第十四章整式乘除与因式分解知识点归纳及经典例题

第十四章整式乘除与因式分解知识点归纳及经典例题
第十四章整式乘除与因式分解知识点归纳及经典例题

第十四章 整式乘除与因式分解

知识点归纳:

一、幂的运算:

1、同底数幂的乘法法则:n m n m a a a +=?(n m ,都是正整数)

同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+?+

2、幂的乘方法则:mn n m a a =)((n m ,都是正整数)

幂的乘方,底数不变,指数相乘。如:10253)3(=-

幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4==

3、积的乘方法则:n n n b a ab =)((n 是正整数)。积的乘方,等于各因数乘方的积。 如:(523)2z y x -=5101555253532)()()2(z y x z y x -=???-

4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m

同底数幂相除,底数不变,指数相减。如:3334)()()(b a ab ab ab ==÷

5、零指数;10=a ,即任何不等于零的数的零次方等于1。

二、单项式、多项式的乘法运算:

6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。如:=?-xy z y x 3232 。

7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,

即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。如:)(3)32(2y x y y x x +--=。

8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

9、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项

公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。 如:))((z y x z y x +--+ =

10、完全平方公式:2222)(b ab a b a +±=±

完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样。

公式的变形使用:(1)ab b a ab b a b a 2)(2)(2222-+=-+=+;ab b a b a 4)()(22-+=-

222)()]([)(b a b a b a +=+-=-- ;222)()]([)(b a b a b a -=--=+-

(2)三项式的完全平方公式: bc ac ab c b a c b a 222)(2222+++++=++

11、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。 如:b a m b a 242497÷-

12、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:c b a m cm m bm m am m cm bm am ++=÷+÷=÷=÷++)(

三、因式分解的常用方法.

1、提公因式法

(1)会找多项式中的公因式;公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(3)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是:把整式中的乘法公式反过来使用;常用的公式:

①平方差公式: a 2-b 2= (a +b )(a -b )

②完全平方公式:a 2+2ab +b 2=(a +b )2

a 2-2a

b +b 2=(a -b )2

3、在数学学习过程中,学会利用整体思考问题的数学思想方法和实际运用意识。

如:对于任意自然数n ,22)5()7(--+n n 都能被动24整除。

练习题

1.若225722+-++m n n m b a b a 的运算结果是753b a ,则n m +的值是( )

A .-2

B .2

C .-3

D .3

2.若a 为整数,则a a +2一定能被()整除

A .2

B .3

C .4

D .5

3.若x 2+2(m-3)x+16是完全平方式,则m 的值等于…………………( )

A.3

B.-5

C.7.

D.7或-1

4.如图,矩形花园ABCD 中,AB=a ,AD=b ,花园中建有一条

矩形道路LMQP 及一条平行四边形道路RSTK

,若

LM=RS=c ,则花园中可绿化部分的面积为( )

A .2b ac ab bc ++-

B .ac bc ab a -++2

C .2c ac bc ab +--

D .ab a bc b -+-22

5.分解因式:=-+-ab b a 2122__________________________.

6.3x(7-x)=18-x(3x-15);

7.(x+3)(x-7)+8>(x+5)(x-1).

8.2,3==n m x x ,求n m x 23+、n m x 23-的值

因式分解-复习-专题-讲义-知识点-典型例题

因式分解复习 一、基础知识 1.因式分解概念: 把一个多项式化成几个整式的乘积的形式,这就叫做把这个多项式因式分解,也可称为 将这个多项式分解因式,它与整式乘法互为逆运算。 2.常用的因式分解方法: (1)提公因式法:把ma mb mc ++,分解成两个因式乘积的形式,其中一个因式是 各项的公因式m ,另一个因式()a b c ++是ma mb mc ++除以m 所得的商,像这种分解因 式的方法叫做提公因式法。 ①多项式各项都含有的相同因式,叫做这个多项式各项的公因式。 ②公因式的构成:系数:各项系数的最大公约数; 字母:各项都含有的相同字母; 指数:相同字母的最低次幂。 (2)公式法: ①常用公式 平方差:)b a )(b a (b a 22-+=- 完全平方:222)b a (b 2ab a ±=+± ②常见的两个二项式幂的变号规律: 22()()n n a b b a -=-;2121()()n n a b b a ---=--.(n 为正整数) (3)十字相乘法 ①二次项系数为1的二次三项式 q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成 ()()()b x a x ab x b a x q px x ++=+++=++22 ②二次项系数不为1的二次三项式c bx ax ++2 中,如果能把二次项系数a 分解成两 个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系 数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。 (4)分组分解法 ①定义:分组分解法,适用于四项以上的多项式,例如22 a b a b -+-没有公因式, 又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目的。 例如22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 ②原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分 解。 ③有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多 项式正确分解即可。

