焊接线能量的计算公式_-

焊接线能量的计算公式_-
焊接线能量的计算公式_-

焊接线能量的控制

焊接线能量的控制 对某些材料的焊接,为保证其焊接质量,除应正确选择焊接方法和焊接材料外,执行焊接工艺的一个共同特点就是控制焊接线能量。 1、不同的材料对焊接线能量控制的目的和要求: 不同的材料对焊接线能量控制的目的和要求不一样。如: (1)焊接低合金高强钢时,为防止冷裂纹倾向,应限定焊接线能量的最低值;为保证接头冲击性能,应规定焊接线能量的上限值。 (2)焊接低温钢时,为防止因焊缝过热出现粗大的铁素体或粗大的马氏体组织,保证接头的低温冲击性能,焊接线能量应控制为较小值。 (3)焊接奥氏体不锈钢时,为防止合金元素烧损,降低焊接应力,减少熔池在敏化温度区的停留时间,避免晶间腐蚀,应采用较小的焊接线能量。 (4)焊接耐热耐蚀高合金钢时,为减少合金元素烧损,避免焊接熔池过热而形成粗晶组织降低高温塑性和疲劳强度,防止热裂纹,获得较好“等强度”的接头,应采用较小的焊接线能量。 (5)珠光体钢与奥氏体钢异种钢焊接时,应采用较小的线能量以降低熔合比,避免接头珠光体钢一侧产生淬硬组织,防止扩散层。如果珠光体钢淬硬倾向较大,则焊前应预热,预热事实上是提高了焊接热输入。 (6)铝及铝合金焊接时,为防止气孔,应采用大的焊接电流配合较高的焊接速度应是焊接工艺参数的最佳匹配,即采用适中的焊接线能量。 (7)工业纯钛焊接时,为保证接头既不过热,又不产生淬硬组织,应采用小电流、快焊速,即采用较小的焊接线能量。 (8)镍及镍合金焊接时,为防止热裂纹,应采用小线能量。等等。 本人认为:当设计文件、相关标准提出的性能指标如冲击韧性、耐腐蚀性能等对线能量及其相关的焊接层次、层间温度有严格要求时,应在焊接作业指导书规定焊接线能量、焊接层次(含焊道尺寸)和层间温度的控制要求,施焊中通过对这些参数的记录来检查和证实焊接线能量及其相关的焊接层次、层间温度的要求是否得到满足。 2、焊接线能量的测量方法: 通常焊接线能量采用下列公式进行计算(适用于单电弧焊接方法,针对于每条焊道,并且不考虑累积): 线能量Q=60IV/v (J/mm)

角焊缝及其计算

角焊缝及其计算 型式及分类 截面形式:普通型(等边凸形)、平坦型(不等边凹形)、凹面形 两焊脚边夹角:直角角焊缝、斜角角焊缝、焊缝长度与作用方向 1.侧面角焊缝(侧缝) 侧缝主要承受剪力,应力状态叫单纯,在弹性阶段,剪应力沿焊缝长度方向分布不均匀,两端大中间小,且焊缝越长越不均匀,但侧缝塑性好。 2.正面角焊缝(端缝) 端缝连接中传力线有较大的弯折,应力状态较复杂,正面角焊缝沿焊缝长度方向分布比较均匀,但焊脚及有效厚度面上存在严重的应力集中现象,所以其破坏属于正应力和剪应力的综合破坏,但正面角焊缝的刚度较大,变形较小,塑性较差,性质较脆。 3.斜向角焊缝 斜向角焊缝受力情况较复杂,其性能介于侧缝和端缝之间,常用于杆件倾斜相支的情况,也用在板件较宽,内力较大连接中。 4.周围角焊缝 主要为了增加焊缝的长度和使焊缝遍及板件全宽,而把板件交搭处的所有交搭线尽可能多的加以焊接,成为开口或封闭的周围角焊缝。构造及要求。 4.1.最小焊脚尺寸 4.2.最大焊脚尺寸贴边处满足

4.3.角焊缝最小长度 4.4.侧面角焊缝最大计算长度 4.5.板件端部仅有两条角焊缝时每条侧面角焊缝的计算长度 4.6.搭接连接中搭接长度应满足而且不宜采用一条正面角焊缝来传力。 4.7.在次要构件和焊缝连接中,允许采用断续角焊缝,各段间距满足以保证整体受力。 角焊缝连接计算 基本计算公式 轴心作用下的角焊缝计算 轴心作用下角钢的角焊缝计算 弯矩,剪力和轴心力共同作用下角焊缝计算(T形接头) 弯矩,剪力和轴心力共同作用下角焊缝计算(搭接形接头) 1. 端缝、侧缝在轴向力作用下的计算: (1)端缝 ——垂直于焊缝长度方向的应力; he ——角焊缝有效厚度; lw ——角焊缝计算长度,每条角焊缝取实际长度减10mm(每端减5mm);ffw ——角焊缝强度设计值;bf ——系数,对承受静力荷载和间接承受动力荷载的结构,bf =1.22,直接承受动力荷载bf =1.0。 (2)侧缝

