玻璃配合料的制备(掌握).

玻璃配合料的制备(掌握).
玻璃配合料的制备(掌握).

帯7章 R 合科制备rraj 玻璃组成的设计和确定 配合料的计算 配合料的制备 7. 1 玻璃组成的设计和碼定(熱恳) 设计依据—I 玻璃的物理和化学性质. 7.1 7.2 7.3 玻璃组成的表示 以组成玻璃的化合物的质童分数 依据 7.2 艮舍料的计募(MXt ) 以玻璃的组成和>5^料的化学成分为基础, 计算出熔化100kg 玻璃液所需各种原料的 用量,再算出每副配合料中,即500kg 或 1000kg 玻璃配合料各种原料的用童? 方法预算法和联立方程式法? ?先进行粗算 ?进行校正 -把计算结果换算成实际料单 参圾材P221 -225计算过程 作业 选择原料和设计浮法玻璃成分,进行配料 计算(下次上课时间)

I 步霖

fc 令44针耳就《屮*九个X 艺泰厳

(1) 纯碱(苦硝)挥发率

指纯碱中未参与反应而挥发、飞散量与总量 饗需散料纯碱挥般量50% 纯磺用量

是一个经验值,与加料方式、熔化方法、懐制 温度、纯截的特性寻有关.一般为0,2 - 3.5%

(2) 碳粉含率

由碳粉列入的固定破与芒硝引入的N a2SO4 之比?即 碳粉X C 含詈

碳粉含率= ——

X100%

芒硝X Na2SO4含量

生产上一般控制在3-5%

(3)芒硝含率

由芒对引入的Na2O 与芒硝和纯碱計入的 卿牡 一 X 100%

芒硝和纯碱引入的Na2O

一般掌握在5-8%

(4)萤石含率

由萤石引入的CaF2量与玻璃总量之比. 萤石含率H 萤石xCaF2 玻璃总量

一般在1 %以下

fc 令*Kt 耳竝翟屮*鬼个艺泰厳

X 100%

fc令*i针耳竝《申*九水X艺泰厳(5 )碎玻璃掺入率

指配合料中碎玻璃用量与配合料量之比

碎玻璃量

配合料的质量要求原料的运输和贮存原

料的加工处理配合料的称量配合料的泯合

配合料的输送与贮存配合料的质量检验与

粒化

碎玻璃樓入”生料量5玻璃童50%

一般控制在25-30%

7. 3 配令料的制备(喪如)

7.3.1

7.3.2

7.3.3

7,3.4

7,3.5

7.3.6

7,3.7

配合料的质■要求 必须具有正确性和稳定性 具有

一定的水份:用水润溟配合莉,加水童 随颗粒不同而不同.越细加水量越多.纯緘 配合料加水量3 - 5%,芒硝配合料加水量5 - 7%?

水温>359,否则,Na2C03将转化为

Na2C03.7H20t?Na2C03-10H20, 使配

合料产生胶结作用?

要有一定的颗粒组成:可减少配合料的分层 和提高泯合质量.纯緘的颗粒度应比石英大 一个筛号. 7,3」配合料的质■要求

4

具有一定的气体率:易于清和均化.一般 钠钙硅玻璃的气体率为16-20%. 血逸出气体量 P 体军 -------------- X 100% 配合料 5 必须渦合均匀:配合料混合不均匀,会使玻璃

产生结石、条纹,气泊等缺陷,易熔物较多的 还会侵蚀耐火材料.

卜-般玻璃制品对配合料均匀度要求 水不滚枷允

许误差小于士 0/1% 酸不溶物:允许

误差小于± 0J% 含瑕量;允许误差小

于士 0.6% 水分:允许误差小于土

0.6%

7.3,1 注意

7.3.2原料的运输和贮存

1 原料的运输

-原料在运输■进厂前,要经过有关部门的化验和鉴定.

?原料运输分厂内和厂外两科.运输时应尽童减少粉尘,不使原料彼此污染,要注意除铁.

2原料的储存

要满足一定的数量,考虑一定的储存期,

分块状、粉状、化工、有垂原料的储存.

「參曲届屛爱音I硅砂.砂岩、长石为1.8;

I各种原料务重I石灰石、白云石为1.7; 纯诚0

?9;硫酸钠1?0;

7. 3.3原料的加工处理

原料的加工处理包括破碎、粉碎.过筛等

1工艺流程

?单系统流程:各种矿物料共同使用一个破

碎、粉碎、过算系统?小型玻璃工厂

?多系统流程:每科原料各有一套破碎.粉碎、过筛系统. 大中型玻璃工厂

?混合系统:用量较多的原料单独为一个加工系统,用量小的性质相近的共用一个系统?大中

型玻璃工厂

?t?P228

微晶玻璃的制备方法与应用

X X X X 大学 材料制备原理课程论文 题目微晶玻璃的制备方法与应用 学院材料科学与工程学院 专业班级无机072 学生姓名 2010 年 6 月11 日

微晶玻璃的制备方法与应用 摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。本文来主要介绍微晶玻璃的制备方法及其应用。 关键词:微晶玻璃;制备;应用 1.引言 微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 2.制备方法 微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要的有熔融法、烧结法、溶胶—凝胶法、二次成型工艺、强韧化技术等。 2.1 熔融法 熔融后急冷,退火后在经一定的热处理制度进行成核和晶化以获得晶粒细小、含量多、结构均匀的微晶玻璃制品。热处理制度的确定是微晶玻璃生产的关键技术。作为初步的近似估计,最佳成核温度介于Tg 和比它高50℃的温度之间。晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。通常是25℃~50℃。微晶玻璃的理想热处理制度见图1。 图1 微晶玻璃的理想热处理制度 常用的晶核剂有TiO2,P2O5,ZrO2,CaO,CaF2,Cr2O3、硫化物、氟化物。晶核剂的选择与基础玻璃化学组成有关,也与期望析出的晶相种类有关。Stooky指出,良好的晶核剂应具备如下性能:(1)在玻璃熔融成形温度下,应具有良好的溶解性,在热处理时应具有较小的溶解性,并能降低成核的活化能。(2) 晶核剂质点扩散的活化能要尽量小,使之在玻

第3章玻璃配合料的制备.

