第三章声波测井分析

第三章声波测井分析
第三章声波测井分析

课时教学实施方案

教案

第三章声波测井

声波测井是通过测量井壁介质的声学性质来判断井壁地层的地质特性及井眼工程状况的一类测井方法,包括声速测井、声幅测井、声波全波列测井等多种测井方法。

声波在介质中的传播特性主要指声速、声幅和频率特性。

第一节井内声波的发射、传播和接收

一、井内声波的发射和接收

声波是机械波,是机械振动在媒质中的传播过程。

人耳能听到的声波频率20Hz-20KHz,频率〈20HZ为次声波,频率〉20KHZ 为超声波,声波测井使用的频率为15-30KHz,所以又称为超声波测井。

声波测井首先要在井内产生人工声场,所以需要声波发射器,要接收声波就需要声波接收器,接收器接收到得为声波的波形。

二、滑行纵波和滑行横波

1.基本概念和性质

纵波(压缩波或P波):介质质点的振动方向与波的传播方向一致。弹性体的小体积元体积改变,而边角关系不变。

横波(剪切波或S波):介质质点的振动方向与波传播方向垂直的波。特点:弹性体的小体积元体积不变,而边角关系发生变化。

由于泥浆只能发生体积形变,不能发生剪切形变,它只能传播纵波不能传播横波,所以置于井内泥浆中的声波测井换能器发射或接收的声波都是纵波。

井眼穿过的各种岩石,虽然大多数有一定孔隙,孔隙内有流体,但其主体是互相紧密相连的固体颗粒,整体为固体介质。它们不但能发生体积形变还能发生剪切形变,所以既能传播纵波又能传播横波。

介质的波阻抗是声速与密度的乘积,泥浆与地层岩石的波阻抗相差较大,形成明显分界面,声波在井壁上要发生反射和折射。因为泥浆不能传播横波,所以井内没有反射横波

2.声波的反射和折射定理

2

2

1

1

sin

sin

sin

v

v

v

θ

θ

θ

=

=

当v1,v2一定时,↑

↑→

2

θ

θ,如果v2>v1,当θ2=90o,此时折射波以v2速度沿界面传播,称为滑行波。

滑行波:声波测井将在井壁地层内沿井壁滑行的折射波称为滑行波。

临界角:产生滑行波的入射角称为临界角。

产生滑行纵波的入射角称为第一临界角ip,产生滑行横波的入射角称为第二临界角is。

只有岩层纵波速度大于泥浆纵波速度时,才能产生滑行纵波;只有岩层横波速度大于泥浆纵波速度时,才能产生滑行横波。

滑行波

3.漏泄模式波

地震上认为是透过很薄的折射层的首波(P 波),测井上研究很少。 目前认为它是大于第一临界角的入射波产生的全反射P 波与井壁地层相互作用产生的沿井壁在地层中传播的诱导波。

其质点运动的轨迹也是椭圆形,长轴在传播方向上,可看成是纵波与横波合成和以纵波为主要成分的波。

漏泄模式波的幅度对岩石泊松比有一定依赖性,随泊松比增加而增加

第二节 声波速度(纵波)测井

声波速度测井是测量滑行纵波在井壁地层中传播速度的测井方法,简称声速测井。

滑行波的产生:Vp>Vm ;发射探头有方向特性,保证各种地层都有以临界角入射的波。

一、滑行纵波为首波的条件

接收探头能接收到的波(传播路径见右图): (1)直达波 (2)反射波

(3)折射波(滑行纵波) 直达波TR :1/1V L t =

反射波TBR: 12

2222V L a t ?

?

?

??+=

滑行波TACR:

P

C P

C C AC TA V V V a L V a t t t 11sin tan 2cos 22=

?-+

=+=θθθ

费尔玛时间最小原理:

声波以临界角入射到两种介质的分界面上后,沿边界以地层速度滑行,以临界角方向折回泥浆到达接受器的路径所用时间最短。

声速测井是接收地层纵波—滑行纵波,来反映地层的特性。就要把滑行波与直达波、反射波区分开来。

根据费尔玛最小原理,滑行波最先到达R 处所满足的条件:

1t t <,即1

1tan 2cos 2V L V a L V a

t P C C

θθ

所以,C P V a V V L θcos 21111

>???? ??-,11

2sin 1cos 2V V V V a a L P P C C -+=->θθ

1

1

2V V V V a

P P -+称为声波测井的临界源距。

根据以上条件,可以得到使滑行波先于直达波到达接收器的方法: (1)加大源距

取泥岩(最低):Vp=1800,V1=1600,a=0.1 L#=0.825m 取白云岩(最高):Vp=7900,V1=1600,a=0.1 L#=0.25m (2)在仪器外壳上刻槽

使沿外壳传播的波多次反射,能量衰减;延长传播路径和时间;使不同相

位的波相互叠加。

(3)全波列测井

因为地层横波速度小于纵波,要使管波出现在横波之后,则应进一步加大源距。且可以使纵横波到达时间有明显差别,记录较完整波形,即声波全波列。

长源距声波测井源距:2.438 m ~ 3.65 m 二、 单发双收声速测井 1.声系

滑行波作为首波的优点:

1) 方便容易记录(通过门槛拾取); 2)受地层干扰少。 单发单收声系的缺点:

(1)只能测量声波在泥浆和地层中总的传播时间,不能单独确定地层速度; (2)影响因素太多,泥浆性质、井眼大小等都影响总的传播时间; (3)当源距为一米时,滑行纵波在地层中的传播距离为0.6118-0.9531米,分辨率太低,使每次测量的地层不只包含有效储集层