大线能量焊接

Materials Science Forum Vols. 783-786 (2014) pp 1046-1052 ? (2014) Trans Tech Publications, Switzerland doi:10.4028/https://www.360docs.net/doc/3b6409457.html,/MSF.783-786.1046
Research and development of a yield strength 400 MPa class structural steel plate with enhanced weldability Yu Zhang*, Xiaobao Li, Xin Pan
(Institute of Research of Iron and Steel, Shasteel, Jinfeng, Zhangjiagang, Jiangsu, 215625, China) *Corresponding author: zhangyu02@https://www.360docs.net/doc/3b6409457.html, Keywords: Structural steel plate, high heat input welding, heat-affected zone, intra-granular nucleated ferrite, impact property;
Abstract: A 400 MPa yield strength structural steel plate with enhanced weldability was produced by using advanced steel making technology and thermo-mechanical controlled processing technique. A microstructure consisting of acicular ferrite (3~8 ?m) and polygonal ferrite was observed in the rolled plate, which exhibits a yield strength ≥ 420 MPa, tensile strength ≥ 560 MPa, elongation ≥ 26 % and charpy impact toughness ≥ 300 J at -40 °C. Three-wire flux copper backing submerged arc welding with heat input of 230 kJ/cm was applied to butt weld the 36 mm thick plate, and defect-free joint with satisfactory mechanical properties were produced. The coarse grain heat affected zone (CGHAZ) contains mostly intra-granular nucleated ferrite plus a few grain boundary ferrite and ferrite side plate, and shows charpy impact toughness ≥ 90 J at -40 °C. The enhancement impact toughness of CGHAZ resultant from high heat input welding is due to improvement of intra-granular ferrite formation induced by Ca and Ti containing oxides and sulphides. 1. Introduction Steels with yield strength over 400 MPs are getting increased application for shipbuilding and offshore platform construction for increasing capacity [1-3]. Welding heat input for on-site fabrication is strictly controlled below 50 kJ/cm for ensuring low temperature impact property of the weld joint. For conventional steel grades, the impact property of the heat affected zone (HAZ) will deteriorate with increasing heat input due to the formation of brittle bainitic structure [4-7]. Welding methods with high heat input of 80~200 kJ/cm, such as electro-gas welding and multi-wire submerged arc welding which enable one-pass welding of 40 mm thick plate, were employed by the industry for improving construction efficiency and cost reduction [8-10]. It is obvious that the lack of high quality steel plate limits the efficiency improvement of shipbuilding. There are some activities aiming to develop the steel plate with enhanced weldability, and some promising results were reported [11-13]. However most of them are laboratory trial results and lack of verification of mill facilities. In this paper, microstrucrtural characteristics, mechanical property and weldability of a 400 MPa yield strength class steel plate produced by industrial mill facilities were reported. 2. Experimental procedure 2.1 Industrial production of the steel plate The alloy design is basically low carbon and low carbon equivalent type. Steel-making is conducted on a 180t converter-ladle fining-RH, and finally continuous casted into a with a thickness of 220 mm, and the measured composition includes 0.05%C, 0.15%Si, 1.45%Mn, 0.006%P, 0.004%S, 0.001%B, and minor Ti and Ca.
All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP, https://www.360docs.net/doc/3b6409457.html,. (ID: 112.25.149.196-25/04/14,11:07:47)

焊接计算公式总结

角焊缝计算 基本公式 )63(22 -≤+??? ? ??w f f f f f τβσ )73(-≤= ∑w f f e w f f h l N βσ )83(-≤= ∑w f e w f f h l N τ 1承受轴心力作用时角焊缝连接计算(双盖板拼接) 侧面角焊缝 )83(-≤= ∑w f e w f f h l N τ 三面围焊角焊缝 )73(-≤= ∑w f f e w f f h l N βσ e w w f f h l f N ∑'='β w f e w f f h l N N ≤' -= ∑τ

角钢与节点板用侧面角焊缝连接 ) 153() 143(2 221 11-≤= -≤=∑∑w f e w f w f e w f f h l N f h l N ατατ 角钢与节点板用三面角焊缝连接 )193(33-=∑w f f e f bh N β ) 213(2) 203(23 22311--=-- =N N k N N N k N

) 63(22 -≤+??? ? ??= =∑∑w f f f f w e y f w e x f f l h N l h N τβστσ 4承受弯矩、轴心力或剪力联合作用的角焊缝连接计算

承受弯矩与剪力联合作用的角焊缝连接计界 ∑= -+?=-+?=w e VAy y x x TAy y x y TAx l h V I I r T I I r T τττ) 273()263( w f TAx f VAy TAy f ≤+??? ? ??+22 τβττ 对接焊缝计算 对接焊缝计算与构件截面的强度计算相同请自己总结