一、玻躋成分的设计和确定 《一)玻璃成分设计原则: 1、根据组成、结构和性质的关系,要求设计的玻璃满足预定性能要求; 2、设计的组成能形成玻璃而析晶倾向小岸 3、设计的玻璃必须符合熔制.成形等工艺要求! 4、按设计生产的玻璃价格低、原料易得。 具体地 首先:根据玻璃制品的物理?化学性能和工艺性能,选择合适的氧化物系统,确定3?4种总fi达9 0 %左右的主要氧化物含*. 1这里.在利用相图或玻?形成区图选择组成点时.应当使组成点接【近低共烙点或相界找,远离析晶区,以降低玻璃的析晶倾向. ft后.还应当考虑加入适当的辅助原料如澄清剂、助熔剂等。 (二)玻璃成成分的设计和确定的过程 1、提出设计玻璃的性能要求: 根据玻璃制品使用要求,列出以下主要性能要求: 膨胀系数、软化点、热稳性、化稳性、机械强度、电学性质、光学性质等以及如熔制温度、成形温度、退火温度等工艺性能. 有关的一些参数可以参照国家标准,同类产品性能要求. 明确主要性能指标 第3章玻璃配合料的制备 此外还加入一些赋予玻璃必S性质而不使玻璃主要性质变差的氧化物,使其组成氧化物在5-6种以上.这a须结合各种爼化物的作用,以及双械效应、W反常、铝反常等知识。 2

Ml 4 2、拟定玻璃的组成 一般有两类情况J (1)对于玻璃新成分的确定 有关相图 玻璃形成区图 (2)对于已有成分作局部调整 首先:根据性能要求?参考己有成分,结合生产条件.调整玻 [璃中各氧化物的比例,拟定出原始组成; 然后按照有关性质计算公式算出主5性质,并与预期要求 ;对照,不符和要求时,反复调整组成,直至达到要求,最终拟 :定玻璃的组成? Ml 未达到要求 选择玻《组成点,拟定玻璃组成; 3 X 实验.测试.确定组成 配料 4实验 性能测试 I 组丿丄泄,投庄 中试 达到g 求

微晶玻璃

二硅酸锂微晶玻璃材料综述 何志龙-3112007045 (金属材料强度国家重点实验室, 西安交通大学材料科学与工程学院,西安710049) 摘要:微晶玻璃以其优异的力学、化学、生物等性能,在国防、航空、建筑、电子、光学、化工、机械及医疗等领域作为结构材料、技术材料、光学材料、电绝缘材料等而获得广泛应用,吸引了许多研究者的关注。本文在参考学习了诸多相关文献的基础上,对微晶玻璃材料的制备、性能、应用及研究进展进行了论述,列举了人们在该领域取得的重要研究进展,以及微晶玻璃材料领域存在的研究难题。 关键词:晶化,微晶玻璃,综述,非均匀成核 1 研究背景与意义 自从1957年,美国康宁公司著名玻璃化学家S.D.Stookey研制出第一种微晶玻璃以来,微晶玻璃就凭借其组分广泛、性能优异、品种繁多而著称。由于析出的晶粒尺寸可控,与界面结合强度高,抗弯强度可以达到200MPa以上,大量微晶玻璃体系涌现出来,它们的形成机制也得到大量深入研究。 微晶玻璃又称玻璃陶瓷,它是将某些特定组成的基础玻璃,在一定温度下进行控制晶化,制得的一种同时含有微晶相和玻璃相的多晶固体材料。在热处理过程中,基础玻璃内部产生晶核及晶体长大,因为析出的晶体非常小,被称作微晶玻璃。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或易产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1-0.5μm)和残余玻璃组成的复相;而玻璃则是非晶态或无定形体。微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2 微晶玻璃分类 按照基础玻璃的组成,微晶玻璃主要有以下四大类: (1)硅酸盐类微晶玻璃 由碱金属、碱土金属的硅酸盐晶相组成,主晶相有:透辉石、顽辉石、硅灰石、二硅酸锂等,这些晶相的种类影响微晶玻璃的性能。其中,最早研究的矿渣微晶玻璃和光敏微晶玻璃属此类。

可加工微晶玻璃

微晶玻璃陶瓷性能指标 可加工微晶玻璃陶瓷是以合成云母为主晶相的氟金云母微晶玻璃,主要成分是氟金云母(Mg3K[AlF2O(SiO3)3]).和以二氧化硅为主要成分的玻璃组成。材料类似MACOR。性能基本一致。 可加工陶瓷性能表:(Machinable Glass Ceramic)