总之,单发单收声系不能满足声速测井的要求,所以要利用单发双收声系,如图:

2.单发双收声速测井的原理

滑行波到达R1、R2的时间差:

12't t t -=?)(

f p p f v AB v BC v CD v DF +++=)(f

p f v AB

v BC v CE ++- 当井眼规则时:DF=CE

p

p v l

v CD t =

=

?' 声波时差:声波传播单位距离(1m)所用的时间,记为 ?t ,单位 μs/m 。 当间距为l ,滑行纵波在地层内传播1米用的时间(声波时差)为△t ,它与声波到达两个接收器的时间之差的关系:

l t l t t t //)('12?=-=?

l 大小决定了纵向分辨率,减小l 可以提高分辨率,但声波经过l 岩层所需时间变短,测量相对误差增大

探测深度:一个波长(0.2-0.3m)

记录点:地层CD 段中点,与接收器中点的位置稍有差别

曲线:仪器匀速移动,记录声波时差随井深变化曲线。 纵向分辨率:测量的是l 范围内的地层速度的平均值(0.5m)

三、井眼补偿声速测井

1.单发双收声速测井存在的问题

(1)井眼扩大时:扩径井段上界面△t 增大;扩径井段下界面△t 减小 (2)仪器不居中时:CE ≠DF ,声波传播的距离不等于CD ,无法计算真实的声波时差仪器有扶正器使仪器居中所以,仪器偏心的影响不大 2. 双发双收井眼补偿声速测井

T1和T2交替发射声脉冲,分别测量时差△t1 和△t2,最终记录其声波时差为:

2

2

1t t t ?+?=

? 探测特性:

优点

消除了扩径的影响

可消除深度误差

缺点

分辨率降低

对低速地层会出现“盲区”

仪器太长,声系复杂

3. 单发双收井眼补偿声速测井

地球物理测井课程实验报告

《地球物理测井》课程实验报告 院系:地球科学与工程学院 班级:地质1401 姓名:周天宇 学号: 0130 指导老师:赵军龙 2016年11月9日

1、课程实验的目的 《地球物理测井》课程安排8个学时的上机实验,使学生了解测井数据基本格式、测井曲线基本类型、学会用有关专业软件绘制测井综合曲线图;就实际资料开展岩性、物性及含油气性定性分析,从而为测井资料定量处理奠定基础。 2、课程实验主要内容 常规测井曲线类型 常规测井曲线类型包括:岩性测井系列(包括自然电位、自然伽马、井径测井),孔隙度测井系列(包括声波时差测井、密度测井、中子测井)和电阻率测井系列(包括深中浅探测的普通视电阻率测井、侧向测井以及感应测井等)。 测井资料定性分析方法 1.对于岩性分析,可以根据“表格1”来进行 表格 1 主要岩石的岩性分析测井特征 2.对于砂岩段的物性分析 ⑴声波时差测井值越大,密度测井值越小,中子测井值越大,则物性越好即砂岩的空隙度越发育;(2)如果AC、CNL、DEN变化幅度比较大,则该砂岩段物性不均匀;(3)如果下层物性比上层物性好,则该砂岩段为正韵律地层;(4)如果GR值与AC值增大,则此处为泥质夹层;如果AC值减小且AT值增大,则此处为物性夹层;如果GR值减小,AC值增大,AT 值增大,则此处含钙质夹层;(5)泥岩的声波时差约为280μs/m,泥质砂岩的声波时差约为177μs/m,渗透砂岩的声波时差为400-220μs/m。 3.含油气性分析 在已找到物性较好的砂岩段进行分析,并结合深中浅感应测井和电阻率测井曲线的变化:一般来说,含油砂岩段的电阻率值会明显增大。 测井综合曲线图模板的生成及测井数据的加载

Geolog-全波列声波测井中文手册-

Geolog软件技术手册Full Sonic Wave Processing -SWB 帕拉代姆公司北京代表处 2006年12月

1、综述................................................................................................................................................................................ - 1 - 1.1 预备知识..................................................................................................................................................................... - 1 - 1.2数据 ............................................................................................................................................................................... - 1 - 2、阵列声波全波形........................................................................................................................................................... - 2 - 2.1数据准备 ...................................................................................................................................................................... - 3 - 2.1.1查看/创建一个声波列阵工具模版.......................................................................................................... - 3 - 2.1.2 练习指导2-创建其他波形属性.............................................................................................................. - 5 - 2.1.3波形分解.......................................................................................................................................................... - 6 - 2.1.4深度转换.......................................................................................................................................................... - 7 - 2.2 处理 .............................................................................................................................................................................. - 8 - 2.2.1数据分析......................................................................................................................................................... - 8 - 2.2.2去噪................................................................................................................................................................ - 11 - 2.2.3 设计滤波器................................................................................................................................................. - 17 - 2.2.4 振幅恢复 ..................................................................................................................................................... - 19 - 2.3阵列声波处理.......................................................................................................................................................... - 20 - 2.3.1处理模块简介 ............................................................................................................................................. - 20 - 2.3.2偶极波形处理 ............................................................................................................................................. - 21 - 2.3.3 单极波形处理 ............................................................................................................................................ - 23 - 2.3.4 拾取标志波至 ............................................................................................................................................ - 26 - 2.4后期处理 (32) 2.4.1综述 (32) 2.4.2频散校正 (33) 2.4.3 传播时间叠加 (36) 2.4.4 相关性显示 (38) 2.4.5 阵列声波重处理 (39) 3、机械性质 (44) 3.1综述 (44) 3.2 计算动力学弹性性质 (44) 附录I-快速运行 (46) 附录II-频散校正讨论 (47)