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

集合-基础知识点汇总与练习-复习版

集合知识点总结 一、集合的概念 教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问 题,掌握集合问题的常规处理方法. 教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.: 一)主要知识: 1.集合、子集、空集的概念; 2.集合中元素的3个性质,集合的3 种表示方法; 3. 若有限集A有n个元素,则A的子集有2n个,真子集有2n 1,非空子集有2n 1个,非空真子集有2n 2个. 二、集合的运算 教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性 质,能利用数轴或文氏图进行集合的运算,进一步掌握 集合问题的常规处理方法. 教学重点:交集、并集、补集的求法,集合语言、集合思想的运用. 一)主要知识: 1. 交集、并集、全集、补集的概念; 2. AI B A A B,AUB A A B; 3. C U AI C U B C U (AUB),C U AUC U B C U(AI B). 二)主要方法: 1. 求交集、并集、补集,要充分发挥数轴或文氏图的作用;

2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出 问题; 3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键. 考点要点总结与归纳 一、集合有关概念 1. 集合的概念:能够确切指定的一些对象的全体。 2. 集合是由元素组成的 集合通常用大写字母A、B、C,…表示,元素常用小写字母a b、c, …表示。 3. 集合中元素的性质:确定性,互异性,无序性。 (1)确定性:一个元素要么属于这个集合,要么不属于这个集 合,绝无模棱两可的情况。如:世界上最高的山 (2)互异性:集合中的元素是互不相同的个体,相同的元素只能 出现一次。如:由HAPPY 的字母组成的集合{H,A,P,Y} ( 3)无 序性:集合中的元素在描述时没有固定的先后顺序。 女口:{a,b,c}和{a,c,b}是表示同一个集合 4. 元素与集合的关系 (1)元素a是集合A中的元素,记做a€ A,读作“ a属于集合A”; (2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。 5. 集合的表示方法:自然语言法, 列举法,描述法,图示法。 ( 1)自然语言法:用文字叙述的形式描述集合。如大于等于2 且小于等于8 的偶数

高一数学集合知识点归纳及典型例题

高一数学集合知识点归纳及典型例题 Revised on November 25, 2020

集合 一、知识点: 1、元素: (1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ?; (2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:R Q Z N N N ;;;;;*+ 2、集合的关系: 子集 相等 3、全集 交集 并集 补集 4、集合的性质: (1);,,A B B A A A A A ?=?=?=?φφ (2) ;,A B B A A A ?=?=?φ (3) );()(B A B A ??? (4);B B A A B A B A =??=??? (5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ?=??=? 二、典型例题 例1. 已知集合 }33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。 例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。 例3. 已知集合 },01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。 \ 例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b , c 的值。 例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A , (1)若Φ=B A , 求m 的范围; (2)若A B A = , 求m 的范围。 例6. 已知A ={0,1}, B ={x|x ?A},用列举法表示集合B ,并指出集合A 与B 的关系。 三、练习题 1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈ B. M a ? C. a = M D. a > M

因式分解易错题和经典题型精选

因式分解易错题精选 班级 姓名 成绩 一、填空:(30分) 1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。 2、22)(n x m x x -=++则m =____n =____ 3、232y x 与y x 612的公因式是_ 4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。 5、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的 有________________________ ,其结果是 _____________________。 6、若16)3(22+-+x m x 是完全平方式,则m=_______。 7、_____))(2(2(_____)2++=++x x x x 8、已知,01200520042=+++++x x x x 则.________2006=x 9、若25)(162++-M b a 是完全平方式M=________。 10、()22)3(__6+=++x x x , ()2 2)3(9___-=++x x 11、若229y k x ++是完全平方式,则k=_______。 12、若442-+x x 的值为0,则51232-+x x 的值是________。 13、若)15)(1(152-+=--x x ax x 则a =_____。 14、若6,422=+=+y x y x 则=xy ___。15、方程042 =+x x ,的解是________。