可加工陶瓷,其定义为:可以用对金属加工的工具和器械对其进行钻孔、车削、铣削、攻丝等加工并获得精密尺寸的陶瓷材料。 我公司生产的可加工陶瓷MACRE㊣是一种多晶复相材料,是以合成云母微晶为主晶相的微晶玻璃。该材料又叫微晶玻璃陶瓷。这种材料颜色洁白,组织致密。微晶量占总体积的50%以上,微晶颗粒在5ν—20μ之间。它是七十年代出现的新材料,有一系列优良特性,有广泛的用途。可加工陶瓷有较高的机械强度,优良的介电性质和热性能,良好的化学稳定性。可加工陶瓷的最突出的特点是良好的可加工性。它可采用通用的金属加工设备进行车、铣、刨、锯、磨、切、攻丝等加工成形状复杂的各种零件,且能达到相当高的加工精度。不需要特殊的刀具和设备。 可加工陶瓷材料有优良的电绝缘性能(电击穿达到40KV/A每毫米),较高的机械强度,耐急冷急热性(耐零下200度到800度急冷急热,在焊接夹具、光学玻璃成型模具等方面广泛使用)。其耐腐蚀性也优于普通陶瓷,其优良耐腐蚀性使其应用于各类化工设备中,相对聚四氟乙烯,它更耐腐蚀,不老化,使用寿命长。可加工陶瓷真空放气率极低(广泛应用于各类真空设备、光伏真空镀膜设备等),另可加工陶瓷在电磁方面也性能优良,现已大规模用做各类线圈骨架,典型应用在导弹陀螺仪器线圈骨架,我公司已为二炮提供各类导弹陀螺仪线圈骨架十多年。获得多家军工单位一致好评。 可加工陶瓷最突出的特点在于它的可加工性,能满足高精度技术要求,无需开模,直接加工成型,大大缩减设计及加工周期。可加工陶瓷能灵活的应用于各种需要形状复杂、精度要求高、成型难度大、(如各种陶瓷薄壁、陶瓷螺纹等)的结构陶瓷件之场合。

微晶玻璃

微晶玻璃 摘要:本文介绍了微晶玻璃与普通玻璃和陶瓷的区别,通过分析组成将其分类。 同时描述了微晶玻璃的制备,性质,应用,浅析其发展趋势。 关键词:微晶玻璃组成制备性能应用 Abstract:This paper introduces the difference between microcrystalline glass and common glass and ceramics. Through the analysis of composition classified microcrystalline glass. At the same time, also describe microcrystalline glass’s preparation, property and application. Analysisthe trend of its development. Keywords: Microcrystalline glass preparation property application trend 1 前言 微晶玻璃又称微晶玉石或陶瓷玻璃,是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。但晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的[1]。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2分类及其组成 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等 晶玻璃的组成在很大程度上决定其结构和性能。按照化学组成微晶玻璃主要分为四类:硅酸盐微晶玻璃,铝硅酸盐微晶玻璃,氟硅酸盐微晶玻璃,磷酸盐微晶玻璃。 2.1 硅酸盐微晶玻璃 简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。研究最早的光敏微晶玻璃和矿渣微晶玻璃属于 这类微晶玻璃。光敏微晶玻璃中析出的主要晶相为二硅酸锂(Li 2Si 2 O 5 ),这种晶 体具有沿某些晶面或晶格方向生长而成的树枝状形貌,实质上是一种骨架结构。

玻璃配合料的制备(掌握).

帯7章 R 合科制备rraj 玻璃组成的设计和确定 配合料的计算 配合料的制备 7. 1 玻璃组成的设计和碼定(熱恳) 设计依据—I 玻璃的物理和化学性质. 7.1 7.2 7.3 玻璃组成的表示 以组成玻璃的化合物的质童分数 依据 7.2 艮舍料的计募(MXt ) 以玻璃的组成和>5^料的化学成分为基础, 计算出熔化100kg 玻璃液所需各种原料的 用量,再算出每副配合料中,即500kg 或 1000kg 玻璃配合料各种原料的用童? 方法预算法和联立方程式法? ?先进行粗算 ?进行校正 -把计算结果换算成实际料单 参圾材P221 -225计算过程 作业 选择原料和设计浮法玻璃成分,进行配料 计算(下次上课时间) I 步霖

fc 令44针耳就《屮*九个X 艺泰厳 (1) 纯碱(苦硝)挥发率 指纯碱中未参与反应而挥发、飞散量与总量 饗需散料纯碱挥般量50% 纯磺用量 是一个经验值,与加料方式、熔化方法、懐制 温度、纯截的特性寻有关.一般为0,2 - 3.5% (2) 碳粉含率 由碳粉列入的固定破与芒硝引入的N a2SO4 之比?即 碳粉X C 含詈 碳粉含率= —— X100% 芒硝X Na2SO4含量 生产上一般控制在3-5% (3)芒硝含率 由芒对引入的Na2O 与芒硝和纯碱計入的 卿牡 一 X 100% 芒硝和纯碱引入的Na2O 一般掌握在5-8% (4)萤石含率 由萤石引入的CaF2量与玻璃总量之比. 萤石含率H 萤石xCaF2 玻璃总量 一般在1 %以下 fc 令*Kt 耳竝翟屮*鬼个艺泰厳 X 100%

fc令*i针耳竝《申*九水X艺泰厳(5 )碎玻璃掺入率 指配合料中碎玻璃用量与配合料量之比 碎玻璃量

微晶玻璃

海南大学2012-2013学年度第2学期《功能材料学》论文 题目:微晶玻璃的光学应用 姓名: 学号: 20100607310014 学院:材料与化工学院 专业班级: 10理科实验班