声波测井仪器的原理及应用

声波测井仪器的原理及应用 单位:胜利测井四分公司 姓名:王玉庆 日期:2011年7月

摘要 声波测井是石油勘探中专业性很强的一个领域。它是一门多学科的应用技术,已经成为油田勘探、储量评估、油气开采等方面不可缺少的工具。声波速度测井简称声速测井是利用声波在岩石中传播的速度来研究钻井剖面的一类物探方法,其方法是测量滑行波通过地层传播的时差 t(声速的倒数,单位us/ft)。目前主要用以估算孔隙度、判断气层和研究岩性等方面,是主要测井方法之一。 数字声波测井仪,其中包括66667声波数字化通用短节和6680声波探头2部分。能完成声波时差测井和水泥胶结测井,能与SL6000型地面系统和进口的5700型地面系统相配接。 正交多极子阵列声波测井(XMACII)将新一代的偶极技术与最新发展的单极技术结合在一起,提供了当今测量地层纵波、横波和斯通利波的最好方法。当偶极子声源振动时,使井壁产生扰动,形成轻微的跷曲,在地层中直接激发出横波和纵波,根据正交多极子阵列声波资料得出的纵横、波速度比可识别与含气有关的幅度异常。 关键词:数字化;声波时差;声波变密度;阵列声波;声波全波列;

目录 第1章前言 (1) 第2章岩石的声学特性 (2) 第3章数字声波测井原理及应用 (3) 3.1 数字声波测井原理 (3) 3.2仪器的工作模式 (5) 3.3时差计算 (5) 3.4 数字声波测井仪器的性能 (6) 3.5 SL6680测井仪器的不足 (7) 3.6数字声波仪器小结 (7) 第4章正交多极子阵列声波测井 (8) 4.1 XMACII多极子阵列声波测井原理 (8) 4.2 XMACII多极子阵列声波仪器组成 (9) 4.3 XMACII多极子阵列声波的使用及注意事项 (10) 4.4 应用效果及结论 (14) 第5章声波测井流程及注意事项 (15) 5.1 声波测井流程 (15) 5.2 注意事项 (16) 参考文献 (17)

地球物理测井课程设计报告

一、课程设计的目的和基本要求 本课程设计是地球物理测井教学环节的延续(独立设课),目的是巩固课堂所学的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究,最终完成报告一份。 二、课程设计的主要内容 1. 运用所学测井知识对某油田实际测井资料进行(手工)定性和(计算机)定量分析。 2. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行岩性识别。 3. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行储层划分,用声波速度、密度及中子曲线进行储层物性评价。 4. 根据划分出的渗透层,读出储层电阻率值。并根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。 5. 上述岩性识别、物性评价及含油气性评价定量分析程序要求学生用所学C语言独立编写。 三、基本原理 “四性”关系及其研究方法: 1.岩性评价 岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。 a.定性分析 定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先要掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征,在应用表中总结的特征时不能等量齐观,而应针对某一具体岩性找到有别于其他岩性的一两种特征。

声波测井技术发展现状与趋势

浅谈声波测井技术发展现状与趋势 摘要:以声波测井换能器技术的变化为主线,分析了声波测井技术的进展以及我国在该技术领域内取得的进步。单极子声波测井技术已经成为我国成熟的声波测井技术,包括非对称声源技术在内的多极子声波测井技术已经进入产业化进程。 关键词:声波测井;换能器;单极子声波测井;多极子声波测井; 从声学上讲,声波测井属于充液井孔中的波导问题。由声波测井测量的井孔中各种波动模式的声速、衰减是石油勘探、开发中的极其重要参数。岩石的纵、横波波速和密度等资料可用来计算岩石的弹性参数(杨氏模量、体积弹性模量、泊松比等);计算岩石的非弹性参数(单轴抗压强度、地层张力等);估算就地最大、最小主地层应力;估算孔隙压力、破裂压力和坍塌压力;计算地层孔隙度和进行储层评价和产能评估;估算地层孔隙内流体的弹性模量,从而形成独立于电学方法的、解释结果不依赖于矿化度的孔隙流体识别方法;与stoneley波波速、衰减资料相结合用以估算地层的渗透率;为地震勘探多波多分量问题、avo问题、合成地震记录问题等提供输人参数等等。经过半个多世纪的发展,声波测井已经成为一个融现代声学理论、最新电子技术、计算机技术和信息处理技术等最新科技为一体的现代测量技术,并且这种技术仍在迅速发展之中,声波测井在地层评价、石油工程、采油工程等领域发挥着越来越重要