焊接线能量的范围与计算方法

焊接线能量的范围与计算方法 q = IU/υ式中:I电弧电压V υ线能量 J/cm 例如,板厚12mm,进行双面开Ⅰ形坡口埋弧焊,焊丝 ф4mm,I=650A,U=38V,υ=0、9cm/s。,则焊接线能量q为: q= IU/υ=65038/0、9 =27444 J/cm 线能量综合了焊接电流、电弧电压和焊接速度三大焊接工艺参数对焊接热循环的影响。线能量增大时,热影响区的宽度增大,加热到高温的区域增宽,在高温的停留时间增长,同时冷却速度减慢,决定焊接线能量的主要参数就是焊接速度,焊接电流,和电弧电压,所以从这个意义上讲,只要你确定了合理的焊接规范参数,就已经确定了合理的焊接线能量,所以并没有一个专门的定量的的焊接线能量的测定,除非有特别要求,工程技术上也不可能给一个线能量的具体数值来控制,而是由焊接规范控制的,不过焊接线能量可以通过电流和电压和焊速来计算。但是没一种焊接方法,还有根据实际应用情况线能量都不同,所以这种计算必要性不大,只要你利用合理的焊接规范,一般就没什么问题个人认为理论上应该乘以热效率系数,但是从工程上来说这些都不是实用的东西焊接线能量熔焊时,由焊接热源输入给单位长度焊缝的能量。焊接线能量的计算过程如下:有效热功率:P=ηPo=ηUI其中:Po电弧功率(J/s)U电弧电压(V)I焊接电流(A)η 功率有效系数,焊条电弧焊为0、74~0、

87、埋弧焊为0、77~0、 90、交流钨极氩弧焊为0、68~0、 85、直流钨极氩弧焊为0、78~0、85。无特别说明时,取中间值。焊接线能量:E=P/v其中:v焊接速度(cm/min)列: Q345E板焊接线能量经验数值小于等于39J/cm。当今,他们在计算熔焊热输入时,不管电极是摆动还是不摆动,都使用同一公式,这是不适宜的。在摆动焊时,焊道宽、焊速慢,用传统公式计算出的线能量就会比实际值大。建议在计算摆动焊接的线能量时添加折减系数;或者,重新定义热输入。

焊接收缩量计算

焊接收缩量计算 焊接变形收缩是复杂的,计算公式也是近似的。 对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 除其它因素,变形大小与焊缝的充填金属量、输入热量成正比。所以同一板厚的对接焊缝横向收缩大小依次为: 单V,x,单U,双U。多道焊时,每道焊缝所产生的横向收缩量逐层递减。 T形接头、搭接接头的横向收缩量,随焊角高K的增加而增大,随板厚s增加而降低。单V对接焊缝横向收缩近似值及公式: y = 1.01*e^:0.0464x: y,收缩近似值 e,2.718282 x, 板厚 双V对接焊缝横向收缩近似值及公式: y = 0.908*e^:0.0467x : y,收缩近似值 e,2.718282 x, 板厚

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 财务管理工作总结 [财务管理工作总结]2009年上半年,我们驻厂财会组在公司计财部的正确领导下,在厂各部门的大力配合下,全组人员尽“参与、监督、服务”职能,以实现企业生产经营目标为核心,以成本管理为重点,全面落实预算管理,加强会计基础工作,充分发挥财务管理在企业管理中的核心作用,较好地完成了各项工作任务,财务管理水平有了大幅度的提高,财务管理工作总结。现将二00九年上半年财务工作开 展情况汇报如下: 一、主要指标完成情况: 1、产量90万吨,实现利润1000万元 ,按外销口径, 2、工序成本降低任务: 上半年工序成本累计超支1120万元,,受产量影响,。 二、开展以下几方面工作: 1、加强思想政治学习,用学习指导工作 2009年是转变之年,财务的工作重心由核算向管理转变,全面参与生产经营决策。对财会组来说,工作重心从确认、核算、报表向预测、控制、分析等管理职能转变,我们就要不断的加强政治学习,用学习指导工作,因此我们组织全组认真学习“十七大”、学习2009年马总的《财务报告》,在学习实践科学发展观活动中,反思过去,制定了2009年工作目标,使我们工作明确了方向,心里也就有了底,干 起活来也就随心应手。 5

焊缝计算公式

一、箱形柱的现场拼接焊缝(等壁厚箱形柱对接) C=4tan +?+βt b A1=βtan 212t ? ;A2=e C ??3 2 ;A3=b t ? A=A1+A2+A3=3 22tan 2e C t b t ?+?+?β 二、箱形柱的现场拼接焊缝(不等壁厚箱形柱对接) C=4tan 1+?+βt b A=ββcot 2 1 32tan 212211b e C t b t +?+?+?