微晶玻璃的光学应用 刘涛 20100607310014 摘要:微晶玻璃也叫做玻璃陶瓷,是玻璃经过晶化处理得到的部分结晶态的物质,它兼具玻璃和陶瓷的优良性质,比陶瓷的亮度高,比玻璃韧性强,因而广泛用于建筑、航天等各个领域。中国稀土资源丰富,由于稀土离子特殊的4f电子层结构使其具有许多优越的性能,目前稀土发光材料引起了全世界的广泛关注。微晶玻璃的高透过性和优越的机械性能使其能够做为稀土元素的良好基质,制成的稀土掺杂发光微晶玻璃广泛应用于荧光设备、激光、波导激光、上转换材料等领域,具有重要的现实意义。 关键词:微晶玻璃稀土元素光学应用 一、固体发光过程 发光是物体不经过热阶段而将其内部以某种方式吸收的能量直接转换为非平衡辐射的现象。当物质受到外界能量(如光照、外加电场或电子束轰击等)的激发后,吸收外界能量而处于激发态,它在跃迁返回基态的过程中,吸收的能量会通过光或热的形式释放出来,如果这部分能量以光的电磁波形式辐射出来,即为发光。图1所示即为发光的过程[1]: 图1:发光的过程示意图 激活剂A吸收激发光的能量被激发(EXC),由基态A变为激发态A*,然后又回到基态(R),并发出光(EM)[2]。 二、发光材料的应用及稀土掺杂微晶玻璃的优点

发光材料在人们日常生活中有着重要的应用,从照明、显像到医学、放射学等领域,无不存在着发光材料的身影。在发光材料的发展中,稀土掺杂的发光材料格外引人注目,由于稀土离子特殊的4f电子层结构,决定其具有许多优越的性能:物理化学性质稳定、耐高温、可承受大功率电子束、高能辐射和强紫外光的作用;荧光寿命宽泛,可以跨越纳秒到毫秒6个数量级;发光颜色度纯、转换效率高、发射波长分布区域宽等。这些优异的性能使得稀土发光材料广泛应用于荧光设备、激光、波导激光、上转换材料等领域[3]。 稀土掺杂的基质材料一般为晶体,也可以是非晶态玻璃材料,晶体和玻璃作为稀土掺杂发光材料的基质各有优缺点,发光玻璃保证了发光光材料的稳定性,但是与同组成的晶体材料相比,发光玻璃的发光强度弱,转换效率也比较低[4],而微晶玻璃作为一种晶态和非晶态共存的材料,兼具了晶体发光材料优异的发光性能及玻璃材料的优异特性,其内部晶相能够保持发光晶体材料原有的发光性能,其熔制时的液体状态亦能够保证其均匀性,微晶玻璃亦具有良好的稳定性及可加工性,具有重要的研究价值。 三、微晶玻璃的分类、制备及显微结构 1、微晶玻璃的分类 按照玻璃陶瓷的化学组成来讲,玻璃陶瓷分为四大类:硅酸盐玻璃陶瓷、铝硅酸盐玻璃陶瓷、氟硅酸盐玻璃陶瓷、磷酸盐玻璃陶瓷[12] 。 1.1 硅酸盐玻璃陶瓷 硅酸盐玻璃陶瓷主要是由碱金属和碱土金属两部分组成,主晶相为硅酸盐,晶相可以决定玻璃陶瓷的性能[13]。硅酸盐玻璃陶瓷可分为两种:光敏玻璃陶瓷和 矿渣玻璃陶瓷。光敏玻璃陶瓷是以二硅酸锂(Li 2Si 2 O 5 )为主晶相的,这种晶体是 一种骨架结构[14],形貌像树枝,因为它的晶体生长方向是沿某些晶面,或者晶格 方向。而矿渣玻璃陶瓷主晶相则为硅灰石(CaSiO 3)和透辉石[Ca Mg(SiO 3 ) 2 ]。透 辉石因为其结构的特殊性,比硅灰石更加耐磨,耐腐烛,强度也更高。 1.2 铝硅酸盐玻璃陶瓷 铝硅酸盐玻璃陶瓷包括Li 2O—Al 2 O 3 —SiO 2 系统、MgO—Al 2 O 3 —SiO 2 系统、Na 2 O

微晶玻璃简述

微晶玻璃简要概述 刘帅聪 (无机非金属材料工程1301班,湖南工学院材料与化学工程学院 湖南衡阳 421002) 摘要 微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。 关键词微晶玻璃特点制备工艺应用发展 Brief Introduction of Glass - Ceramics Shuai Cong Liu (Inorganic Nonmetallic Materials Engineering1301class,Hunan Institute of TechnologyDepartment of Material and Chemical Engineering Hunan Hengyang 421002) Abstract: Crystalline glass is a composite solid material containing a large amount of microcrystals and vitreous bodies obtained by controlling crystallization during the heating process by the base glass or other materials. Because of its high mechanical strength, adjustable thermal expansion, good thermal shock resistance, chemical resistance, low dielectric loss, good electrical insulation properties such as superior performance, has been widely used in many fields. Key words: glass - ceramics, characteristics, preparation technology, application development