的作用。与电法测井和放射性测井方法并列,声波测井是最重要的测井方法之一。 一、测井技术发展现状及趋势 声波测井技术的进步是多方面的。声波测井声波探头个数在不断增加以提高声波测量信息的冗余度、改善声波测量的可靠性;声波测井中探头的振动方式经历了单极子振动方式、偶极子振动方式、四极子振动方式和声波相控阵工作方式,逐步满足在任意地层井孔中测量地层的纵横波波速、评价地层的各向异性和三维声波测井的需求。声波探头的相邻间距不断减小,而发收探头之间的距离在不断增大,这一方面提高了声波测井在井轴方向的测量分辨率;另一方面也提高了声波测井的径向探测深度。声波测井的工作频率范围在逐步向低频和宽频带范围、数据采集时间在不断增大,为扩大声波测井的探测范围提供了保障。声波测井中应用的电子技术从模拟电路、数字电路技术逐步发展为大规模可编程电路和内嵌中央处理器技术,从而实现声波测井仪器的探头激励、数据采集、内部通讯、逻辑控制、数据传输等方面的智能化和集成化。可以预期,下一代声波测井仪器研制的关键技术之一是研制能够控制声束指向性的 基阵式换能器。应用相控阵换能器的最大优势就是增大空间某个方向的声辐射强度,使声波沿着预先设定好的方向辐射,从根本上增加有用信号的能量、提高信噪比和探测能力。显然,声波探头结构和振动模态性质的变化直接导致了声波测井技术的根本进步。

声波测试报告xf

七星城2#、3#、5#楼 声波测试报告 证书等级:甲级 证书编号: 发证机关:建设部 贵州省工程地质勘察院 二〇一一年五月

目录一、概述 二、地质及地球物理概况 1、地质概况 (1)地形、地貌 (2)区域地质 2、地球物理特征 三、工作方法及技术 四、岩质单元划分原则 1、场地纵波速特征 2、新鲜岩块纵波速及岩质单元划分

五、建议 一 . 概述 拟建七星城2#、3#、5#楼位于兴义市南环路,2#楼(A区)设计±0.000标高为1250.60,3#、5#楼(B区)设计±0.000标高为1259.60。2#建筑设计地下室底板为-4.500m标高为1246.10,3#、5#建筑设计地下室底板为-9.00m标高为1250.60。最大柱荷载180000KN/柱。工程规模、特征见表一: 表一 为配合该工程岩土工程勘察工作,我公司测试所对该场地工程钻孔进行原位单孔声波测试,其目的是探测岩体中钻探未发现的裂隙,软弱夹层。 测试工作以点测方式进行测试,测试点距0.20m,共测试钻孔60个,测试点为3058个。完成工作量见表一。 表二

二、地质及地球物理概况 1、工程地质概况 (1)地形、地貌 场地位于兴义南环路台地中部地带,其四周分布低中山丘陵,场地主要为人工平整后场地,拟建 (2)区域地质 场地区域在大地构造上属扬子准地台、黔北台隆、六盘水断陷、望谟至普安旋扭构造变形区,雷公滩背斜北翼,无活动断裂分布,场区及附近主要为马岭断层,其地层主要为单斜构造,下伏基岩主要为中三叠系永宁镇组薄层白云质灰岩(T1yn),岩层为单斜构造,产状为1500∠300 ,由于受地质历史时期构造应力的挤压,使得场区分布基岩隐节理发育,节理间距一般在2-5㎝左右。 2、地球物理特征 地球物理勘探的基础是被探测体的物性差异,常表现为岩体的电、磁、弹性波速等物性参数。本次超声波原位测试主要查明岩体破碎程度、风化程度、裂隙、溶洞等隐伏不良地质体的分布界限。不良地质体的波速值与正常岩体波速值差别较大,满足地球物理勘探的前提条件。 三、工作方法及技术 单孔声波测试所用仪器为湘潭轻工仪器研究所生产的SYC-2型非金属超声波测井仪,YFS-2型一发双收超声波换能器。其技术参数如下:(1)接收部分的总增益大于120db,输入端短路噪音小于2dv,R输入阻抗=1.2K欧姆,频带宽度为1KC~100KC,显示时间范围为1~999us 和10~1999us两档,实测计时精度为0.1us。

工程物探方法综述

工程物探方法综述 摘要 随着经济的发展,工程物探方法显得尤为重要;本文简单介绍了用地质雷达、高分辨率SH 波浅层反射波法、瞬态瑞雷面波法勘探及高密度多波列地震映像法等工程物探方法. 关键词 地质雷达瑞雷波 工程物探 浅层反射勘探 随着我国国民经济的高速发展,城市现代化进程的不断深入,各种城市工程建设方兴未艾,而城市工程建设在规划、设计、施工阶段都必须对建设区域内的地质情况及地下埋设物情况有一个系统的了解,在建设工程中及建成后还必须对工程质量进行检测和监测,另外,在工程抢险、地质灾害调查、考古等工作中都须进行适当的探测工作。工程物探的应用领域大致有以下几个方面: (1)工程地质调查;(2)工程质量检查;(3)环境检测、监测;(4)工程抢险;(5)地质灾害调查;(6)地下、水下埋设物及障碍物探测;(7)地下管线测漏及防腐层完整性检测;(8)水文工程参数测定;(9)考古。 可以毫不夸张的说,工程物探在国民经济高速发展的时代显得越来越重要,现就把常用的工程物探方法简单介绍如下: 1 工程地震勘探 工程上常用的地震波法勘探可分为:高分辨率浅层地勘探、瑞雷波勘探、地震映像、横波勘探四种。 在工程及水文地质调查领域,地震波法勘探经常被用来详细划分第四纪地层、确定目标层的深度、厚度、起伏形态、横向分布,探测异常体的位置和埋深、寻找溶洞、断层及破碎带。 x u y o u j i n