三、人孔补强板与柱的现场焊接 C=()4tan 2+-+βt b A =()Ce t b t 3 2tan 221 2+-+?β 四、 工字形梁翼缘的现场焊接 C=42 tan )(2+-+β p t b =?-+15tan )2(214t A=e C t t b ?+??????-?+?3 2 2tan ) 2(2 1 22 β =e C t t ?+-+3 2 2tan )2(10β

L1=(t-2)/3×tan60°+2 L2=2(t-2)/3×tan45°+2 C1= 442 2 1 +?? ? ??+t L C2= 442 2 2+?? ? ??+t L A1=t ×b A2=? ???? ??-?60tan 32212 t A3=4 211t L ?? A4=e C ??134 A5=? ??? ? ??-?45tan 3)2(2212 t A6=4212t L ?? A7=e C ??234 A= A1+ A2+ A3+ A4+ A5+ A6+ A7

C=42 tan 222+?-? +β t b =()62 tan 2+?-β t A=e b t b t ???+?? ????? ????? ??-??+?C 32 22tan 22142β =()e t t ??+-+C 3 42tan 221 22β 七、 工字型柱翼缘的现场焊接 C=()4tan 2+-+βt b =βtan )2(9-+t A = e C t t b ?+-+?32 tan )2(212β =Ce t t 32tan )2(2152+-+β

焊接计算

焊接工艺问答(强度及结构) 2008-01-10文字选择: 各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,

其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。 37 举例说明对接接头爱拉(压)时的静载强度计算。 全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。 受拉时的强度计算公式为 F σt=───≤〔σ′t 〕 Lδ1 F 受压时的强度计算公式为σα=───≤〔σ′α 〕

Lδ1 式中F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠ 〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α〕——焊缝受压时的许用应力(N/cm2) 计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400 σt=─── =───── =1136N/cm2<14200N/cm2 Lδ1 50×0.5 ∴该对接接头焊缝强度满足要求,结构工作安全。 38 举例说明对接接头受剪切时的静载强度计算。

焊接公式及实验

1、碳当量 国际焊接学会:CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 <淬硬倾向不大 日本焊接学会:Ceq(JIS)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 Ceq《%,焊接性优良;淬硬倾向逐渐明显,焊接时需要采取合适的措施;Ceq>%时,淬硬倾向明显,属于较难焊接材料。 淬硬倾向较大的钢, 焊后在空气中冷却时,焊缝易出现淬硬的马氏体组织,低温焊接或焊接刚性较大时易出现冷裂纹,焊接时需要预热,预热是防止冷裂纹和再热裂纹的有效措施。与人是防止冷裂纹和再热裂纹的有效措施。温度太低,焊缝会开裂,太高又会降低韧性,恶化劳动条件,所以确定合适的预热温度成为很重要的问题。 Rb=500MPa,Ceq= 不预热 Rb=600MPa,Ceq= 预热75o C Rb=700MPa, Ceq= 预热75 o C Rb=800MPa,Ceq= 预热150 o C 新日铁: CE IIW公式对碳钢和碳锰钢更合适,但不适用于低碳低合金钢;Pcm适于低碳低合金钢。CEN在图表法中被用作评价钢冷裂纹敏感性的尺度(当碳增加时,CEN接近CE IIW,而当碳降低时他又接近Pcm)。——用图表法确定钢焊接时的预热温度上 2、冷裂纹敏感指数:Pcm Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B 使用化学成分范围(质量分数):C=、冷裂纹敏感性Pw Pw=Pcm+[H]/60+h/600或Pw=Pcm+[H]/60+R/40000 [H]:熔敷金属中扩散氢含量(ml/100g) R:焊缝拉伸拘束度 h:板厚(mm) 当Pw>0时,即有产生裂纹的可能性。 适用条件:扩散氢含量[H]=(1-5)ml/100g,h=19-50mm,线能量为17-30kJ/cm.

焊接线能量

焊接线能量 在焊接过程中热源沿焊件的某一方向移动,焊件上任一点的温度都经历由低到高的升温阶段,当温度达到最大值后又经历由高到低的降温阶段。在焊缝两侧不同距离的各点,所经历的这种热循环是不同的,如图3,12所示。焊接是一个不均匀的加热和冷却过程,也可以说是一种特殊的热处理过程。与金属材料一般热处理相比,或与塑性成形或凝固成形相比,焊接时的加热速度特别快,冷却速度也相当快,这是造成焊接接头组织不均匀性和性能不均匀性的重要原因。 焊接热循环的主要参数是加热速度,峰值温度 max,高温停留时间,冷却速度 (或冷 TtH却时间或)如图3,13所示 tt8/58/3 (1)加热速度 采用不同的焊接方法和不同的线能量,焊接不同厚度的低碳钢或低合金结构钢,根据实测结果加热速度如表3,4所示