玻璃配方计算和配合料制备

实验三玻璃配方计算和配合料制备 1 目的意义 1.1 意义 配方计算是根据原料化学成分和所制备的玻璃成分等计算各种原料的需要料。配合料制备就是按照配方配制并加工原料,使之符合材料高温烧制要求。 配方计算和配合料制备是玻璃乃至各种无机非金属材料新品种研制和生产必不可少的工艺过程。配方计算也是对后续玻璃熔制工艺参数的预测,配合料制备则直接影响玻璃的熔制效果和成品性能。 1.2 目的 (1)进一步掌握配方计算的方法; (2)初步掌握配合料的制备方法和步骤; (3)了解影响配合料均一性的因素。 2 实验原理 2.1 玻璃成分的设计 首先,要确定玻璃的物理化学性质及工艺性能,并依此选择能形成玻璃的氧化物系统,确定决定玻璃主要性质的氧化物,然后确定各氧化物的含量。玻璃系统一般为三组分或四组分,其主要氧化物的总量往往要达到90%(质量)。此外,为了改善玻璃某些性能还要适当加人一些既不使玻璃的主要性质变坏而同时使玻璃具有其他必要性质的氧化物。因此,大部分工业玻璃都是五六个组分以上。 相图和玻璃形成区域图可作为确定玻璃成分的依据或参考。在应用相图时,如果查阅三元相图,为使玻璃有较小的析晶倾向,或使玻璃的熔制温度降低,成分上就应当趋向于取多组分,应选取的成分应尽量接近相图的共熔点或相界线。在应用玻璃形成区域图时,应当选择离开析晶区与玻璃形成区分界线较远的组成点,使成分具有较低的析晶倾向。 为使设计的玻璃成分能在工艺实践中实施,即能进行熔制、成型等工序,必须要加入一定量的促进熔制,调整料性的氧化物。这些氧化物用量不多,但工艺上却不可少。同时还要考虑选用适当的澄清剂。在制造有色玻璃时,还须考虑基础玻璃对着色的影响。 以上各点是相互联系的,设计时要综合考虑。当然,要确定一种优良配方不是一件简单的工作,实际上,为成功地设计一种具有实用意义,符合预定物化性质和工艺性能的玻璃成分,必须经过多次熔制实践和性能测定,对成分进行多次校正。 表2-1给出两种易熔的Na2O-CaO-SiO2系统玻璃配方,可根据自己的要求进行修改。 表3-1易熔玻璃的成分示例 配方编号SiO CaO MgO A12O3Na2O 备注 2 l 71.5 5.5 1 3 19 氧化物质量百

微晶玻璃 第一章

1 绪论 1.1 微晶玻璃的定义 1.1.1 定义及特性 微晶玻璃(glass-ceramic)又称玻璃陶瓷,是将特定组成的基础玻璃,在加热过程中通过控制晶化而制得的一类含有大量微晶相及玻璃相的多晶固体材料。 玻璃是一种非晶态固体,从热力学观点看,它是一种亚稳态,较之晶态具有较高的内能,在一定的条件下,可转变为结晶态。从动力学观点看,玻璃熔体在冷却过程中,黏度的快速增加抑制了晶核的形成和长大,使其难以转变为晶态。微晶玻璃就是人们充分利用玻璃在热力学上的有利条件而获得的新材料。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 尽管微晶玻璃的结构、性能及生产方法与玻璃和陶瓷都有一定的区别,但是微晶玻璃既有玻璃的基本性能,又具有陶瓷的多相特征,集中了玻璃和陶瓷的特点,成为一类独特的新型材料。 微晶玻璃具有很多优异的性能,其性能指标往往优于同类玻璃和陶瓷。如热膨胀系数可在很大范围内调整(甚至可以制得零膨胀甚至是负膨胀的微晶玻璃);机械强度高;硬度大,耐磨性能好;具有良好的化学稳定性和热稳定性,能适应恶劣的使用环境;软化温度高,即使在高温环境下也能保持较高的机械强度;电绝缘性能优良,介电损耗小、介电常数稳定;与相同力学性能的金属材料相比,其密度小但质地致密,不透水、不透气等。并且微晶玻璃还可以通过组成的设计来获取特殊的光学、电学、磁学、热学和生物等功能,从而可作为各种技术材料、结构材料或其他特殊材料而获得广泛的应用。 微晶玻璃的性能主要决定于微晶相的种类、晶粒尺寸和数量、残余玻璃相的性质和数量。以上诸因素,又取决于原始玻璃的组成及热处理制度。热处理制度不但决定微晶体的尺寸和数量,而且在某些系统中导致主晶相的变化,从而使材料性能发生显著变化。另外,晶核剂的使用是否适当,对玻璃的微晶化也起着关键作用。微晶玻璃的原始组成不同,其主晶相的种类不同,如硅灰石、β-石英、β-锂辉石、氟金云母、尖晶石等。因此通过调整基础玻璃成分和工艺制度,就可以制得各种符合性能要求的微晶玻璃。 1.1.2 微晶玻璃的种类 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等。表1-1列出了常用微晶玻璃的基础组成、主晶相及其主要特性。 表1-1常用微晶玻璃的组成、主晶相及主要特性

1.3.1阅读文献资料—5.微晶玻璃的制备与应用重点

微晶玻璃的制备与应用 【摘要】玻璃陶瓷(glass-ceramics)又称微晶玻璃。是综合玻璃,玻璃陶瓷和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而玻璃陶瓷像陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,玻璃陶瓷比陶瓷的亮度高,比玻璃韧性强。 【关键字】玻璃陶瓷;可切削玻璃陶瓷;分相;结晶化;晶核剂 微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 1制备方法 微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要的有熔融法、烧结法、溶胶—凝胶法、二次成型工艺、强韧化技术等。 1.1熔融法 熔融后急冷,退火后在经一定的热处理制度进行成核和晶化以获得晶粒细小、含量多、结构均匀的微晶玻璃制品。热处理制度的确定是微晶玻璃生产的关键技术。作为初步的近似估计,最佳成核温度介于Tg 和比它高50℃的温度之间。晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。通常是25℃~50℃。 常用的晶核剂有TiO2,P2O5,ZrO2,CaO,CaF2,Cr2O3、硫化物、氟化物。晶核剂的选择与基础玻璃化学组成有关,也与期望析出的晶相种类有关。Stooky指出,良好的晶核剂应具备如下性能:(1)在玻璃熔融成形温度下,应具有良好的溶解性,在热处理时应具有较小的溶解性,并能降低成核的活化能。(2) 晶核剂质点扩散的活化能要尽量小,使之在玻璃中易与扩散。(3) 晶核剂组分和初晶相之间的界面张力愈小,它们之间的晶格参数之差愈小(σ<±15%),成核愈容易。复合晶核剂可以起到比单一晶核剂更好核化效果,它主要是起到双碱效应。 熔融法制备微晶玻璃可采用任何一种玻璃的成形方法,如:压制、浇注、吹制、拉制,便于生产形状复杂的制品和机械化生产,但也存在一些问题有待于解决:(1) 熔制温度过高,通常都在1400~1600℃,能耗大。(2) 热处理制度在现实生产中难于控制操纵。(3) 晶化温度高,时间长,现实生产中难于实现。 1.2烧结法 烧结法制备微晶玻璃材料的基本工艺为将一定组分的配合料,投入到玻璃熔窑当中,在高温下使配合料熔化、澄清、均化、冷却,然后,将合格的玻璃液导入冷水中,使其水淬成