1.1高分辨率浅层地勘探 这里先介绍高分辨率浅层地勘探中的反射波法及折射波法。其主要原理是根据对反射波或折射波时间场沿测线方向的时空分布规律的观测确定地下反射面或折射面深度及构造形态和性质。地震勘探相比其它物探方法,具有精度高、解释成果单一的优点。我们所看到的物探剖面是一种经过校正后的并赋以地质内涵的反射波或折射波时间剖面(实质是不同地质体的反射波或折射波波速差异)。地震勘探成果同其它物探解释成果一样,由于物理力学指标差异,不同地质体的波速有可能相近,而相同地质体由于所遭受的内力或外力地质作用不同,波速也有可能不同。选择有代表性的钻孔资料能更好的确定剖面中各界线的代表的地质体,从而提高地震勘探解释成果的可靠性,也能够使其成果在邻区或类似地区推广应用,使其优点更好的发挥高分辨浅层地震勘探 在工程地球物理领域的应用极为广泛. 1.1.1浅层地震反射法 浅层地震反射法勘探主要采用多次覆盖技术,是根据水平叠加技术的要求而设计的。水平叠加又称共发射点叠加或共中心点叠加,就是把不同激发点、不同接收点上接收到的来自同一反射点的地震记录进行叠加,这样可以压制多次波和各种随机干扰波,从而大大地提高信噪比和地震剖面的质量,并且可以提取速度等重要参数。 1.1.2浅层初至折射波法 浅层初至折射波法地震勘探是国内外公认的勘测浅层地震构造的有效方法之一。它能探测基岩的深度、起伏、岩性接触带及断裂破碎带的位置和延伸方向,尤其能测定基岩中的纵波速度的大小及其分布范围,从而了解测区基岩的岩性变化和致密程度等。这是其它物探方法所无法替代的,因此,被广泛应用于陆地和水域中的桥梁、建筑等大型工程建设的地基勘x u y o u j i n

测井实习报告总结

测井实习报告总结 本次实习的主要内容包括:射孔、测试、井下仪器、测井解释、地面仪器、测井工艺、现场测井观摩、综合录井。 射孔是将射孔枪送到预定的深度后,进行校深、点火,利用聚能罩聚集很高的能量,爆炸将射孔弹射出,穿透套管和地层,从而达到形成通道的目的。射孔是一种完井手段,主要是让地层中的油气能通过射孔通道流入井筒内。射孔完成的主要任务包括井下射孔、卡钻的判断、井壁取芯。在射孔作业中常遇到的问题有射孔弹在井下不爆炸而在工作地面爆炸造成人员伤亡、误射孔、卡枪。实习前以为射孔是一件很简单的事情,经过老师的讲解,现在我才发现射孔是一个复杂而重要的工作,在射孔作业中一定要注意安全。 测试是试油的一种手段,它是指在动态条件下对油气层进行评价,从而得到地层压力,温度,地层产出流体性质的判断,渗透率,测试影响半径,油气的边界等。测试分为两大类,一类是裸眼井测试,另一类是套管井测试。其中裸眼井测试是一种不稳定的测试,一般风险较大,因此测试时间不宜过长,一般井下不超过8小时;而套管井测试是一种稳定测试,风险较小,测试时间长,测试过程中可能出现层位污染,需要开井10分钟,然后关井,再开井充分流动,观察两次流动压力是否一样。通过听取老师的讲解和对仪器的观察,我对测试这个在学校并没有接触过的过程有了一定的

了解。 井下仪器的观察,在仪器车间我们观看了普通声波探头、长源距声波探头、硬电极、双感应探头、微球形聚焦探头、岩性密度探头、地层倾角方位探头、补偿中子测井仪、双侧向测井仪等一系列的井下装置和设备。井下仪器除了有这些探头外还包括电子线路和防转短节。以前只是在课本上看到过一些井下测井仪器的图片和文字描述,这次身临其境的看到了实际的仪器,发现和自己想象当中的还是有一定的出入的。通过观察这些仪器,加深了我对测井仪器及测井原理的进一步认识。 测井解释包括资料的上井验收和资料解释。上井验收时要看测井曲线是否符合标准;测井解释时一般利用计算机作为工具来对测量的曲线进行解释,陆相一般为沙泥岩剖面、海相为碳酸盐剖面,可以利用测井曲线来划分剖面,识别岩性计算参数。一般要先对原始数据进行解编和转换,还要进行深度校正。可用来识别岩性的曲线包括自然伽马、自然电位、井经;测量孔隙度的曲线有声波、密度、中子;测量电阻率的曲线一般有双侧向和微球的组合、感应测井和八侧向的组合。另外还有一些测井新方法,比如过套管电阻率测井、中子寿命测井、脉冲中子测井等。通过这些学习,是我对测井资料的解释过程有了新的了解,知道了要从多条曲线来综合判断岩性划分岩层,而且测得的曲线并不是像课本上的那