通常随着加热速度的提高,钢的固态相变温度Ac1和Ac3也相应的提高,而且Ac1和Ac3之间的温差也变大,如表3,5所示。随着钢中碳化元素的增多(例如 18Cr2Wv钢),这一效果更为显著。 (2)峰值温度Tmax 峰值温度Tmax将直接影响到焊接热影响区 焊接或切割过程中母材因受热的影响(未熔化),而发生金相组织变化和力学性能变化的区域。的组织和性能。峰值温度过高,将使晶粒严重长大,甚至产生过热的魏氏体组织不易淬火钢焊接热影响区中的过热区,由于奥氏体晶粒长得非常粗大,这种粗大的奥氏体在较快的冷却速度下会形成一种特殊的过热组织,其组织特征为在一个粗大的奥氏体晶粒内会形成许多平行的铁素体针片,在铁素体针片之间的剩余奥氏体最后转变为珠光体,这种过热组织称 为魏氏组织。 ,造成晶粒脆化;同时还影响到焊接接头的应力应变, 应力为焊接过程中焊件内产生的应力。(按作用时间可分为焊接瞬时应力和焊接残余应力)。应变为焊接过程中在焊件中所产生的变形。 形成较大的焊接残余应力或变形。峰值温度Tmax与焊件的初始温度T,焊接线能量E,被焊金0 属的板厚h及离热源中心距离有关。 (3)高温停留时间t H 所谓高温停留时间是指在相变温度Ac1以上停留时间。如图3,13所示,它包含加热过程高温停留时间'和冷却过程高温停留时间t"。 t 在相变温度以上停留时间,对于相的溶解、奥氏体的扩散均匀化以及晶粒度都有很大影响。对于钢来说越长,越有利于奥氏体的均匀化,但温度太高,例如在1100?以上的停留时间过长,tH

焊接相关计算

焊接的有关计算 第一章 基本概念的有关计算 一、焊条药皮质量系数 概念:焊条药皮质量系数即焊条与药芯(不包括无药皮的夹持端)的质量比。 b l m K 100%m = ? 式中:Kb ——药皮质量系数(%); m o ——药皮质量(Kg ); m l ——焊芯质量(Kg )。 二、焊条药皮厚度分类 (1)薄药皮焊条 1.2≤焊条直径焊芯直径 (2)厚药皮焊条 1.2 1.5<≤焊条直径焊芯直径 (3)特厚药皮焊条 1.8<焊条直径 焊芯直径 三、熔敷系数 熔敷系数指熔焊过程中,单位电流、单位时间内,焊芯(或焊丝)熔敷在焊件上的金属量。 H o l p m It m m It αα= -= 式中:H α——熔敷系数(g/Ah ); m ——熔敷焊缝金属质量(g ); I ——焊接电流(A ); t ——焊接时间(h )。 四、熔化系数 熔化系数指熔焊过程中,单位电流,单位时间内,焊芯(或焊丝)的熔化量。 o l p m m It α-= 式中 :p α——熔化系数(g/Ah ); o m ——焊芯原质量(g ); l m ——焊后剩下焊芯质量(g ); 五、熔化速度 熔化速度指熔焊过程中,熔化电极在单位时间内熔化的长度或质量。

O p L L v t -= 式中 p v —— 熔化速度(mm/min ); O L ——焊条原长(mm ) ; L ——余下焊条头长度(mm ); T ——焊接时间(min )。 例:某焊条长320mm ,经过5min 的焊接,剩下40mm 的焊条头,求该焊条的熔化速度。 解:O p L L v t -= =(320mm-40mm )/5min=56mm/min 答:该焊条的熔化速度为56mm/min 。 六、熔敷速度 熔敷速度指熔焊过程中,单位时间内熔敷在焊件上的金属量。 p m m v t -= 式中:p v ——熔敷速度(kg/h ); M ——焊后焊件的质量(kg ); 0m ——焊前焊件的质量(kg ) ; t ——焊接时间(h )。 七、热输入 热输入指熔焊时,由焊接能源输入给单位长度焊缝上的热能。 q U I /v η= 式中:q ——热输入(J/mm ); U ——电弧电压(V ); I ——焊接电流(A ); V ——焊接速度(mm/s ); η——热效率(焊条电弧焊η=0.7~0.8;埋弧焊η=0.8~0.95;TIG 焊η=0.5)。 例1:用焊条电弧焊焊接Q390(原15MnTi )钢时,为防止和减小焊接热影响区的过热区脆化倾向,要求焊接时热输入不超过30kj/cm 。如果选择焊接电流为180A,电弧电压为28V ,试计算焊接速度应为多少? 已知:I=180A ;q=30kJ/cm ;U=28V 求:v=? 解:由 q UI/v η= 取η=0.7 得:v=UI/q=0.728180/30000cm/s=0.118cm/s η?? 答:应选用的焊接速度为0.118cm/s 。 例2:已知某钢材焊接过程中焊条电弧焊的电弧电压为26V ,焊接电流为200A ,焊接速度为0.2cm/s ,试求其焊接热输入(η取0.8)。 已知:I=200A ;v=0.2cm/s ;U=26V ;η=0.8