实验八玻璃材料的制备与性能测试

玻璃材料的制备与性 能测试 学校:吉林化工学院 班级:材化1001 姓名:+++++ 学号:+++++++ 指导教师:陈+++

题目:建筑装饰用微晶玻璃的研制 文献综述 摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。本文来主要介绍微晶玻璃的制备方法及其应用。 关键词:微晶玻璃;制备;应用 前言 微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途

的21世纪的新型材料。微晶玻璃是由特定组成的基础玻璃在一定温度下控制结晶而制得的晶粒细小并均匀分布于玻璃体中的多晶复合材料。与玻璃、陶瓷相比较,其结构和性质均不相同, 微晶玻璃的性质由其中的结晶相矿物组成与玻璃的化学组成及其数量决定的[ 1 ]。因此,它集中了玻璃、陶瓷两者的特点,故又称之为玻璃陶瓷或结晶化玻璃。 一、微晶玻璃在国内外应用和市场情况 建筑微晶玻璃自1959年试验成功后,在世界各国得到了飞速发展。在欧美,最先作为建筑装饰材料而进行工业化生产的是矿渣微晶玻璃和岩石微晶玻璃[ 2 ]。前苏联于20世纪60年代中期就报导了炉渣微晶玻璃作为建材已实用化; 捷克斯洛伐克于20世纪70年代初,通过熔融铸造玄武岩,制成了耐磨性地板材料;美国于20世纪70年代初生产出了建筑岩石微晶玻璃装饰板。在亚洲,日本是开发建筑用微晶玻璃最早的国家,主要采用熔融烧结法进行建筑用微晶玻璃人造大理石的生产,生产技术和产品质量都代表了微晶玻璃装饰板的世界先进水平。韩国紧跟日本之后生产出了高档微晶玻璃装饰板。我国对微晶玻璃装饰材料的研制开发始于20世纪70 年代中期, 发展较快, 现已初具规模。在研发初期,大多采用浇注法整体晶化的方法来生产微晶玻璃板, 但发现热处理过程中易出现变形和开裂, 产品质量很不稳定, 生产成本高[ 3 ]。20世纪90年代初,在借鉴国外发达国家( 主要是日本)的先进经验的基础上, 采用熔融烧结法研5 1宝钢技术2010年第制开发的微晶玻璃装饰板生产技术取得了突破性进展,成功地解决

XRD在微晶玻璃方面的应用详解

XRD在微晶玻璃方面的应用 (华南理工大学材料科学与工程学院,广州) 摘要:本文通过综述了X射线衍射在微晶玻璃方面的应用,突出了XRD在微晶玻璃 领域的重要性和有效性。 关键字:X射线衍射;微晶玻璃;应用 Abstract:This article through summarized the X-ray diffraction in the glass ceramics aspect application, has highlighted XRD in the glass ceramics domain importance and the validity. Keywords:the X-ray diffraction,glass ceramics,application 0 引言 微晶玻璃,又名玻璃陶瓷,是将加有成核剂(个别也可不加) 的特定组成的基础玻璃,经热处理工艺后所得的微晶体和玻璃体均匀分布的复合材料。微晶玻璃兼有玻璃和陶瓷的优点,具有许多常规材料难以达到的优异性能。它采用一种与普通玻璃相近的制造工艺,但其特性却与玻璃迥然不同。玻璃是一种具有无规则结构的非晶态固体,从热力学观点出发,它是一种亚稳态。与结晶态相比,它具有较高的内能,在一定的条件下可以转变为结晶态。从动力学观点出发,玻璃熔体在冷却过程中,粘度的快速增加抑制了晶核形成和长大,使玻璃体来不及转变为结晶体。微晶玻璃就是人们充分利用玻璃在热力学上的有利条件,而又克服了它在动力学上的不利条件而获得的新型材料 【1】 。

微晶玻璃的机械强度高、耐磨耐腐蚀、抗氧化性好、电绝缘性能优良、热膨胀系数可调,因而被广泛地应用于国防、航天、电子电力、建筑装饰和生物医学等各领域【20-22】。但由于微晶玻璃的组成有很大的选择范围,而且即使组成相同,而采用不同的晶核剂或者不同的热处理制度,所制成的微晶玻璃在性能上也存在着很大的差异【1】。了解微晶玻璃的结构和性能,对于微晶玻璃的使用方向有着重要的影响。 本文通过综述XRD在微晶玻璃各个领域的运用,初步了解到,利用XRD来鉴定微晶玻璃的晶相及其含量,可以判断在不同的机理下,析出的晶相种类和晶化的程度,进而制造出不同类型的优良的微晶玻璃,并将其运用到更广的领域。同时了解到,在利用废体矿物制造微晶玻璃方面有着良好的前景,一方面能节约资源的使用和倡导绿色环保;另一方面,能降低生产成本,使微晶玻璃更加广泛用于到生产生活中。 1应用 1.1在粉煤灰和煤矸石制造双层微晶玻璃研究中的应用我国每年排放大量的粉煤灰和煤矸石,利用粉煤灰和煤矸石制微晶玻璃是有效利用采用烧结法烧制基层以煤炭固体废物为主要原料, 面层以矿物化工材料为原料的双层微晶玻璃来丰富产品颜色,通过对煤矸石和粉煤灰进行化学全分析及X射线衍射分析, 确定粉煤灰

