第三章 傅里叶变换 重要公式

第三章 傅里叶变换 重要公式
第三章 傅里叶变换 重要公式

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

第三章——傅里叶变换

第三章 傅里叶变换 3.1周期信号的傅里叶级数分析 (一) 三角函数形式的傅里叶级数 满足狄利赫里条件的周期函数()f t 可由三角函数的线性组合来表示,若 ()f t 的周期为1T ,角频率11 2T π ω=,频率111f T =,傅里叶级数展开表达 式为 ()()()0111 cos sin n n n f t a a n t b n t ωω∞ ==++????∑ 各谐波成分的幅度值按下式计算 ()01 01t T t a f t dt T +=? ()()01 012cos t T n t a f t n t dt T ω+=? ()()01 012sin t T n t b f t n t dt T ω+=? 其中1,2,n =??? 狄利赫里条件: (1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个; (2) 在一个周期内,极大值和极小值的数目应是有限个; (3) 在一个周期内,信号是绝对可积的,即()00 t T t f t dt +? 等于有限值。 (二) 指数形式的傅里叶级数 周期信号的傅里叶级数展开也可以表示为指数形式,即 ()()11 jn t n n f t F n e ωω∞ =-∞ = ∑ 其中 ()0110 11t T jn t n t F f t e dt T ω+-= ? 其中n 为从-∞到+∞的整数。

(三) 函数的对称性与傅里叶系数的关系 (1) 偶函数 由于()f t 为偶函数,所以()()1sin f t n t ω为奇函数,则 ()()01 112sin 0t T n t b f t n t dt T ω+==? 所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。 (2) 奇函数 由于()f t 为奇函数,所以()()1cos f t n t ω为奇函数,则 ()01 0110t T t a f t dt T +==? ()()01 011 2cos 0t T n t a f t n t dt T ω+= =? 所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项 (3) 奇谐函数(()12T f t f t ?? =-+ ?? ?) 半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而 不会含有偶次谐波项,这也是奇谐函数名称的由来。 (四) 傅里叶有限级数与最小方均误差 吉布斯现象:在用有限项傅里叶级数合成原周期函数时,当选取傅里叶有限项级数愈多时,在所合成的波形中出现的峰起愈靠近()f t 的不连续点。当所选取的项数很大时,该峰起值趋于一个常数,它大约等于总跳 变值的9%,并从不连续点开始以起伏振荡的形式逐渐衰减下去,这种现象通常称为吉布斯现象。 3.2傅里叶变换

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

第三章离散傅里叶变换(DFT)

第三章 离散傅里叶变换(DFT ) 1. 如图P3-1所示,序列)(n x 是周期为6的周期性序列,试求其傅里叶级数的系数。 图 P3-1 分析 利用DFS 的定义求解。 解:由nk j n nk n e n x W n x k X 6250650 )()()(~π -==∑∑== k j k j k j k j k j e e e e e 56 246 236 226 26 21068101214πππππ-----+++++= 计算求得 ,3j39(1)X ~ 60,(0)X ~-== 3j 3(2)X ~ += , 3j 3(4)X ~ 0,(3)X ~-== 3j39(5)X ~ += 2. 设4()()x n R n =,6()(())x n x n =,试求)(~k X ,并做图表示)(~ ),(~ k X n x 。 分析 利用DFS 的定义求解。 解: 由 k j k j k j nk j n nk n e e e e n x W n x k X ππ π π -----=+++===∑∑3 236250 650 1)(~)(~)(~ 计算求得 ,3j (1)X ~ 4,(0)X ~-== 1(2)X ~ = ,1(4)X ~ 0,(3)X ~== 3j (5)X ~ = )(~),(~k X n x 如图P3-2所示。

图 P3-2 3. 已知)(n x 是N 点有限长序列,)]([)(n x DFT k X =。现将长度变成rN 点的有限长序列)(n y ???-≤≤-≤≤=1,01 0),()(rN n N N n n x n y 试求rN 点DFT[)(n y ]与)(k X 的关系。 分析 利用DFT 定义求解,)(n y 是rN 点序列,因而结果相当于在频域序列进行插值。 解:由)(k X = DFT[)(n x ]∑-=-=1 02)(N n nk N j e n x π ,10-≤≤N k 可得 nk rN N n nk rN N n W n x W n y n y DFT k Y ∑∑-=-====10 1 )()()]([)( )()(1 2r k X e n x N n l k n N j ==∑-=-π, 1,...,0,-==N l lr k 所以在一个周期内,)(k Y 的抽样点数是)(k X 的r 倍()(k Y 的周期为Nr ),相当于在)(k X 的每两个值之间插入r-1个其他的数值(不一定为零),儿当k 为r 烦人整数l 倍时,)(k Y 与)(r k X 相等。 4. 已知)(n x 是N 点有限长序列,)]([)(n x DFT k X =,现将)(n x 的每两点之间补进

