电容器中电介质的作用

电容器中电介质的作用
电容器中电介质的作用

电容器中电介质的作用

山东省肥城市第一高级中学 于茂刚 271600

高中教材在提到电介质对平行板电容器的电容的影响时,只是通过演示实验就直接得出了结论:当两极板间充满同一种电介质时,电容变大为真空时的r ε倍,即kd

S C r πε4= ,r ε 是一个常数,与电介质的性质有关,称为电介质的相对介电常数。学生只能记住结论,对电介质的特性和电介质对电容的影响机理产生疑惑,就此谈一下电容器中电介质的作用。

电介质不同于金属,电介质的电阻率一般都很

高,称为绝缘体,介质中没有(或几乎没有)能够自由

移动的电荷,这种电荷叫做束缚电荷。在电场中静

电平衡条件下,电介质的内部仍有电场存在。在外

电场作用下,电介质的表面将出现正负束缚电荷,

这就是电介质的极化现象。如图所示,由于极化,

在电介质中的极化电场 E ′(图中方向向左)削弱了没有电介质时的电场 E (图中方向向右)。由此可见,在两个极板之间的合电场强度的大小比 E 小。 实验和理论证明,在这种情况下,电介质内的合电场强度为E/r ε.如果极板之间充满相对介电常数为r ε的电介质,则极板之间的合电场强度为E/r ε ,这时的电

容器在容纳的电荷量一定的情况下,两极板之间的电势差比没有电介质时小,根据 U

Q C =,知这时相当于电容器的电容增大了。两极板间如果不加电介质的话,两极板间会被空气占据,空气有一定的导电能力,因而电容器存储电荷的能力会弱一些,而加入电介质后,电容正负极板的绝缘性能就要比没有电介质时好,也

就是存储电荷的能力提高了,所以电容也就升高了, 电容器中间的电介质起到了提高电容容量的作用。

例如:在两极板间相距为d 的平行板电容器中,(1)插入一块厚为d/2的金属大平板(此板与两极板平行),其电容变为原来的多少倍?(2)如果插入一块厚为d/2相对介电常数为r ε的电介质大平板,则又会如何?(3)如果插入一

块厚为d 相对介电常数为r ε的电介质大平板,则又会如何?

解析:(1)插入一块厚为d/2的金属大平板时,在电场作用下,在金属板处于静电平衡状态,内部电场强度处处为0,整个金属大平板是一个等势体,整个金属大平板上没有电压降,两极板之间的距离缩短为d/2,极板间的电场强度E 未变

(因为E ,Cd

Q d

U == , C 、d 成反比,C 、d 乘积不变,所以E 不变),所以两极板间的电压2'd E U ?=,所以根据电容的定义U Q C ==Ed Q 知,此时的电容器的电容变为原来的2倍。

(2)插入一块厚为d/2相对介电常数为r ε的电介质大平板时,两极板之间的

电压'U =r

r r Ed d E d

E εεε2122+?=?+?,所以所以根据电容的定义U Q C ==Ed Q 知, 此时的电容器的电容变为原来的r

r εε+12倍。 (3)插入一块厚为d 相对介电常数为r ε的电介质大平板,两极板间充满了这种

电介质。两极板间的电压'U =d E

r ?ε,所以所以根据电容的定义U Q C ==Ed

Q 知, 此时的电容器的电容变为原来的r ε倍。

思考:为什么不采用插入金属板的方式来增大电容器的电容?因为电容器极板之间需要保持良好的绝缘性,所以只能采用插入电介质的方式来增大电容器的电容。

电容器的工作原理及结构

电容器工作原理这得从电容器的结构上说起。最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个电容器是不导电的。不过,这样的情况是在没有超过电容器的临界电压(击穿电压)的前提条件下的。我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。电容也不例外,电容被击穿后,就不是绝缘体了。不过在中学阶段,这样的电压在电路中是见不到的,所以都是在击穿电压以下工作的,可以被当做绝缘体看。但是,在交流电路中,因为电流的方向是随时间成一定的函数关系变化的。而电容器充放电的过程是有时间的,这个时候,在极板间形成变化的电场,而这个电场也是随时间变化的函数。实际上,电流是通过场的形式在电容器间通过的。 电容 diànróng 1. [capacitance;electric capacity]:电容是表征电容器容纳电荷的本领的物理量,非导电体的下述性质:当非导电体的两个相对表面保持某一电位差时(如在电容器中),由于电荷移动的结果,能量便贮存在该非导电体之中 2. [capacitor;condenser]:电容器的俗称 [编辑本段]概述 定义: 电容(或称电容量[4])是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。 电容的符号是C。 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 相关公式: 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质