透明微晶玻璃的研究现状及展望

透明微晶玻璃的研究现状及展望 学院:材料科学与工程学院 班级:无机14-4班 人员:胡靖东(1402020407) 都大洋(1402020404) 滕宏远(1302020416) 李敬瑶(09)

透明微晶玻璃的研究现状及展望 摘要 摘要透明微晶玻璃是一种具有优良热、力、光及化学性能的新型功能材料,在国防尖端技术、微电子技术和化学化工等领域有着广阔的应用前景。介绍了透明微晶玻璃的光学原理、制备条件、主要组成体系及其制备工艺、应用领域,并展望了透明微晶玻璃的发展前景。 透明微晶玻璃是通过对某些特定组成的基础玻璃在一定温度下进行受控晶化而得到的一类既含有大量微晶体又含有残余玻璃相的新型材料。它具有能透可见光、机械强度高、电绝缘性能优良、介电常数稳定、耐磨、耐腐蚀,热膨胀系数可调等特性,其性能指标优于同类玻璃和陶瓷。透明微晶玻璃是通过组成的设计来获取特殊的光学、电学、热学、磁学等功能,其优异的性能使这种材料在航空航天、电子、机械、化工、激光技术等领域得到广泛的应用,在今后相当长的时期内将成为材料科学与工程领域研究的热点之一。 关键词:透光率; 微晶玻璃; 光学原理; 玻璃

1透明微晶玻璃的研究历史与现状 微晶玻璃的发展历史大致可以分为3个阶段:第1阶段为20世纪50年代末期至70年代中期,以低膨胀微晶玻璃的研究为主,并获得了透明微晶玻璃;第2阶段是20世纪70年代中期到80年代中期,开发了与金属类似的具有可切削加 工的微晶玻璃;第3个阶段是20世纪80年代中期至今,结构更加复杂的多相微晶玻璃得到广泛研究。 对微晶玻璃的尝试性研究可以追溯到1739年,Reaumur从碳酸钙一石灰一氧化硅玻璃制得受表面晶化机制所支配的多晶材料,但因材料很脆而未能获得实际应用200多年后,美国康宁公司研制出光敏微晶玻璃,并申请了第1项微晶玻璃专利1925年Tamman对包括无机玻璃在内的过冷液体的晶化进行了研究,他认为成核速率与晶体长大速度是影响玻璃结晶的2个重要因素,选择最优的成核温度是生产微晶玻璃的重要措施20世纪50年代,Stookey对微晶玻璃进行了大量的研究,推出了以TiO2为晶核剂的范围很广的玻璃组成,发展了微晶玻璃理论[3],1967年Beall等研究出了一种有效控制析晶的方法,采用这种方法可在硅铝铿镁锌系统玻璃中析出尺寸小于100nm的价石英固熔体,且所制备的微晶玻璃具有很小的膨胀系数和很高的光学透过率。 20世纪70年代,美国通用电器公司制成了氧化忆透明陶瓷[4],氧化忆是立方晶系晶体,具有光学各向同性的性质山于氧化忆陶瓷在宽的频率范围内尤其是在红外区内具有很高的光学透光率,因此这种材料被作为各种检测窗口同时山于其具有高的耐火度,可用作高温炉的观察窗以及高温环境条件下所应用的透镜此外,氧化忆透明陶瓷还可用于红外发生器管、天线罩等该时期透明微晶玻璃的典型代表是德国Schott公司所研发的发热Zerodur透明微晶玻璃,其具有特别优异的性能,包括接近于0的热膨胀系数、良好的热稳定性、优异的光学均匀性、良好的可机械加工性和高的化学稳定性等1980年美国的Corning公司和Dentsply牙科公司联合进行了齿冠修复用微晶玻璃材料的基础研究和临床应用研究,并开发出商品名为Dicor的以八硅云母为主晶相的半透明齿冠产品20世纪80年代初,美国的CoorsPorcelain公司和Raytheon公司在美国国防部的大力支持下,成功地制备出了性能良好的热压尖晶石透明陶瓷材料。该材料在紫外、可见与红外光区域都具有良好的光学透过率,其耐磨损、耐腐蚀、耐高温、抗冲击、硬度和抗弯强度较高,同时具有十分优良的电绝缘性能以及电化学稳定性,在导弹头罩、潜艇、坦克的观察窗和各种高温高压设备观察窗等领域得到广泛应用。 1993年Wang等报道了第1块氟氧化物微晶玻璃,获得了具有荧石结构的透明微晶玻璃1995年Hirao等研制出了含β-PbF2微晶的GeO2-PbO-10PbF2系透明微晶玻璃,但这种材料不太稳定。Sngimoto等随后的研究工作表明,β-PbF2能够沉淀在50SiO2-30PbF2-10ZnF2-10EuF中形成透明微晶玻璃,使材料的稳定性得