声波测井技术在岩土工程勘察中应用

现代物业?新建设 2012年第11卷第9期 浅谈声波测井技术在岩土工程勘察中的应用 张建宏 (新疆新地勘岩土工程勘察设计有限公司,新疆 乌鲁木齐 830002)摘 要:伴随着不断发展的数字测井技术,在测井当中,声速测井已经成为重要的方式之一。对岩体工程勘察中声波测井技术的应用进行了分析。 关键词:岩土工程;勘察;声波测井 中图分类号:[P258] 文献标识码:A 文章编号:1671-8089(2012)09-0047-02 声波测井主要分为声幅测井与声波测井两大类。一般来说,我们说的声波测井指的是对地层当中声波传播速度进行测量。 1 声波测井 在不同的介质当中,声波传播会有明显的差别,岩石当中的裂缝、风化以及溶洞对声波速度都有影响,因此对岩层物性特征的了解可以通过声波测试来进行。而声速测井测的是地层中声波传播的时间。 声波测井一般是对纵波速度进行测量,声波耦合通过仪器发射晶体声波,然后通过仪器接收晶体声波。由于接收晶体与发射晶体之间存在一定距离,所以传播速度与所测得的声波传播时差成反比。根据实际需要,也可以将传播时差换算成声波速度,然后再与其余的物理参数进行结合,也能够将横波速度计算出来,从而对弹性参数以及岩性的划分进行计算,这样更有利于岩土工程勘察工作的进一步开展。 2 岩石中声波的传播 我们所研究的是不同地质年代在地壳中的矿物成分以及结构各异的岩石,并且在岩石当中还存在裂隙与孔隙,但是它们的分布、大小、形状并非固定,而这些因素对岩石的物理性质都有不同程度的影响。岩石的声速指的是在岩石当中声波的传播速度,理论支持与实践证明:随着岩石密度的不断增大,声波速度也会随着提升。 2.1 岩性 如果岩石的岩性不同,那么声波传播速度也会有明显的区别。岩性不同,岩石密度就存在差异,一般来说,岩石密度从大到小依次为:石灰岩→砂岩→泥岩,而声波速度也会随着密度的减少而降低。 2.2 岩石结构 如果岩石的胶结性较差、较为疏松,声波速度也会降低;反之,声波速度则会升高。对于声波速度来说,岩石当中存在的溶洞与裂隙等也会产生一定程度的影响。 2.3 岩石孔隙间的储集物 岩石声波速度也会受到岩石孔隙当中不同储集物的影响。 2.4 地质时代以及地层埋藏深度 声波在地层当中的传播会受到地层时代以及地层埋藏实际深度的影响。当地质时代与岩性相同,那么埋藏的深度越大,声波传播的速度也就越大;反之,埋藏的深度越小,那么声波速度也会随着减小。在岩性相同的情况下,相比新地层,老地层的声波传播速度更快,这主要是由于在漫长的地质年代中,老地层受到了覆盖岩层长期性压实产生的结果。此外,由于长期地壳运动,岩石骨架颗粒的排列也会越来越紧,其弹性与密度都会不同程度地增加。 3 声波测井的应用范围 3.1 钻孔岩性的划分 由于不同的岩层所具有的声波传播速度是不同的。所以,地层岩性可以通过声速测井来进行判断。在钻孔岩性的划分当中,也可以结合自然伽玛、电阻率等有关的参数。 3.2 岩层风化、氧化带的确定 由于受到了氧化与风化,岩石的胶结程度会受到不同程度的影响,甚至会出现破碎,从而导致强度减弱、密度减小、波速减小,将完整的岩石声波速度与所测得的声波速度进行比较就会发现。岩石的疏松与破碎的程度能够通过波速的减少量来判断,因此对岩层的氧化带、风化都能够加以确定。 Engineering Construction 工程施工 – 47 –

随钻声波测井技术综述

随钻声波测井技术综述 随钻测井的研究从20世纪30年代开始研究,在1978年研究出第一套具有商业价值的随钻测井仪器。在那以后,随钻测井在国外取得迅速发展并获得广泛应用,我国对随钻测井的重视达到了前所未有的程度。随钻声波测井也是如此。 1发展随钻测井的意义和随钻声波测井发展现状 随钻测井(LWD)是近年来迅速崛起的先进技术。它集钻井技术,测井技术和油藏描述等技术于一体,在钻井的同时完成测井作业,减少了钻机占用井场的时间,从钻井测井一体化中节省成本[1]。跟常规电缆测井相比,除了节省成本外,随钻测井有如下优势:(1)从测量信息上讲,随钻测井是在泥浆尚未侵入或者侵入不深时测量地层信息,泥饼和冲洗带尚未形成,所测得到的曲线更加准确,更能反映原始地层的真实信息,如声波时差等。(2)从对钻井的指导作用来讲,随钻测井可以提前检测到超压地层,以指导钻井泥浆的配制,提高钻井安全系数。它也可以根据测井信息,分析出有利的含油气方向,确定钻井方向,增强地质导向功能。(3)从适应环境上讲,在大斜度井,水平井或特殊地质环境(如膨胀粘土和高压地层),电缆测井困难或者风险大以致不能进行作业时,随钻测井可以取而代之。目前在海上,几乎所有钻井活动都采用随钻技术[2]。 正因为这些优点,作为随钻测井的重要组成部分的随钻声波测井近年来也获得了巨大的发展。总体而言,国外无论在随钻声波测井的基础理论研究方面还是在仪器研发方面都比较成熟,而国内近年来也对随钻声波测井的相关难题进行了大量的工作。 具体而言,从上世纪90年代起,贝克休斯、哈里伯顿、斯伦贝谢三大公司就率先开始了随钻声波测井的研究,并逐渐占领随钻测井的国际市场份额。APX随钻声波测井仪,CLSS随钻声波测井仪,sonicVISION随钻声波测井仪的相继出现,更加巩固了他们的垄断地位。在国内,鞠晓东,闫向宏[等人在随钻测井数据降噪[3],存储[4],压缩[5],传输特性[6]和电源设计[7]等方面做出了大量的工作。车小花[7],苏远大[8]等人对隔声体设计的隔声效果和机械强度分析进行了数值模拟和实验。此外,唐小明,乔文孝,王海澜等人在随钻声波测井基础理论研究方面做了许多有益的探索。 2随钻声波测井仪工作原理和技术性能 目前国际上主要的随钻声波测井仪有贝克休斯的APX,哈里伯顿的CLSS和斯伦贝谢的sonicVISION。以贝克休斯的APX测井仪为例,介绍一下仪器工作原理和结构。 APX测井仪的结构如下图1所示。从右到左由上部短节,声源电子线路部分,全向声源,声波隔离器,接收器阵列,接收器电子线路部分,下部短节等组成,全长9.82m (32.3ft),其中声波测量点到底部短节的距离为 2.83m(9.3ft),最短源距为 3.26m (10.7ft)。 其工作原理为:位于钻铤上部的声源发射器以最佳频率向井眼周围地层发射声能脉冲,在沿井壁及周围地层向下传播的过程中被阵列接收器接收到首播信号,接收信号后,系统首先用先进的嵌入式技术,将接收到的声波模拟信号转换成数字信号,并采用有限元等方法将数字信号转换为声波时差(data)值。最后将原始声波波形数据和预处理的声波波形数据存储在精心设计的高速存储器内或者以实时方式通过钻井液脉冲遥测技术传输到地面[9]。