1、多项式))(())((x b x a ab b x x a a --+---的公因式是( ) A 、-a 、 B 、))((b x x a a --- C 、)(x a a - D 、)(a x a -- 2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( ) A 、m=—2,k=6, B 、m=2,k=12, C 、m=—4,k=—12、 D m=4,k=12、 3、下列名式:4 422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公 式分解因式的有( )A 、1个,B 、2个,C 、3个,D 、4个 4、计算)10 11)(911()311)(211(2232---- 的值是( ) A 、21 B 、2011.,101.,201D C 5、1.下列等式从左到右的变形是因式分解的是………………………………………( ) (A )(x +2)(x –2)=x 2-4(B )x 2-4+3x =(x +2)(x –2)+3x (C )x 2-3x -4=(x -4)(x +1)(D )x 2+2x -3=(x +1)2-4 6.分解多项式 bc c b a 2222+--时,分组正确的是……………………………( ) (A )()2()222bc c b a --- (B )bc c b a 2)(222+-- (C ))2()(222bc b c a --- (D ))2(222bc c b a -+- 7.当二次三项式 4x 2 +kx +25=0是完全平方式时,k 的值是…………………( ) (A )20 (B ) 10 (C )-20 (D )绝对值是20的数 8.二项式15++-n n x x 作因式分解的结果,合于要求的选项是………………………( ) (A ))(4n n x x x -+ (B )n x )(5x x - (C ))1)(1)(1(21-+++x x x x n (D ))1(41-+x x n 9.若 a =-4b ,则对a 的任何值多项式 a 2+3ab -4b 2 +2 的值………………( ) (A )总是2 (B )总是0 (C )总是1 (D )是不确定的值

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

因式分解练习题(超经典)

因式分解习题 一、填空: 1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。 2、22)(n x m x x -=++则m =____n =____ 3、232y x 与y x 612的公因式是__________. 4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。 5、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的 有___________________________ ,其结果是 _______________________________________。 6、若16)3(22+-+x m x 是完全平方式,则m=_______。 7、_____))(2(2(_____)2++=++x x x x 8、已知,01200520042=+++++x x x x Λ则.________2006=x 9、若25)(162++-M b a 是完全平方式M=________。 10、()22)3(__6+=++x x x , ()22)3(9___-=++x x 11、若229y k x ++是完全平方式,则k=_______。 12、若442-+x x 的值为0,则51232-+x x 的值是________。 13、若)15)(1(152-+=--x x ax x 则a =_________。 14、若6,422=+=+y x y x 则=xy ________。 15、方程042=+x x ,的解是________。 二、选择题:(8分) 1、多项式))(())((x b x a ab b x x a a --+---的公因式是( ) A 、-a B 、))((b x x a a --- C 、)(x a a - D 、)(a x a -- 2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( ) A 、m=—2,k=6 B 、m=2,k=12 C 、m=—4,k=—12 D m=4,k=12 3、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有( ) A 、1个 B 、2个 C 、3个 D 、4个 三、分解因式: 1、234352x x x -- 2、2633x x - 3、22)2(4)2(25x y y x --- 4、x x -5 5、24369y x - 6、811824+-x x 四、代数式求值

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

(完整版)集合知识点点总结

集合概念 一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西, 并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 例:世界上最高的山、中国古代四大美女、教室里面所有的人…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 二、集合间的基本关系 1.“包含”关系—子集 (1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有 A?(或B?A) 包含关系,称集合A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分,; 注意:B (2)A与B是同一集合。 ?/B或B?/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A) 或若集合A?B,存在x∈B且x A,则称集合A是集合B的真子集。 ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