新工艺制备微晶玻璃

尾矿微晶玻璃制备新工艺 利用尾矿制作微晶玻璃国内外已进行了大量研究,目前制作尾矿微晶玻璃装饰板的方法主要有压延法、浇铸法和烧结法。压延法为前苏联在20世纪70年代所创,国内技术还不成熟,生产中析晶难以控制,板材炸裂严重,成品率低。浇铸法是将熔化澄清好的玻璃液浇注在模具上,再置于晶化炉中晶化和退火处理。国内尚无厂家采用此法生产。浇铸法对模具质量要求高,生产效率,成品率低,生产大规格板材困难,对某些异形板的生产有一定优势。烧结法为日本首创,是将熔融玻璃液水淬而得颗粒料与晶化分成二次烧成。它将玻璃工艺、陶瓷工艺、石材加工工艺有机“融合”,目前国内已形成规模和效益,占整个建筑装饰微晶玻璃市场99%以上的企业均采用烧结法生产工艺。烧结法目前最大的问题是表面层致密化深度浅(2mm左右),内部气孔难以排除,板材容易变形(尤其是大规格)。尽管国内许多学者对上述问题进行了大量研究,但至今仍未得到解决。 综上所述,现有三种制作尾矿微晶玻璃板的方法都存在不同缺陷。比较而言,烧结法进行了工业化生产,技术相对成熟,目前尾矿微晶玻璃的生产绝大部分采用烧结法。本研究在充分吸收熔融浇铸法和烧结法优点的基础上,提出一种制作尾矿微晶玻璃板的新方法———碎粒压延法,是通过控制水淬玻璃的颗粒级配及颗粒加入量生产微晶玻璃的工艺方法。 实验过程 微晶玻璃主要原料为宜春钽铌矿选矿时产生的尾矿。钽铌尾矿的化学成分和粒度组成见表 1和表 2。 钽铌尾矿的主要矿物组成为钠长石、锂云母和高岭土。由表 1可见, 钽铌尾矿主要化学成分为 SiO2 和 A l2O3 ,另外还含有一定量的 K2O 、Na2O 和 Li2 O,这些碱金属氧化物的存在可降低玻璃熔化温度和降低玻璃粘度, 没有发现 C aO,且 Fe2 O3 含量很低,为微晶玻璃的制作提供了有利条件。由表 2可见,粒度小于 0. 1mm 的颗粒占 32. 25%, 0. 1 ~ 0. 56mm 的颗粒占 67. 75%,经过简单过筛处理后可直接应用。

玻璃配合料分析实验标准

1 总则 1.1 所用分析天平应精确至0.000lg,天平与砝码应定期进行检定。称取试样时读数应 精确至0.0001g。“恒重”系指连续两次称重之差不大于0.0002g。 1.2 所用仪器和量器应经过校正。 1.3 分析试样应于烘箱中在105- 110℃烘干1h以上,然后放入干燥器中,冷却至室温, 进行称量。 1.4 分析用水,应为蒸馏水或去离子水;所用试剂应为分析纯或优级纯;用于标定溶液 浓度的试剂应为基准试剂。对水和试剂应做空白试验。 1.5 标准中试剂的浓度采用下列表示法: 1.5.1 当直接用名称表示酸和氧氧化铵时,系指符合下列百分浓度的浓试剂: 试剂名称试剂浓度,% 盐酸36- 38 氢氟酸40以上 硝酸65- 68 高氯酸70- 72 硫酸95- 98 氢氧化铵25- 28 1.5.2 被两释的酸和氢氧化铵浓度以如下的形式表示:如盐酸(5+95),系指5份 体积的浓盐酸(36- 38%)加95份体积的水配成之溶液。 1.5.3 固体试剂配制的溶液浓度用重量/体积百分浓度表示(作杯准溶液时除外)。 例如:20%氢氧化钾是指每20g氢氧化钾溶于100ml水而制成之溶液。在没有特别指出时,均指水溶液。 1.6 对光度测量的参比液作如下说明: 1.6.1制作标准曲线时所用“试剂空白溶液”指第一只容量瓶中不含待测氧化物之溶 液。 1.6.2 试样分析时所用“试剂空白溶液”指按试样测定操作不含试祥所得之溶液。 2 试样的制备 取来的样品必须混合均匀,并应能代表平均组成,没有外来杂质混入。将此样品经过缩分,最后得到约20g试样。在玛瑙乳钵中研磨至全部通过孔径75μm筛,然后装于称量瓶中备用。

微晶玻璃生产工艺设计

铁尾矿微晶玻璃生产工艺 1.微晶玻璃概述 微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。因其可用矿石、工业尾矿、冶金矿渣、粉煤灰、煤矸石等作为主要生产原料,且生产过程中无污染,产品本身无放射性污染,故又被称为环保产品或绿色材料。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优於天石材和陶瓷,可用於建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 2.利用铁尾矿制备微晶玻璃生产工艺 2.1生产原料及设备 生产原料包括:铁矿尾矿(铁尾矿)、方解石、氧化铝、菱镁矿、纯碱、硼酸、碳酸钡等。仪器设备采用LCT-2型差热分析仪、日立S-450扫描电镜、D/MAX-3C 型X衍射仪、EDAX一9100型能谱分析仪、KZJ5000- l型电动抗折仪等。 2.1.1铁尾矿形貌及成分 铁矿尾矿颜色呈青白色,粒度较细,颗粒小于40目,可以清晰观察到尾矿中含有的晶莹洁白的石英颗粒,尾矿中泥土含量较少,是理想砂质尾矿。该铁矿尾矿经扫描电镜观察及能谱分析,其尾矿形貌特征见图l,能谱图见图2,成分检测结果见表1。 图1 铁矿尾矿形貌特征图2 铁矿尾矿能谱图

相关文档
最新文档