变质岩储层识别技术综述

变质岩储层识别技术
储层识别技术是变质岩油气藏测井评价的核心技术系列: 包括储层识别技术和裂缝有效 性评价技术。利用 常规测井资料定性 识别储层,通过成 像测井资料实现对 储层裂缝发育程度 及产状的定性描 述,并采用多极子
声/电成像 裂缝产状 岩性识别 阵列声波 常规测井 储层识别 储层测井 识别、分类 岩心 试油试采 录井 钻井
阵列声波资料评价储层裂缝的有效性,从而达到识别储层的目的。
(一)储层识别技术
1.基于测井响应模型的常规测井资料识别储层技术
RS(Ω·m) RT(Ω·m) RMLD(Ω·m) Pe(B/e) AC(μs/ft) DEN(g/cm3) CN(%)
全烃% 0.01 100
深 度 (m)
0
GR(API)
250
2 2
2000 2000
0 140 2
20 40 3 -18
6
CAL(in)
测井 解释 岩性 剖面
测井 一次 解释 结论
有效 厚度
0.01 0.01 0.01 0.01
c1% c2% c3% nc4%
100 100 100 100
试 油 投 产
36
2
2000
42
161
13.5
162
20.5
163 3.0 164
2 0 0 9 . 5 . 2 7 2 0 0 9 . 6 . 1 1
3970 3980 3990 4000 401 0 402 0
165 166
u
技术定义:

地球物理测井课程设计报告.doc

《测井方法原理》课程设计 指导老师: 专业: 班级: 姓名: 年月日

一、课程设计的目的和基本要求 本课程设计是地球物理测井教学环节的延续(独立设课),目的是巩固课堂所学的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究,最终完成报告一份。 二、课程设计的主要内容 1. 运用所学测井知识对某油田实际测井资料进行(手工)定性和(计算机)定量分析。 2. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行岩性识别。 3. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行储层划分,用声波速度、密度及中子曲线进行储层物性评价。 4. 根据划分出的渗透层,读出储层电阻率值。并根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。 5. 上述岩性识别、物性评价及含油气性评价定量分析程序要求学生用所学C语言独立编写。 三、基本原理 “四性”关系及其研究方法: 1.岩性评价 岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。 a.定性分析 定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先要掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征,在应用表中总结的特征时不能等量齐观,而应针对某一具体岩性找到有别于其他岩性的一两种特征。

测井地质学读书报告

测井地质学——读书报告测井沉积学方面的研究或应用 组长:师凯歌 201302030233 组员:钟寿康 201302030208 杨燕茹 201302010107 朱晨蔚 201302010107 陈佳作 201532020018 王雅萍 20153202014 2016.4.20

一、绪论 1、问题的提出以及必要性 随着地球物理勘探—测井的不断发展,我们对于测井资料的解释,不能局限于单井或者单一岩层的局部层面上,我们更应该做出区域性、多层岩层关联性的地质解释。这种要求的出现,使得研究人员将测井知识和地质中的沉积相知识联系起来,把两门学科从原理层面上结合起来,于是产生了测井沉积这一边缘性学科研究课题。 随着人们对这个问题研究程度的不断深入,我们对于测井资料的解释变得更加具有宏观性,使得测井资料解释而来的地质数据回归到地质体系中,这将使得测井在油气勘探中的应用提升到区域层面上来,如此看来,这一问题的研究变得十分必要。 2、学科的产生 做为这一学科的主体—沉积相,我们必须首先认识它,沉积相是指古代沉积的产物,它是根据沉积环境或沉积作用加以定义的岩石体或沉积物特征的组合。沉积相的识别必须从两个层面上来进行:第一,宏观层面:相与相之间的组合。根据沃尔索相律:“只有横向上成因相近且紧密相邻而发育着的相,才能在垂向上依次叠覆出现而没有间断”。这一规律指导了在沉积相分析过程中进行沉积相的平面组合。第二,局部层面:岩石组合(类型及结构)、沉积构造(冲刷面、层理类型、纹层

组系产状及其垂向变化)、垂向序列变化关系(正粒序、反粒序、复合粒序、无粒序)、古水流、古生物特征、地球化学特征等几个方面。 在了解沉积相的知识以后,如何解决两门学科的联系成为关键。我们必须认识到测井沉积学的本体—沉积相的识别,然后利用两门学科的关联性,将测井“嫁接”到沉积相这门学科的知识体系中。因此产生了一个新的名词—测井相。测井相是由法国地质学家O.SERRA于1979年提出的。它是一组测井响应集合,它代表一定的地质相,并能将其它相体相区分。测井相又称电相。 二、测井相 1、测井相的定义 测井相的提出,目的在于利用测井资料(即数据集)来评价或解释沉积相。测井相是“表征地层特征,并且可以使该地层与其它地层区别