压力容器焊接线能量控制的基本原则

压力容器焊接线能量控制的基本原则 对某些材料的焊接,为保证其焊接质量,除应正确选择焊接方法和焊接材料外,执行焊接工艺的一个共同特点就是控制焊接线能量。 1、不同的材料对焊接线能量控制的目的和要求: 不同的材料对焊接线能量控制的目的和要求不一样。如: (1)焊接低合金高强钢时,为防止冷裂纹倾向,应限定焊接线能量的最低值;为保证接头冲击性能,应规定焊接线能量的上限值。 (2)焊接低温钢时,为防止因焊缝过热出现粗大的铁素体或粗大的马氏体组织,保证接头的低温冲击性能,焊接线能量应控制为较小值。 (3)焊接奥氏体不锈钢时,为防止合金元素烧损,降低焊接应力,减少熔池在敏化温度区的停留时间,避免晶间腐蚀,应采用较小的焊接线能量。 (4)焊接耐热耐蚀高合金钢时,为减少合金元素烧损,避免焊接熔池过热而形成粗晶组织降低高温塑性和疲劳强度,防止热裂纹,获得较好“等强度”的接头,应采用较小的焊接线能量。 (5)珠光体钢与奥氏体钢异种钢焊接时,应采用较小的线能量以降低熔合比,避免接头珠光体钢一侧产生淬硬组织,防止扩散层。如果珠光体钢淬硬倾向较大,则焊前应预热,预热事实上是提高了焊接热输入。 (6)铝及铝合金焊接时,为防止气孔,应采用大的焊接电流配合较高的焊接速度应是焊接工艺参数的最佳匹配,即采用适中的焊接线能量。 (7)工业纯钛焊接时,为保证接头既不过热,又不产生淬硬组织,应采用小电流、快焊速,即采用较小的焊接线能量。 (8)镍及镍合金焊接时,为防止热裂纹,应采用小线能量。等等。

当设计文件、相关标准提出的性能指标如冲击韧性、耐腐蚀性能等对线能量及其相关的焊接层次、层间温度有严格要求时,应在焊接作业指导书规定焊接线能量、焊接层次(含焊道尺寸)和层间温度的控制要求,施焊中通过对这些参数的记录来检查和证实焊接线能量及其相关的焊接层次、层间温度的要求是否得到满足。 2、焊接线能量的测量方法: 通常焊接线能量采用下列公式进行计算(适用于单电弧焊接方法,针对于每条焊道,并且不考虑累积): 线能量Q=60IV/v (J/mm) 式中:A--焊接电流(A); V--电弧电压(V); v--焊接速度(电弧行走速度)(mm/min)。 焊接线能量——熔焊时,由焊接热源输入给单位长度焊缝的能量。 焊接线能量的计算过程如下: 有效热功率:P=η×Po=η×U×I 其中: Po——电弧功率(J/s) U——电弧电压(V) I——焊接电流(A) η——功率有效系数,焊条电弧焊为0.74~0.87、埋弧焊为0.77~0.90、交流钨极氩弧焊为0.68~0.85、直流钨极氩弧焊为0.78~0.85。无特别说时,取中间值。

焊接变形计算公式

焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 为了给设计人员提供一定的参考,贴几个公式: 1、单V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值 e= x=板厚 2、script id=text173432>双V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值

e= x=板厚 3、 4、

5、 6、

1、预热处理是为了防止裂纹,同时兼有一定改善接头性能的作用,但是预热也恶化劳动条件,延长生产周期,增加制造成本。过高预热温度反会使接头韧性下降。 预热温度确定取决于钢材的化学成分、焊件结构形状、约束度、环境温度和焊后热处理等。随着钢材碳当量、板厚、结构约束度增大和环境温度下降,焊前预热温度也需相应提高。焊后进行热处理的可以不预热或降低预热温度。 Q345焊接的预热温度板厚≤40mm,可不预热; 板厚>40mm,预热温度≥100度(以上为理论参考)2、焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。具体经验公式见附件! 3、低合金钢接头焊接区的清理是一项不可忽视的工作,是建立低氢环境的主要环节之一。 若直接在焊件切割边缘和切割坡口上的焊接接头,则焊前必须清理干净切割面得氧化皮盒熔化金属的毛刺,必要时可用砂轮打磨。

焊接相关计算

焊接的有关计算 第一章基本概念的有关计算 一、焊条药皮质量系数 概念:焊条药皮质量系数即焊条与药芯(不包括无药皮的夹持端)的质量比。 式中:Kb——药皮质量系数(%); ——药皮质量(Kg); m o ——焊芯质量(Kg)。 m l 二、焊条药皮厚度分类 (1)薄药皮焊条 (2)厚药皮焊条 (3)特厚药皮焊条 三、熔敷系数 熔敷系数指熔焊过程中,单位电流、单位时间内,焊芯(或焊丝)熔敷在焊件上的金属量。 ——熔敷系数(g/Ah); 式中: H m——熔敷焊缝金属质量(g); I——焊接电流(A);

t ——焊接时间(h )。 四、熔化系数 熔化系数指熔焊过程中,单位电流,单位时间内,焊芯(或焊丝)的熔化量。 式中 :p α——熔化系数(g/Ah ); o m ——焊芯原质量(g ); l m ——焊后剩下焊芯质量(g ); 五、熔化速度 熔化速度指熔焊过程中,熔化电极在单位时间内熔化的长度或质量。 式中 p v —— 熔化速度(mm/min ); O L ——焊条原长(mm ); L ——余下焊条头长度(mm ); T ——焊接时间(min )。 例:某焊条长320mm ,经过5min 的焊接,剩下40mm 的焊条头,求该焊条的熔化速度。 解:O p L L v t -= =(320mm-40mm )/5min=56mm/min 答:该焊条的熔化速度为56mm/min 。 六、熔敷速度