现代通信原理指导书 第七章 信源编码 习题详解

第七章 信源编码 7-1已知某地天气预报状态分为六种:晴天、多云、阴天、小雨、中雨、大雨。 ① 若六种状态等概出现,求每种消息的平均信息量及等长二进制编码的码长N 。 ② 若六种状态出现的概率为:晴天—;多云—;阴天—;小雨—;中雨—;大雨—。试计算消息的平均信息量,若按Huffman 码进行最佳编码,试求各状态编码及平均码长N 。 解: ①每种状态出现的概率为 6,...,1,6 1 ==i P i 因此消息的平均信息量为 ∑=- ===6 1 22 /58.26log 1 log i i i bit P P I 消息 等长二进制编码的码长N =[][]316log 1log 22=+=+L 。 ②各种状态出现的概率如题所给,则消息的平均信息量为 6 2 1 2222221log 0.6log 0.60.22log 0.220.1log 0.10.06log 0.060.013log 0.0130.007log 0.0071.63/i i i I P P bit - == = ------ ≈ ∑消息 Huffman 编码树如下图所示: 由此可以得到各状态编码为:晴—0,多云—10,阴天—110,小雨—1110,中雨—11110, 大雨—11111。 平均码长为: 6 1 10.620.2230.140.0650.01350.0071.68 i i i N n P == =?+?+?+?+?+? =∑— 7-2某一离散无记忆信源(DMS )由8个字母(1,2,,8)i X i =???组成,设每个字母出现的概率分别为:,,,,,,,。试求: ① Huffman 编码时产生的8个不等长码字; ② 平均二进制编码长度N ; ③ 信源的熵,并与N 比较。 解:①采用冒泡法画出Huffman 编码树如下图所示 可以得到按概率从大到小8个不等长码字依次为: 0100,0101,1110,1111,011,100,00,1087654321========X X X X X X X X

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇 本文记录的大多是基础的公式,还有一些我认为比较重要的有参考价值的说明。(如果对这些公式已经很熟悉,可以直接看第三部分:总结性说明) 重温傅里叶—笔记篇 一、傅里叶级数 $关于三角函数系的正交性: 三角函数系包括: 1,cos x,sinx,cos2x,sin 2x,……cos nx,sinnx,…… “正交性”是说,三角函数系中的任何一项与另一项的乘积,在(-π, π) 区间内的积分为0。(任何两相的积总可以展成两个频率为整数倍基频的正余弦函数之和或差,而这两个展开后的正余弦在(-π, π)上积分都为0)。 不同频率(但都是整数倍基频)的两个正弦函数之积,在(-π, π)上积分恒为0。 同频率的两个正弦函数之积,只有在这两个正弦的相位正交时,其在(-π, π)上积分才是0。 三角函数系中除“1”以外的任何一项的平方,在(-π, π)上的积分恒为π,“1”在这个区间上的积分为2π。

$ 上公式! ①当周期为2π时: 式(1): 上式成立的条件是f(x)满足狄立克雷充分条件: 1.在任意有限区间内连续,或只有有限多个第一类间断点; 2.任意的有限区间,都可被分成有限多个单调区间(另一种说法是:任意有限区间内只有有限多个极值点,其实是一样的)

式(1)第一行中的a0/2 就是f(x)的周期平均值,而且第一行的式子只对f(x)是连续函数的情况成立;如果f(x)不连续,则应表示成“(1/2) ×[f(x-0)+f(x+0)]”,即f(x)左右极限的算术平均。下面的类似情况都是这样,之后就不再专门说明,这些大家应该都懂。 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。 ②当周期为2L时(这也是最一般的情形): 式(2): 第一行中的a0/2 就是f(x)的周期平均值; 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。

