心夹具概述 (48) 4.1.1加工中心常用的夹具介绍 (48) 4.1.2基本要求 (48) 4.1.3选用原则 (48) 4.2夹具原理分析说明 (49) 4.3定位方案确定 (49) 4.4夹紧方案确定 (49) 4.5定位误差计算 (52) 4.6气缸选型 (49) 4.7夹具气动系统设计 (52) 第五章结论 (57) 参考文献 (58) 致谢 (60)

摘要 本次毕业设计的课题是C6150车床主轴箱箱体的机械加工工艺规程及夹具的设计,本次毕业设计的目的主要是通过对C6150车床主轴箱箱体的机械加工工艺性的分析,包括毛坯选材制造方法、零件的工艺性分析、工艺卡片的编制、夹具的设计以及最后的论文撰写;设计方法主要是通过查阅相关书籍、文献,特别是关于机械加工工艺方面的专业书籍,通过分析零件在机器中的位置和共用,结合零件图纸的尺寸精度和技术要求等制定机械加工工艺路线,根据工艺路线选择加工设备、量具、刀具等要素。 本次毕业设计的设计路线主要如下:第一,首先绘制C6150车床主轴箱箱体的零件图;第二,初步拟定C6150车床主轴箱箱体的机械加工工艺路线;第三,根据零件图设计一套夹具,本次毕业设计我设计的夹具为镗主轴箱孔专用夹具;第四,根据机械加工工艺路线编制机械加工工艺卡;第五,编制说明书一份。 关键词:箱体工艺规程工艺卡片夹具

CA6140车床主轴箱的设计-外文翻译

南京理工大学 毕业设计(论文)外文资料翻译 学院(系):机械工程学院 专业:机械工程及自动化 姓名:朱仁勇 学号: 0501500241 外文出处:Industrial Electronics,Control and (用外文写) Industrumental, 1991,https://www.360docs.net/doc/3b15508538.html, 附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 CNC和PLC他们对于机床是同一概念吗? 摘要 设计一个计算机数字控制器(CNC),传统做法是将装置分为三个实体:一个可编程控制器(PLC),一个可以称之为CNC控制器(CNCD)的黑盒子,一个包含CNC轴向控制器和可以简单描述为轴向实体的合成体。我们将指出这一机构的缺点,展示一种新机构并介绍他的优势所在。最后,在对比传统PLC和新机构之后,我们认为CNC就是一种改进的PLC。 PLC装置 传统的可编程控制器(PLC)是基于两个主要模块:控制台和执行器。控制台向操作者提供了一个交互式设计的人机界面,由于这个原因,他不能实现实时约束。执行器控制基本任务的时序以使PLC工作和确保相关的时间约束。执行器启动并管理不同的循环周期。控制台的目标是人机界面而执行器的目标是时序安排。可以这样说,在大多数情况下,PLC的主要目标是在没有控制台的情况下单机运行。 CNC使用的分类 CNC对所有机床的应用本质上分为三个不同的种类:本地使用,直接数字化控制(DNC)和远程使用。 在本地使用中,操作者在机床附近。他直接输入命令,通过按下按钮来控制机床和加工过程。他也可以创建和修改刀具描述符和零件加工程序,这些是以CNC的标准代码或类似代码写入的。 在这一背景下,对零件的设计和辅助制造也是可能的,尽管此类活动显得与机床周围糟糕的环境质量(比如噪音,高温,灰尘)格格不入。 DNC(直接数字化控制)使用添加了从主机下载(向主机上传)零件加工程序的功能,主机汇集了零件加工程序,可以被看作是一个文件服务器。这些操作仍然完全在位于机床附近的人工操作员的控制下。在某些情况下,在远距离的操作者之间可能会使用邮件服务器。这一类CNC使用方式,除了能向服务器传输零件加工程