熔敷速度指熔焊过程中,单位时间内熔敷在焊件上的金属量。 v——熔敷速度(kg/h); 式中: p M——焊后焊件的质量(kg); m——焊前焊件的质量(kg); t——焊接时间(h)。 七、热输入 热输入指熔焊时,由焊接能源输入给单位长度焊缝上的热能。 式中:q——热输入(J/mm); U——电弧电压(V); I——焊接电流(A); V——焊接速度(mm/s); η——热效率(焊条电弧焊η=~;埋弧焊η=~;TIG焊η=)。 例1:用焊条电弧焊焊接Q390(原15MnTi)钢时,为防止和减小焊接热影响区的过热区脆化倾向,要求焊接时热输入不超过30kj/cm。如果选择焊接电流为180A,电弧电压为28V,试计算焊接速度应为多少? 已知:I=180A;q=30kJ/cm;U=28V 求:v=?

焊接线能量的范围与计算方法

参考资料:中国焊接网_焊接常识 熔焊时,由焊接能源输入给单位长度焊缝上的能量,称为焊接线能量,用下式表示为q = IU/υ 式中:I—焊接电流 A U—电弧电压V υ—焊接速度cm/s q—线能量J/cm 例如,板厚12mm,进行双面开Ⅰ形坡口埋弧焊,焊丝ф4mm,I=650A,U=38V,υ=0.9cm/s。,则焊接线能量q为: q=IU/υ=650×38/0.9 = 27444 J/cm 线能量综合了焊接电流、电弧电压和焊接速度三大焊接工艺参数对焊接热循环的影响。线能量增大时,热影响区的宽度增大,加热到高温的区域增宽,在高温的停留时间增长,同时冷却速度减慢, 决定焊接线能量的主要参数就是焊接速度,焊接电流,和电弧电压,所以从这个意义上讲,只要你确定了合理的焊接规范参数,就已经确定了合理的焊接线能量,所以并没有一个专门的定量的的焊接线能量的测定,除非有特别要求,工程技术上也不可能给一个线能量的具体数值来控制,而是由焊接规范控制的,不过焊接线能量可以通过电流和电压和焊速来计算。但是没一种焊接方法,还有根据实际应用情况线能量都不同,所以这种计算必要性不大,只要你利用合理的焊接规范,一般就没什么问题个人认为理论上应该乘以热效率系数,但是从工程上来说这些都不是实用的东西 焊接线能量——熔焊时,由焊接热源输入给单位长度焊缝的能量。 焊接线能量的计算过程如下: 有效热功率:P=η×Po=η×U×I 其中: Po——电弧功率(J/s) U——电弧电压(V) I——焊接电流(A) η ——功率有效系数,焊条电弧焊为0.74~0.87、埋弧焊为0.77~0.90、交流钨极氩弧焊为0.68~0.85、直流钨极氩弧焊为0.78~0.85。无特别说明时,取中间值。 焊接线能量:E=P/v 其中:v——焊接速度(cm/min) 列:Q345E板焊接线能量经验数值小于等于39J/cm。 当今,他们在计算熔焊热输入时,不管电极是摆动还是不摆动,都使用同一公式,这是不适宜的。在摆动焊时,焊道宽、焊速慢,用传统公式计算出的线能量就会比实际值大。建议在计算摆动焊接的线能量时添加折减系数;或者,重新定义热输入。

焊接线能量

一、低温钢焊接的特殊要求 (一)典型钢种及成分 低温钢是指用于低温(-10℃~196℃)的钢(我国从-40℃算起)。它主要应用于贮存和运输各类液化气体,如用于建造液化气体运输船的液货舱及靠近液货舱的船体结构。因此这类钢的性能必须首先满足具有足够的低温韧性。低温用钢可分为无镍和含镍两大类。无镍低温用钢中包括低碳镇静钢和低合金高强钢。前者用铝脱氧时形成AlN,细化晶粒、提高缺口韧性。后者在低碳铝镇静钢的基础上加入了锰等元素提高强度并利用微量铝、钛、铌等细化晶粒提高低温韧性。含镍低温钢在低碳钢中加入一些镍,提高强度,改善低温韧性。在Ni%小于10%的范围内,镍含量越高,低温韧性越好,强度越高。 (一)低温钢焊接的主要问题 低碳镇静钢和低合金高强钢实际上就是C-Mn钢和低碳调质钢。从使用性能考虑,焊接时主要要注意两个问题:一是线能量过大时造成的过热区脆化;二是含有钒、钛、铌、铜、氮等元素的钢种焊后消除应力热处理时,如果加热温度处于回火脆性敏感温度范围,会析出脆性相,出现回火脆性。 含镍低温钢中的镍是增加淬透性的元素,但是由于这些钢中含碳量限制得很低,冷裂倾向并不严重。镍除了增加钢的淬透性以外还是促热裂的元素,但由于含镍低温钢中含碳量低, 硫、磷杂质控制的极其严格,焊接时热影响区基本上不会产生液化裂纹。焊接时应注意钢的脆性倾向、含镍低温钢具有回火脆性倾向,焊后回火时要注意温度和冷速的控制 (二)低温钢的焊接工艺特点 1. 严格控制线能量 为避免焊缝金属及近缝区形成粗晶组织而降低低温韧性,要求采用小的焊接线能量。焊接电流不宜过大,宜用快速多道焊以减轻焊道过热,并通过多层焊的重热作用细化晶粒。多道焊时要控制层间温度不得过大。 2. 正确选择焊接材料 1)铝镇静钢焊接铝镇静钢时可选择成分与母材相同的低碳钢和C-Mn钢类焊条或含镍0.5%~1.5%的低镍焊条,后者低温韧性更为可靠。 2)低温用低合金钢焊接低温用低合金钢时,除要保证焊缝的低温韧性外还要保证焊缝与母材等强。焊接材料中除了含有镍1%~3%外,还含有钼0.2%~0.5%,有时还含有少量铬。 3)低镍钢焊接低镍钢时所用焊条的含镍量应与母材相同或高于母材,但Ni%不应过高。焊态下焊缝中含镍量超过2.5%就会出现粗大的板条状贝氏体或马氏体,使焊缝韧性下降。焊后不再进行调质处理的低镍钢,焊缝金属含镍量应低于2.5%。只有经过焊后调质处理,焊缝韧性才随含Ni量增加而增加。焊缝除了尽量降低碳及硫、磷、氧的含量外还应对硅、