第7章 傅里叶变换与滤波器形状

第7章傅里叶变换与滤波器形状 7.1离散时间傅里叶变换基础 离散时间傅里叶变换(DTFT)是数字信号分析的一个重要工具。DTFT把信号或滤波器从时域变换到频域,主要是为了研究信号或滤波器的频率特性。 该变换主要用于分析信号和滤波器的频谱性质。 对于信号,DTFT提供的信息称为信号的频谱。 对于滤波系统,DTFT得到的信息称为滤波器的频率响应(frequency response)。它由两部分组成:幅度响应(magnitude response)和相位响应(phase response)。幅度响应给出了滤波器的形状,通过它我们可以深入了解滤波器的工作特性。 信号x[n]的离散时间傅里叶变换定义为: ,这里为数字频率,单位弧度。 记为 利用欧拉公式,DTFT变换为 变换在每个不同的数字频率上可有不同的值,当信号x[n]与正弦或余弦“共振”时,最大。也就是说,当x[n]以接近频率变化时,较大。离散时间傅里叶变换反应了信号的频率。 例7.1 求如图信号的离散时间傅里叶变换 注意,一般情况,DTFT是复值。 例7.2 求信号x[n]=4(u[n]-u[n-3])的DTFT。 离散时间傅里叶变换有两个重要的特性,时延特性和周期性。 DTFT是周期性的,周期为。即离散时间傅里叶变换对所有的数字频率,每重复一次,不断重复。 7.2 频率响应及其他形式 7.2.1 频率响应和差分方程 对差分方程逐项求DTFT 例7.3 求差分方程频率响应y[n]=-0.85y[n-1]+0.5x[n].

例7.4 求差分方程频率响应y[n]+0.1y[n-1]+0.85y[n-2]=x[n]-0.3x[n-1] 7.2.2 频率响应和传输函数 例 7.5 求滤波器的频率响应,它的传输函数 7.2.3 频率响应和脉冲响应 频率响应是脉冲响应的DTFT。 例7.6 数字滤波器的脉冲响应 写出其频率响应。 7.3 频率响应与滤波器形状 7.3.1 滤波器对正弦输入的作用 由于复杂信号可以由各种频率和相位的正弦波叠加而成,我们先考虑单一频率即正弦信号的输入。 时域与频域的输出关系。 频率响应是个复数,可表示成 是增益,无量纲,但可用分贝dB表示,此时增益为。 是相位差,单位是度或弧度。 增益是对输入的放大量,相位差是对输入的相移。 对于给定的频率,输出的幅度是滤波器的增益与输入幅度的乘积,输出相位是滤波器相位差与输入相位的和。 7.3.2 幅度响应和相位响应 幅度响应是增益与频率的关系图。 相位响应是相位与频率的关系图。 例7.9 系统频率响应,每间隔pi/4弧度,计算相应的频率响应,绘制幅度响应和相位响应图。 幅度响应和相位响应是周期的,每2pi弧度重复一次。 幅度响应和相位响应是连续函数,在每个频率上有值。 幅度响应是偶函数,相位响应是奇函数。 由于负频率没有实际意义,在0~pi间已经包含了所有重要的信息。 采用分贝的优点是,在增益变化范围非常大时,可以方便的绘制在一个图上。对数刻度实际上是对原图进行比例缩小。 弧度和度对相位响应形状没有什么影响。

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述 ——老师不会这么讲,书上也不会讲很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,什么是傅里叶变换,它是怎样一种变换,具体有怎么变换,有没有确切一点或者形象一点的物理解释呢?下面笔者将尝试将自己的理解比较本质和形象地讲出来,形式是思考探讨渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基的投影很好理解,那么,傅里

叶变换的正交基函数,也是这样一种相互垂直的关系么???投影也是取余弦值么? 这可以很容易地想清,我们只用余弦或者只用正弦就可以,如cos(2pi*nf0)系列,显然每两个函数图像之间不可能是垂直关系,相反可以看出这是在同一个维度里面的!所以上面两个答案是否定的。 那么,到底是怎么正交、怎么投影的呢。出现这个问题,是因为开始看书的时候我看得太粗心太浅显,没有认真透彻地理解函数正交的含义,没想到那才是最重要最根本的,从那里面再深刻理解一下,问题就迎刃而解。 函数正交和矢量正交完全不一样,是两个概念。函数正交是两个函数,一个不变另一个取共轭值然后逐点相乘再求积分的结果,积分就涉及到一个区间,这也很重要。如果满足:当这两个函数不同时,积分值为0;当两函数相同,积分值不为0。那么这两个函数在这个区间上正交。现在再回过头去看正弦或者余弦函数序列,在各个周期内,都满足上述条件,在正弦和余弦函数之间同样满足,所以这些函数是正交的。至于完备,很明显看出,不去证明了。 第一个问题解决了,现在看怎么去投影了。为更易于理解,我们取指数傅里叶变换为例。众所周知exp(jwt)表示的是一个圆周,我们用来作傅里叶变换的因子,正是这个形式(exp(-jwt)),这里我们还要理解一下傅里叶变换和傅里叶级数的区别,前者求的是复指数傅里叶级数的系数,即每个正交函数的系数(权重),复指数傅里叶级数的正交函数集正是exp(jwt),所以求系数刚好乘以一个共轭