普通车床主轴箱课程设计

课程设计 课程名称:金属切削机床 学院:机械工程学院 专业:机械设计制造及其自动化姓名:学号: 年级:任课教师: 2011年 1月15 日 贵州大学机械工程学院

目录 目录 (2) 一、绪论 (4) 二、设计计算 (5) 1机床课程设计的目的 (5) 2机床主参数和基本参数 (5) 3操作性能要求 (5) 三、主动参数的拟定 (6) 1确定传动公比 (6) 2主电动机的选择 (6) 四、变速结构的设计 (6) 1主变速方案拟定 (6) 2变速结构式、结构网的选择 (7) 1. 确定变速组及各变速组中变速副的数目 (7) 2. 变速式的拟定 (7) 3. 结构式的拟定 (7) 4. 结构网的拟定 (8) 5. 结构式的拟定 (8) 6. 结构式的拟定 (9) 7. 确定各变速组变速副齿数 (10) 8. 绘制变速系统图 (11) 五、结构设计 (12) 1.结构设计的内容、技术要求和方案 (12) 2.展开图及其布置 (12) 3.I轴(输入轴)的设计 (12) 4.传动轴的设计 (13) 5.主轴组件设计 (14) 1. 内孔直径d (14) 2. 轴径直径 (15) 3. 前锥孔直径 (15) 4. 主轴悬伸量a和跨距 (15) 5. 主轴轴承 (15) 6. 主轴和齿轮的联接 (16) 7. 润滑和密封 (16) 8. 其它问题 (16) 六、传动件的设计 (17) 1带轮的设计 (17)

2传动轴直径的估算 (20) 1 确定各轴计算转速 (20) 2传动轴直径的估算 (21) 3各变速组齿轮模数的确定 (22) 4片式摩擦离合器的选择和计算 (25) 七、本文工作总结 (27) 参考文献 (28) 致谢 (29)

C6150车床主轴箱箱体

一、C6150车床主轴箱箱体 见图2-46 图2-46 C6150车床主轴箱箱体 技术要求 1、非加工表面涂底漆,内壁涂防锈漆。 2、未注明铸造圆角R3~R5。 3、未注明倒角1×45° 4、铸件人工时效处理。 5、材料HT200。 图2-47是C6150车床主轴箱箱体展开图

1、零件图样分析 1)该零件为机床主轴箱,主要加工部位为平面和孔系,其结构复杂,精度要求又高,加工时应注意选择定位基准及夹紧力。 2)箱体上B面平面度公差为0.02mm。 3)箱体上A面与D面的垂直度公差为0.02/100mm 4)箱体上C面与D面的垂直度公差为0.05/300mm 5)箱体上D面与W面的垂直度公差为0.02mm。 6)1轴轴孔的轴线对基准K、C的圆跳动公差分别为0.03/300mm 7)D轴轴孔的轴线对基准C的平行度公差为0.03/300mm;对基准H的平行度公差为0.03/500mm. 8)Ⅲ铀轴孔的轴线对基准C的平行度公差为0.03/300mm;对基准V的平行度公差为0.03/200mm。 9)Ⅳ轴轴孔内表面对基准H的平行度公差为0.03/300mm;Ⅳ轴各轴孔表面对基准C 的同轴度公差为φ0.006nm。 10)Ⅳ轴各轴孔的圆度公差均为0.005mm;每孔内表面相对侧母线的平行度公差为0.01mm。 11)Ⅳ轴轴孔的轴线对基准D的平行度公差为0.03/650mm。 12)Ⅳ轴轴孔的轴线对基准W的平行度公差为0.03/650mm。 13)V轴轴孔的轴线对基准Q、N的平行度公差均为0.02/200mm。 14)Ⅵ轴轴孔的轴线对基准N的平行度公差为0.02/200mm。 15)材料HT200。 16)铸件人工时效处理。 2、C6150车床主轴箱箱体机械加工工艺过程卡(表2-37)

最新CA6140普通车床主轴变速箱设计及主轴箱设计说明书汇总

C A6140普通车床主轴变速箱设计及主轴箱 设计说明书

目录 1 绪论 (1) 1.1 课题研究背景及选题意义 (1) 1.1.1课题的背景 (1) 1.1.2课题的目的 (5) 1.2 完成的内容 (5) 2 参数拟定 (6) 2.1 主电机动力参数的确定 (6) 2.2 运动设计 (7) 2.2.1确定主轴极限转速 (7) 2.2.2确定转速范围n R定公比 确定主轴转速数例: (8) 3 传动设计 (8) 3.1 传动方案拟定 (8) 3.1.1传动组和传动副数的确定 (9) 3.2 传动结构式的选择 (10) 3.2.1基本组和扩大组的确定 (10) 3.2.2分配总降速比 (11) 3.3 带轮直径和齿轮齿数的确定及转速图拟定 (12) 3.3.1确定皮带轮动直径 (12) 3.3.2确定齿轮齿数 (13) 3.3.3画出转速图如下[1]: (15) 3.3.4验算转速误差 (15) 3.4 齿轮的计算转速的确定及传动系统的拟定的计算转速 (17) 3.4.1确定各轴和齿轮 (17) 3.4.2由转速图拟定传动系统图 (18)