大线能量焊接问题

钢板被广泛用于诸如建筑、桥梁、压力容器、储罐、管线和船舶等基础建设和大型建筑中。建筑构件的大型化和高层化发展趋势要求钢板的厚度增加,同时具有更高的综合性能,包括更高的力学性能、高效的加工性能以及优良的抗腐蚀性能和抗疲劳破坏性能等。 但是,随着钢板强度的提高,其冲击韧度和焊接性能显著下降,焊接裂纹敏感性增加。特别是随着焊接线能量的提高,传统低合金高强钢的焊接热影响区性能(强度、韧性)恶化,易产生焊接冷裂纹问题,给大型钢结构的制造带来困难。由于焊接为厚板加工的主要方式,满足大线能量焊接性能也逐步成为各种钢种所具备的一种性能。所以,在追求高强度的同时,改善钢板的韧性以提高钢板的焊接性能越来越迫切。 提高钢大线能量焊接性能的主要技术手段 钢大线能量焊接的主要难点在于其热影响区(HAZ)的强度和韧性随着输入线能量的增大而降低。因此,HAZ的韧性成为制约钢大线能量焊接的关键因素。为了解决HAZ的韧性问题,国内外相继开展了大线能量焊接用钢的研究工作,提出的改善韧性的方法主要有降低C含量和Ceq、利用微合金元素和氧化物夹杂细化奥氏体晶粒、获得韧性好的组织如针状铁素体以及贝氏体组织的超低碳钢、通过改进生产工艺提高韧性等。 1 奥氏体晶粒的细化 晶粒细化是同时提高钢的强度和韧性的唯一途径。通过降低奥氏体的晶粒尺寸来增加形核点密度以细化铁素体晶粒的方法已经被广泛

研究。原奥氏体晶粒越细小,HAZ的晶粒也就越小,韧性也就会越好。 在钢中引入微量的合金元素,形成弥散分布的高熔点颗粒。这些颗粒一方面以“钉轧”的形式阻碍奥氏体晶界的迁移,限制奥氏体晶粒的长大,同时增加了相变过程中的形核点,从而使钢的组织更加细小。目前研究较多的是Ti元素对高温奥氏体的细化作用。研究发现,Ti在钢中形成细小弥散的TiN粒子,在焊接热循环过程中有效阻止奥氏体晶粒的长大,促进针状铁素体析出,从而改善HAZ的韧性。 研究人员发现,Nb可以加强Ti的细化作用。Nb在钢中与N也有着强烈的亲和力,可以取代部分Ti,与N形成(Ti,Nb)N颗粒,其溶解温度在1350℃以上,可以钉轧、拖拽高温奥氏体晶界的迁移。进一步的研究发现,Ti-Nb微合金钢中含有大量尺寸细小的TixNb1-x(CyN1-x)粒子,粒子中Nb的相对含量在0.25~0.82之间,形状接近球形。这些粒子具有很高的稳定性,在焊接过程中这些粒子不仅能有效地阻止奥氏体晶粒长大、抑制粗大贝氏体的形成、还能够促进针状铁素体的析出和M-A组元的分解,从而显著改善低合金高强钢HAZ粗晶区的韧性。 2 HAZ组织的改善 除了细化晶粒,改善HAZ组织也是提高钢板韧性的一个途径。当成分确定时,钢的韧性由组织和晶粒尺寸决定。研究结果表明,当大线能量焊接后的HAZ含有一定数量的针状铁素体(AF)时,将具有较高的强度和良好的韧性,所以很多研究都致力于在HAZ获得AF组织,并对AF 的形核机理和合金元素对组织的影响做了探讨分析。

相关文档
最新文档