傅里叶变换和傅里叶级数的收敛问题

1、傅里叶变换和傅里叶级数的收敛问题 由于傅里叶级数是一个无穷级数,因而存在收敛问题。这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。关于傅里叶级数的收敛,有两组稍有不同的条件。 第一组条件:如果周期信号()t x 在一个周期内平方可积,即 ()∞

吉布斯现象: 当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数,正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生。 2、周期序列的傅里叶级数展开和傅里叶变换之间的问题 假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~,则有 ()()∑∞-∞=-= r rN n x n x ~ 或表示为()()()N n x n x =~。于是()n x ~ 与()n x 的关系表示为: ()()()N n x n x =~ ()()()n R n x n x N ~= 将()n x ~表示为离散时间傅里叶级数有: ()()kn N N n W k X N n x --=?=∑10~~ 1 ()()kn N N n W n x k X ?=∑-=10~ ~ 其中()k X ~是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。如果将()k X ~的主值周期记为()k X ,10-≤≤N k ,由于以上两式中的求和范围均取为区间0~N-1,在次区间内()n x ~ =()n x ,因此可以得到: ()()kn N N n W n x k X ∑-==10~, 10-≤≤N k ()()kn N N n W k X N n x --=∑=10~1, 10-≤≤N n 表明时域N 点有限长序列()n x 可以变换成频域N 点有限长序列()k X 。显然,DFT 与DFS 之间存在以下关系: ()()()N k X k X =~

第三章傅立叶变换习题复习过程

第三章傅立叶变换 第一题选择题 1.连续周期信号f (t )的频谱F(w)的特点是 D 。 A 周期连续频谱 B 周期离散频谱 C 非周期连续频谱 D 非周期离散频谱 2.满足抽样定理条件下,抽样信号f s (t)的频谱)(ωj F s 的特点是 (1) (1)周期、连续频谱; (2)周期、离散频谱; (3)连续、非周期频谱; (4)离散、非周期频谱。 3.信号的频谱是周期的连续谱,则该信号在时域中为 D 。 A 连续的周期信号 B 离散的周期信号 C 连续的非周期信号 D 离散的非周期信号 4.信号的频谱是周期的离散谱,则原时间信号为 (2) 。 (1)连续的周期信号 (2)离散的周期信号 (3)连续的非周期信号 (4)离散的非周期信号 5.已知f (t )的频带宽度为Δω,则f (2t -4)的频带宽度为( 1 ) (1)2Δω (2)ω?2 1 (3)2(Δω-4) (4)2(Δω-2) 6.若=)(1ωj F F =)()],([21ωj F t f 则F =-)]24([1t f ( 4 ) (1)ωω41)(21j e j F - (2)ωω41)2 (21j e j F -- (3)ωωj e j F --)(1 (4)ωω21)2 (21j e j F -- 7.信号f (t )=Sa (100t ),其最低取样频率f s 为( 1 ) (1)π100 (2)π 200 (3)100π (4)200 π 8.某周期奇函数,其傅立叶级数中 B 。 A 不含正弦分量 B 不含余弦分量 C 仅有奇次谐波分量 D 仅有偶次谐波分量 9.某周期偶谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 无奇次谐波分量 D 无偶次谐波分量 10.某周期奇谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 仅有基波和奇次谐波分量 D 仅有基波和偶次谐波分量 11.某周期偶函数f(t),其傅立叶级数中 A 。

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述(更正版) ——老师不会这么讲,书上也不会讲 注:原来上传到百度文库的文档有较多问题,或者阐述不清楚,因原文档无法删除,只能重新上传一次了。此为更正版。 很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,傅里叶变换到底是怎样一种变换?具体又怎么变换?有没有确切一点,或者形象一点的物理解释呢?下面笔者将尝试从以一种可理解的、物理的方式来解释,并尽量形象地讲出来,形式是探究、渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?书上说:这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基上的投影很好理解,因为各矢量正交基在空间是垂直关系,原矢量在各正交基上的投影就是其模值乘以与各正交基夹角余弦值。那么,傅里叶变换的正交基函数,也是这样一种相互垂直的关系么?投影也是取余弦值么?