【离散数学】知识点典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。 【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。 【Abel群/交换群】·适合交换律。可能不只有两个元素适合x2=1 【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。 【子群】按照G中的乘法运算·,子集H仍是一个群。单位子群{1}和G称为平凡子群。 【循环群】G可以由它的某元素a生成,即G=(a)。a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。若G的元数是一个质数,则G必是循环群。 n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。共有?(n)个。【三次对称群】{I(12)(13)(23)(123)(132)} 【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。H有限,则H的任意右陪集aH的元数皆等于H的元数。任意两个右陪集aH和bH或者相等或者不相交。 求右陪集:H本身是一个;任取a?H而求aH又得到一个;任取b?H∪aH而求bH又一个。G=H∪aH∪bH∪… 【正规子群】G中任意g,gH=Hg。(H=gHg-1对任意g∈G都成立) Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。 1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。 2设G为有限群,元数为n,对任意a∈G,有an=1。 3若H在G中的指数是2,则H必然是G的正规子群。证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。故Ha=aH。 4G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。 5 H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合,则HN是G的子群。 【同态映射】K是乘法系统,G到K的一个映射σ(ab)=σ(a)σ(b)。 设(G,*),(K,+)是两个群,令σ:x→e,?x∈G,其中e是K的单位元。则σ是G到K 内的映射,且对a,b∈G,有σ(a*b)=e=σ(a)+ σ(b)。即,σ是G到K的同态映射,G~σ(G)。σ(G)={e}是K的一个子群。这个同态映射是任意两个群之间都有的。 【同构映射】K是乘法系统,σ是G到σ(G)上的1-1映射。称G与σ(G)同构,G?G′。同构的群或代数系统,抽象地来看可以说毫无差别。G和G′同态,则可以说G′是G的一个缩影。 【同态核】σ是G到G′上的同态映射,核N为G中所有变成G′中1′的元素g的集合,即N=σ-1(1′)={g∈G∣σ(g)=1′}。 N是G的一个正规子群。对于Gˊ的任意元素aˊ,σ-1(aˊ)={x|x∈G ,σ(x)= aˊ}是N在G 中的一个陪集。Gˊ的元素和N在G中的陪集一一对应。 设N是G的正规子群。若A,B是N的陪集,则AB也是N的陪集。 【环】R非空,有加、乘两种运算 a+b=b+a2)a+(b+c)=(a+b)+c, 3)R中有一个元素0,适合a+0=a, 4)对于R中任意a,有-a,适合a+(-a)=0, 5)a(bc)=(ab)c,

因式分解经典题与解析

2013组卷 1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法: x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣① =(x+1)2﹣22﹣﹣﹣﹣﹣﹣② =… 解决下列问题: (1)填空:在上述材料中,运用了_________的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法; (2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3; (3)请用上述方法因式分解x2﹣4x﹣5. 2.请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家菲?热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念菲?热门给出这一解法,就把它叫做“热门定理”,请你依照菲?热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab. 3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步) =(x2﹣4x+4)2(第四步) 回答下列问题: (1)该同学第二步到第三步运用了因式分解的_________. A、提取公因式B.平方差公式 C、两数和的完全平方公式D.两数差的完全平方公式 (2)该同学因式分解的结果是否彻底_________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________. (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解. 4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数围)的整数值a,并且将其进行因式分解. 5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.

集合典型例题

1。集合得含义及其表示 (一)集合元素得互异性 1、已知,则集合中元素x所应满足得条件为 变式:已知集合,若,则实数得值为_______ 2。中三个元素可以构成一个三角形得三边长,那么此三角形可能就是 ①直角三角形②锐角三角形③钝角三角形④等腰三角形 (二)集合得表示方法 1. 用列举法表示下列集合 (1) __________________________ 变式:已知a,b,c为非零实数,则得值组成得集合为___ (2) ____ 变式1: 变式2: (3)集合用列举法表示集合B (4)已知集合M=,则集合M中得元素为 变式:已知集合M=,则集合M中得元素为 2。用描述法表示下列集合 (1)直角坐标系中坐标轴上得点_______________________________ 变式:直角坐标平面中一、三象限角平分线上得点______________ (2)能被3整除得整数_______________________、 3.已知集合,, (1)用列举法写出集合;(2)研究集合之间得包含或属于关系 4。命题(1) ;(2);(3);(4)表述正确得就是、 5、使用与与数集符号来替代下列自然语言:

(1)“255就是正整数” (2)“2得平方根不就是有理数” (3)“3、1416就是正有理数” (4)“-1就是整数” (5)“不就是实数” 6、用列举法表示下列集合: (1)不超过30得素数(2)五边形得对角线 (3)左右对称得大写英文字母(4)60得正约数 7。用描述法表示:若平面上所有得点组成集合, (1)平面上以为圆心,5为半径得圆上所有点得集合为_________ (2)说明下列集合得几何意义:; 8。当满足什么条件时,集合就是有限集?无限集?空集? 9、元素0、空集、、三者得区别? 10. 请用描述法写出一些集合,使它满足: (i)集合为单元素集,即中只含有一个元素; (ii)集合只含有两个元素; (iii)集合为空集 11.试用集合概念分析命题:先有鸡还就是先有鸡蛋? 解释:表述问题时把有关集合得元素说清楚,大有好处。先有鸡还就是先有鸡蛋?让我们运用集合概念来分析它。设地球上古往今来得鸡组成一个集合,孵出了最早得鸡得蛋算不算鸡蛋呢?这就是关键问题。设所有得鸡蛋组成集合,要确定得元素,就得立个标准,说定什么就是鸡蛋,一种定义方法就是:鸡生得蛋才叫鸡蛋;另一种定义方法就是:孵出了鸡得蛋与鸡生得蛋都叫鸡蛋。如果选择前一种定义,问题得答案只能就是先有鸡;选择后一种定义,答案当然就是先有鸡蛋。至于如何选择,不就是数学得任务,那就是生物学家得事。 (三)空集得性质 1.若?{x|x2≤a,a∈R},则实数a得取值范围就是________ 2、已知a就是实数,若集合{x| ax=1}就是任何集合得子集,则a得值就是_______.0?

集合知识点总结

集合知识点总结 Prepared on 22 November 2020

辅导讲义:集合与常用逻辑用语 1、集合:一定范围内某些确定的、不同的对象的全体构成一个集合。集合中的每一个对象称为该集合的元素。 集合的常用表示法:列举法、描述法。 集合元素的特征:确定性、互异性、无序性。 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为 A ? B ,或B ?A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。 即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集 注:空集是任何集合的子集。 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B 或B ?A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作 U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作 B A ?(读作“A 交B ”),即:B A ?=}{B x A x x ∈∈且,|。 B A ?=A B ?,B A ?B B A A ???,。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作 B A ?(读作“A 并B ”),即:B A ?=}{B x A x x ∈∈或,|。 B A ?=A B ?,?A B A ?,?B B A ?。 8、元素与集合的关系:有属于和不属于两种,集合与集合间的关系,用包含、真包含

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

因式分解--典型例题及经典习题

14.3 因式分解 典型例题 【例1】 下列各式由左边到右边的变形中,是因式分解的是( ). A .a (x +y )=ax +ay B .y 2-4y +4=y (y -4)+4 C .10a 2-5a =5a (2a -1) D .y 2-16+y =(y +4)(y -4)+y 【例2】 把多项式6a 3b 2-3a 2b 2-12a 2b 3分解因式时,应提取的公因式是( ). A .3a 2b B .3ab 2 C .3a 3b 3 D .3a 2b 2 【例3】 用提公因式法分解因式: (1)12x 2y -18xy 2-24x 3y 3; (2)5x 2-15x +5; (3)-27a 2b +9ab 2-18ab ; (4)2x (a -2b )-3y (2b -a )-4z (a -2b ). 用平方差公式分解因式 两个数的平方差,等于这两个数的和与这两个数的差的积.即a 2-b 2=(a +b )(a -b ). 【例4】 把下列多项式分解因式: (1)4x 2-9; (2)16m 2-9n 2; (3)a 3b -ab ; (4)(x +p )2-(x +q )2. 用完全平方公式分解因式 a 2+2a b +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2. 【例5】 把下列多项式分解因式: (1)x 2+14x +49; (2)(m +n )2-6(m +n )+9; (3)3ax 2+6axy +3ay 2; (4)-x 2-4y 2+4xy . 因式分解的一般步骤 一般步骤可概括为:一提、二套、三查. 【例6】 把下列各式分解因式: (1)18x 2y -50y 3; (2)ax 3y +axy 3-2ax 2y 2. 【例7】 下列各式能用完全平方公式分解因式的是( ). ①4x 2-4xy -y 2;②x 2+25x +125;③-1-a -a 24 ;④m 2n 2+4-4mn ;⑤a 2-2ab +4b 2;⑥x 2-8x +9. A .1个 B .2个 C .3个 D .4个

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q }, 其中a 0≠,A=B,求q 的值. 例2 设A={x∣2 x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2 a +4a -2,2-a },且A B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数

为…………………………………………………………………………( ) (A ) 1 (B )0 (C )1或0 (D ) 1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合 {}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 ( ) A.(0,2),(1,1) B.{(0,2),(1,1)} C. {1,2} D.{}2≤y y 集合与方程 例1、已知 {}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范 围。 例2、已知集合 (){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和, 如果φ≠B A ,求实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若 φ=B A ,求实数a 的值。

相关文档
最新文档