声波测井技术在岩土工程勘察中的应用

浅谈声波测井技术在岩土工程勘察中的应用摘要:本文首先论述了声速测井的测试原理,进而论述了影响岩石声波速度的主要因素,第三以工程实例,利用声波测井技术得到了评价岩土动力学特征的参数,既校正地解释岩性和岩层,还反映了岩土层的相对强度,为建筑设计提供一定的参考依据;最后,文章还阐述了当前声波测井技术在岩土工程勘察中存在的不足之处,以供参考。 关键词:声波测井技术;岩土工程勘察;应用 abstract: this paper first discusses the velocity measurement principles of well logging, and then discusses the influence of the main factors rock acoustic velocity, and the third by engineering example, the acoustic logging technology got the evaluation of the parameters of the dynamic characteristics of rock, both correction to explain the lithology and rocks, but also reflect the relative strength of geotechnical layer, for building design provides some reference basis; finally, the paper also expounds the current acoustic logging technology in geotechnical engineering investigation in existence deficiency, for reference. keywords: acoustic logging technology; geotechnical engineering; application 中图分类号:tu74文献标识码:a 文章编号:

测井新技术进展综述

测井技术作为认识和识别油气层的重要手段,是石油十大学科之一。现代测井是当代石油工业中技术含量最多的产业部门之一,测井学是测井学科的理论基础,发展测井的前沿技术必须要有测井学科作指导。 二十一世纪,测井技术要在石油与天然气工业的三个领域寻求发展和提供服务:开发测井技术、海洋测井技术和天然气测井技术。目前,测井技术已经取得了“三个突破、两个进展”,测井技术的三个突破是:成像测井技术、核磁测井技术、随钻测井技术。测井技术的两个进展是:组件式地层动态测试器技术、测井解释工作站技术。“三个突破、两个进展”代表了目前世界测井技术的发展方向。为了赶超世界先进水平,我国也要开展“三个突破、两个进展” 的研究。 一、对测井技术的需求 目前我国油气资源发展对测井关键技术的需求主要有如下三个方面:复杂地质条件的需求、油气开采的需求、工程上的需求。 1)复杂地质条件的需求我国石油储量近90%来自陆相沉积为主的砂岩油藏,天然气储量大部分来自非砂岩气藏,地质条件十分复杂。油田总体规模小,储层条件差,类型多,岩性复杂,储层非均质性严重,物性变化大,薄层、薄互层及低孔低渗储层普遍存在。这些迫切需要深探测、高分辩率的测井仪器和方法,开发有针对性、适应性强的配套测井技术。 2)油气开采的需求目前国内注水开发的储量已占可采储量的90%以上,受注水影响的产量已占总产量的80%,综合含水85%以上。油田经多年注水后,地下油气层岩性、物性、含油(水)性、电声特性等都发生了较大的变化,识别水淹层、确定剩余油饱和度及其分布、多相流监测、计算剩余油(气)层产量等方面的要求十分迫切。 3)工程上的需求钻井地质导向、地层压力预测、地应力分析、固井质量检测、套管损坏检测、酸化压裂等增产激励措施效果检测等都需要新的测量方法。 二、测井技术现状 我国国内测井技术发展措施及道路主要有两条:一方面走引进、改造和仿制的路子;另一方面进行自主研究和开发。下面分别总结一下我国测井技术各个部分的现状: 1)勘探井测井技术现状测井装备以MAXIS-500、ECLIPS-5700及EXCELL-2000系统为主;常规探井测井以高度集成化的组合测井平台为主;数据采集主要以国产数控测井装备为主;测井数据的应用从油气勘探发展到油气藏综合描述。 2)套管井测井技术现状目前,套管和油管内所使用的测井方法主要有:微差井温、噪声测井、放射性示踪,连续转子流量计、集流式和水平转子流量计,流体识别、流体采样,井径测量、电磁测井、声测井径和套管电位,井眼声波电视、套管接箍、脉冲回声水泥结胶、径向微差井温、脉冲中子俘获、补偿中子,氯测井,伽马射线、自然伽马能谱、次生伽马能谱、声波、地层测试器等测井方法。测井结果的准确性取决于测井工艺水平、仪器的质量和科技人员对客观影响因素的校正。测井数据的应用发展到生产动态监测和工程问题整体描述与解决。 3)生产测井资料解释现状为了获得油藏描述和油藏动态监测准确的资料,许多公司都把生产测井资料和其它科学技术资料综合起来。不仅测得流体的流动剖面.而且要搞清流体流入特征,因此,生产测井资料将成为油藏描述和油藏动态监测最重要的基础。生产测井技术中一项最新的发展是产能测井,它建立了油藏分析与生产测井资料的关系。产能测井表明,生产流动剖面是评价完井效果的重要手段。产能测井曲线是裸眼井测井资料、地层压力数据、产液参数资料、射孔方案和井下套管设计方案的综合解释结果,其根本目的就是利用油层参数预测井眼流动剖面。生产测井流量剖面成为整个油层评价和动态监测的一个重要方法。 4)随钻测量及其地层评价的进展随钻测井(LWD)是随大斜度井、水平井以及海上钻井而发展起来的,在短短的十几年时间里,已成为日趋成熟的技术了。如今随钻测井已经拥有了

相关文档
最新文档