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

信号系统习题解答3版第七章

第7章习题答案 7-1 分别绘出下列各序列的图形。 (1)[](1/2)[]n x n u n = (3)[](1/2)[]n x n u n =- (6)[](2)[]n x n u n =- 解: 7-2 分别绘出下列各序列的图形。并判断下列各序列是否是周期序列,如果是周期序列,试确定其周期N 。 (1) 33[]3sin 74n x n ππ??=- ???(3)[]sin 5n x n π??= ??? (4) []sin 105n x n ππ?? =- ??? (6){}[]cos [][10]44n x n u n u n ππ?? =--- ??? 解:(1)1 214 3 π ω= 所以是周期序列,周期为14 (3) 01234 (1) (3)

是周期序列,周期为10 (4) 是周期序列,周期为20 (6)该序列长度为10,所以是非周期序列。 7-4 序列x [n ]如图题7-4所示,把x [n ]表示为δ[n ]的加权与延迟之线性组合。 图 题7-4 解: []2[3][]3[1]2[3]x n n n n n δδδδ=-+-+-+- 7-5 计算下面各对序列的卷积和。 (1)x [n ], h [n ]如图题7-5(a)所示。 (2)x [n ], h [n ]如图题7-5(b)所示。 (3)44[][], [][]h n R n x n R n == (5)4[](1/2)[], [][]n h n u n x n R n == (6)[][]n x n u n α=,01α<<;[][]n h n u n β=,01β<<且βα≠。 图 题7-5 解:(1)[][]3[1]4[2]3[3][4]y n n n n n n δδδδδ=+-+-+-+-

傅里叶变换

1.课题综述 第一章中我们主要学习了信号、测试、测控、信号分析处理的概念、测试技术的应用情况、测试技术的发展动态及主要信号测试仪器生产厂商。信号是指那些代表一定意义的现象,比如声音、动作、旗语、标志、光线等,它们可以用来传递人们想表达的事情。从广泛意义上来说,信号是指事物运动变化的表现形式,它代表事物运动变化的特征。信号采集测量系统由传感器、中间变换装置和显示记录装置三部分组成,如今传感器技术越来越趋向于新型化和智能化。在工程领域,科学实验、产品开发、生产监督、质量控制等,都离不开测试技术。测试技术应用涉及到航天、机械、电力、石化和海洋运输等每一个工程领域。 第二章我们主要学习了信号分类方法、信号时域波形分析方法、信号时差域相关分析方法、信号频域频谱分析方法及其它信号分析方法。首先学习了信号的分类,其主要是依据信号波形特征来划分的,从信号描述上分可分为确定性信号与非确定性信号;从信号的幅值和能量上分可分为能量信号与功率信号;从分析域上分可分为时域与频域;从连续性上分可分为连续时间信号与离散时间信号;从可实现性上分可分为物理可实现信号与物理不可实现信号。 信号的时域波形分析,信号的时域波形分析是最常用的信号分析手段,用示波器、万用表等普通仪器直接显示信号波形,读取特征参数。可以求得信号的均值、均方值、方差以及概率密度函数等参数。信号的时差域相关分析,用相关函数来描述与时间有关的变量τ、x(t)和y(t),三者之间的函数关系,相关函数表征了x、y之间的关联程度。信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),频域分析能明确揭示信号的频率组成和各频率分量大小。 第三章我们主要学习了传感器的分类、常用传感器测量原理及传感器测量电路。传感器是借助检测元件将一种形式的信息转换成另一种信息的装置。传感器由敏感器件与辅助器件组成。敏感器件的作用是感受被测物理量,并对信号进行转换输出。辅助器件则是对敏感器件输出的电信号进行放大、阻抗匹配,以便于后续仪表接入。主要有电阻式、电容式、电感式、磁电式、压电式传感器,磁敏、热敏和气敏元件传感器,以及超声波、光电及半导体敏感元件传感器,光纤传感器等。 第四章我们主要学习了自动化工程机械分类、工程机械控制器及发展趋势、

傅里叶级数与傅里叶变换关系与应用

论文题目傅里叶级数与傅里叶变换的关系与应用 目录 摘要: 0 关键词 0 Abstract 0 1绪论 (1) 2傅里叶级数的概念 (1) 2.1周期函数 (2) 2.2傅里叶级数的定义 (2) 3 傅里叶变换的概念及性质 (10) 3.1傅里叶变换的概念 (10) 3.2傅立叶变换的性质 (11) 4傅里叶变换与傅里叶级数之间的区别与联系 (12) 5傅里叶级数和傅里叶变换的应用 (12) 5.1傅里叶级数的应用 (12) 5.2傅里叶变换的应用 (13) 参考文献 (15)