4 传动件的估算和验算 (19) 4.1齿轮模数的估算和设计 (19) 4.1.1 计算各轴传动的功率 (19) 4.1.2 计算传动轴齿轮模数 (20) 4.1.3 计算各轴之间的中心距 (22) 4.2 三角带传动的计算 (22) 4.2.1计算皮带尺寸[6] (22) 4.3 传动轴的估算和齿轮尺寸的计算 (24) 4.3.1确定各轴的直径 (24) 4.3.2 计算各齿轮的尺寸[6] (25) 5 各部件结构设计 (27) 5.1 皮带轮及齿轮块设计 (27) 5.1.1 皮带及皮带轮的设计 (27) 5.1.2 齿轮及齿轮块设计 (28) 5.2 轴承的选择及箱体设计 (28) 5.2.1各轴承的选择 (28) 5.2.2 主轴及箱体设计 (28) 5.3 密封结构及润滑 (29) 6 主轴组件的验算 (30) 6.1验算主轴轴端的位移a y (30) 6.2 前轴承的转角及寿命的验算 (32) 6.2.1 验算前轴承处的转角Q (32) 6.2.2 验算前支系寿命 (33) 6.3 箱体设计 (34) 总结 (34) 致谢 (36)

数控机床主轴箱设计

第一章概述 1.1设计目的 (2) 1.2主轴箱的概述 (2) 第2章主传动的设计 (2) 2.1驱动源的选择 (2) 2.2转速图的拟定 (2) 2.3传动轴的估算 (4) 2.4齿轮模数的估算 (3) 2.5V带的选择 (4) 第3章主轴箱展开图的设计 (7) 3.1各零件结构尺寸的设计 (7) 3.1.1 设计内容和步骤 (7) 3.1.2有关零件结构和尺寸的设计 (7) 3.1.3各轴结构的设计 (9) 3.1.4主轴组件的刚度和刚度损失的计算 (10) 3.1.5轴承的校核 (13) 3.2装配图的设计的概述 (13) 总结 (19) 参考文献 (20)

第一章概述 1-1设计目的 数控机床的课程设计,是在数控机床设计课程之后进行的实践性教学环节。其目的在于通过数控机床伺服进给系统的结构设计,使我们在拟定进给传动及变速等的结构方案过程中得到设计构思、方案分析、结构工艺性、CAD制图、设计计算、编写技术文件、查阅技术资料等方面的综合训练,建立正确的设计思想,掌握基本的设计方法,培养我们初步的结构设计和计算能力。 1-2 主轴箱的概述 主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 第二章2主传动设计 2-1驱动源的选择 机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin时调节电枢电压的方法来调速的属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。 根据主轴要求的最高转速4000r/min,最大切削功率5kw,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。 2-2 转速图的拟定 根据交流主轴电动机的最高转速和基本转速可以求得交流主轴电动机的恒功率转速范围Rdp=nmax/nd=3 而主轴要求的恒功率转速范围Rnp=3,远大于交流主轴电动机所能提供的恒功率

机械机床毕业设计16CA6150数控车床主轴箱及传动系统系统的设计业设计

毕业设计(论文)任务书 指导老师 课题名称CA6150车床主轴箱设计学生姓名 专业班级数控班

目录 1、概述 2、主运动的方案选择与主运动的设计 3、确定齿轮齿数 4、选择电动机 5、皮带轮的设计计算 6、传动装置的运动和运动参数的计算 7、主轴调速系统的选择计算 8、主轴刚度的校核 一、概述 主传动系统是用来实现机床主运动的传动系统,它应具有一定的转速(速度)和一定的变速范围,以便采用不同材料的