傅里叶级数与傅里叶变换的关系与应用 摘要:傅里叶级数是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。 傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。 关键词:傅里叶级数;傅里叶变换;周期性 Fourier series And Fourier Transforms Abstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms. Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transform as a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications. Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a complex signal superposition, similar features. Key words: Fourier series; Fourier Transform; Periodic

傅里叶变换公式

第2 章信号分析 本章提要 ?信号分类 ?周期信号分析--傅里叶级数 ?非周期信号分析--傅里叶变换 ?脉冲函数及其性质信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法和手段 §2 -1 信号的分类 ?两大类:确定性信号,非确定性信号确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。

质量-弹簧系 统的力学模型x(t) = A cos k t +0 非确定性信号(随机信号:给定条件下取值是不确定的 ?按取值情况分类:模拟信号,离散信号数字信号:属于离散信号,幅值离散,并用二进制表示。 ?信号描述方法 时域描述如简谐信号

简谐信号及其三个要素 频域描述 以信号的频率结构来描述信号的方法: 将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式?周期信号时域表达式 x(t) = x(t +T) = x(t + 2T) = = x(t + nT) (n = 1, 2 ,)

T :周期。注意n 的取值:周期信号“无始无 终” # ? 傅里叶级数的三角函数展开式 x (t ) = a + (a cos n t + b sin n t ) n =1 (n =1, 2, 3 ,…) 傅立叶系数: T a 0 = 1 x (t )dt - 2 T x (t )cos n tdt 2 T 2 x (t ) sin n tdt 2 式中 T--周 期;0--基频, 0=2/T 。 ? 三角函数展开式的另一种形式: 2 a n = b n =2

傅里叶Fourier级数的指数形式与傅里叶变换

(4) 2 T 2 T f (t)dt 傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅 里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种 信号与系统进行分析。 通过对描述实际对象数学模型的数学分析、 求解,对所得结果给以物 理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号 的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换 域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的 z 变换。 而傅里叶变换的理论基础是傅里叶积分定理。 傅里叶积分定理的数学表达式就是傅里叶级数 的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里 叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。 我们 承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展 式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数f (t ),在[-T ,T ]上满足狄里克莱条件:1o f (t )连续或只有 2 2 数。在连续点处 有限个第一类间断点; 2。 只有有限个极值点。 那么f (t )在nT,T ]上就可以展成傅里叶级 f(t) a 0 ,. (a n cosn ?t b n sin n ?t) (1) 其中 a n T 2 f (t) cosn tdt, (n 二 0,1,2,), _2 根据欧拉(Euler )公式: b n ;认)州艸(n=1,2,3,), (3) e" - cos : j si , (1)式化为 f(t)二色二 a 2 J e jn e" n jn ? £ j jn ? t +b e —e M n 2j 若令 a n - j b n 一 2 jn ;.-:t . a n jb n ?弓曲 2 」,

第七章 傅里叶变换.

第七章 傅里叶变换 1.求下列函数的傅氏变换: (1)1,10, ()1, 01,0,; t f t t --<? 解: (1)[()]()j t F f t f t e dt ω+∞--∞ =? 1 101 10 1 1 22sin cos | 2(1cos ).j t j t j t j t e dt e dt e dt e dt j i tdt t j ωωωωωωω ωω -----=-+=-+=-= =- -????? (2) ()()j t F f t e dt ωω+∞--∞ =? 0(1)(1)0 11|.11t j t j t j t e e dt e dt e j j ωωωωω ---∞ -∞ --∞====--?? 6.求下列函数的傅氏变换 (1) 1,0,sgn 1,0;t t t -? (2) ()sin(5).3f t t π =+ 解: (1)已知 1 [()](),[1]2(),F u t F j πδωπδωω = +=由sgn 2()1t u t =-有 12[sgn ]2( ())2().F t j j πδωπδωωω =+-= (2) 由于 1()sin(5)sin 5cos5,322f t t t t π=+=+ 故 [()][(5)(5)](5)(5)].2j F f t πδωδωδωδω= +--++- 7.已知00()[()()]F ωπδωωδωω=++-为函数()f t 的傅氏变换,求().f t

相关文档
最新文档