刀具,加工不同的材料,不同尺寸,不同要求的工件,并能方便的实现运动的开停,变速,换向和制动等。 数控机床主传动系统主要包括电动机、传动系统和主轴部件,它与普通机床的主传动系统相比在结构上比较简单,这是因为变速功能全部或大部分由主轴电动机的无级调速来承担,剩去了复杂的齿轮变速机构,有些只有二级或三级齿轮变速系统用以扩大电动机无级调速的范围。 1.1数控机床主传动系统的特点 与普通机床比较,数控机床主传动系统具有下列特点。 4转速高、功率大。它能使数控机床进行大功率切削和高速切削,实现高效率加工。 5变速范围宽。数控机床的主传动系统有较宽的调速范围,一般Ra>100,以保证加工时能选用合理的切 削用量,从而获得最佳的生产率、加工精度和表面 质量。 6主轴变速迅速可靠,数控机床的变速是按照控制指令自动进行的,因此变速机构必须适应自动操作的 要求。由于直流和交流主轴电动机的调速系统日趋 完善,所以不仅能够方便地实现宽范围无级变速, 而且减少了中间传递环节,提高了变速控制的可靠 性。 7主轴组件的耐磨性高,使传动系统具有良好的精度保持性。凡有机械摩擦的部位,如轴承、锥孔等都 有足够的硬度,轴承处还有良好的润滑。 1.2 主传动系统的设计要求 ①主轴具有一定的转速和足够的转速范围、转速级数, 能够实现运动的开停、变速、换向和制动,以满足 机床的运动要求。 ②主电机具有足够的功率,全部机构和元件具有足够 的强度和刚度,以满足机床的动力要求。 ③主传动的有关结构,特别是主轴组件要有足够高的

c6140机床主轴箱设计

1. 机床主要技术参数: (1) 尺寸参数: 床身上最大回转直径: 400mm 刀架上的最大回转直径: 200mm 主轴通孔直径: 40mm 主轴前锥孔: 莫式6号 最大加工工件长度: 1000mm (2) 运动参数: 根据工况,确定主轴最高转速有采用YT15硬质合金刀车削碳钢工件获得,主轴最低转速有采用W 16Cr 4V 高速钢刀车削铸铁件获得。 n max = min 1000max d v π= 23.8r/min n min = max min 1000d v π =1214r/min 根据标准数列数值表,选择机床的最高转速为1180r/min ,最低转速为26.5/min 公比?取1.41,转速级数Z=12。 (3) 动力参数: 电动机功率4KW 选用Y112M-4型电动机 2. 确定结构方案: (1) 主轴传动系统采用V 带、齿轮传动; (2) 传动形式采用集中式传动; (3) 主轴换向制动采用双向片式摩擦离合器和带式制动器; (4) 变速系统采用多联滑移齿轮变速。 3. 主传动系统运动设计: (1) 拟订结构式: 1) 确定变速组传动副数目: 实现12级主轴转速变化的传动系统可以写成多种传动副组合: A .12=3*4 B. 12=4*3 C 。12=3*2*2 D .12=2*3*2 E 。12=2*2*3 方案A 、B 可节省一根传动轴。但是,其中一个传动组内有四个变速传动副,增大了该轴的轴向尺寸。这种方案不宜采用。 根据传动副数目分配应“前多后少”的原则,方案C 是可取的。但是,由

于主轴换向采用双向离合器结构,致使Ⅰ轴尺寸加大,此方案也不宜采用,而应选用方案D 2)确定变速组扩大顺序: 12=2*3*2的传动副组合,其传动组的扩大顺序又可以有以下6种形式:A.12=21*32*26B。12=21*34*22 C.12 =23*31*26D。12=26*31*23 E.22*34*21F。12=26*32*21 根据级比指数非陪要“前疏后密”的原则,应选用第一种方案。然而,对于所设计的机构,将会出现两个问题: ①第一变速组采用降速传动(图1a)时,由于摩擦离合器径向结构尺寸限制, 使得Ⅰ轴上的齿轮直径不能太小,Ⅱ轴上的齿轮则会成倍增大。这样,不仅使Ⅰ-Ⅱ轴间中心距加大,而且Ⅱ-Ⅲ轴间的中心距也会加大,从而使整个传动系统结构尺寸增大。这种传动不宜采用。 ②如果第一变速组采用升速传动(图1b),则Ⅰ轴至主轴间的降速传动只能由 后两个变速组承担。为了避免出现降速比小于允许的极限值,常常需要增加一个定比降速传动组,使系统结构复杂。这种传动也不是理想的。 如果采用方案C,即12 =23*31*26,则可解决上述存在的问题(见图1c)。其结构网如图2所示。

相关文档
最新文档