第12章静电场中的导体和电介质(精)

第12章 静电场中的导体和电介质 12-1 一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q,而内球的电势为V 0.求此系统的电势和电场分布. 12-2 如图所示,在一半径为R 1=6.0cm 的金属球A 外面套有一个同心的金属球壳B.已知球壳B 的内、外半径分别为R 2=8.0cm,R 3=10.0cm.设A 球带有总电荷Q A =3.0×10-8C,球壳B 带有总电荷Q B =2.0×10-8C.求(1)球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势;(2)将球壳B 接地后断开,再把金属球A 接地,求金属球A 和球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势。 12-3 如图所示,三块平行导体平板A ,B ,C 的面积均为S ,其中A 板带电Q ,B ,C 板不带电,A 和B 间相距为d 1,A 和C 之间相距为d 2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将B ,C 导体板分别接地,再求导体板上的电荷分布和导体板间的电势差。 12-4 如图所示,在真空中将半径为R 的金属球接地,在与球O 相距为r(r>R)处放置一点电荷q ,不计接地导线上电荷的影响,求金属球表面上的感应电荷总量。 图 习题3.12A B 1 R 2 R 3 R 图 习题2.12

12-5 地球和电离层可当作一个球形电容器,它们之间相距约为100km ,试估算地球电离层系统的电容,设地球与电离层之间为真空。 12-6 两线输电线的线径为3.26mm ,两线中心相距离0.50m ,输电线位于地面上空很高处,因而大地影响可以忽略,求输电线单位长度的电容。 12-7 如图所示,由两块相距为0.50mm 的薄金属板A ,B 构成的空气平板电容器,被屏蔽在一个金属盒K 内,金属盒上,下两壁与A 、B 分别相距0.25mm ,金属板面积为30×40mm 2,求: (1) 被屏蔽后的电容器电容变为原来的几倍; (2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几 倍。 12-8 如图所示,在点A 和点B 之间有五个电容器,其连接如图所示,(1)求A 、B 两点之间的等效电容;(2)若A 、B 之间的电势差为12V ,求U AC ,U CD 和U DB . A B 图 习题7. 12图习题4.12

插入电介质板与导体板对电容器电容影响的理论分析

龙源期刊网 https://www.360docs.net/doc/3c3719812.html, 插入电介质板与导体板对电容器电容影响的理论分析 作者:张洪明 严云佳 来源:《中学物理·高中》2015年第01期 2错因剖析 这里主要区别在于电容器内部插入电介质板与插入金属极板对电容器电容的影响,以上分析平行金属板插入电容器内部时对电场强度的影响是正确的,但是这里的等效两极板间距变小是有问题.因为电容器决定因素C=[SX(]εS4πkd[SX)]公式里面的d是指两个极板之间的垂直距离,而实际上插入电介质(就是绝缘介质)时候的原理与金属的相似,但是略有不同,如图4演示实验连接,然后给电容器充上电,把一有机板插入两极板之间,静电计指针偏转角度反映出两极板的电势差的大小,电容器充电后撤掉电源带电量保持不变,所以电势差增减反映出电容的增大或减小.当电容器之间插入金属板时,如题目2中在金属板静电平衡以后,在金属 两个表面产生的感应电荷会在金属板内部产生感应电场,它的方向与原电场强度等大反向.这 样就使得电容器内部区域的总场强整体被削弱,使得两极板之间的电压降低,由C=Q/U可知电容器电容变大了,究其本质是感应电荷产生感应电场与原来金属板位置原电场叠加导致.保 持电容器带电量不变,如果增加金属板占据的空间,当金属板厚度是电容器两极板间距的一半d/2时,两极板间电压也减小到原来一半,电容增大到原来两倍,也就是等效原来总场强被削弱了(金属板占据空间实际合场强为零),两极板间场强的任何削弱,都会导致电势差的降低.插入电介质使电容器电容增大的原因也可作类似的解释.可以设想,把电解质插入电场后,由 于同号电荷相斥,异号电荷相互吸引,介质表面上也会出现类似题目2金属板两表面出现感应电荷一样,起到削弱原场强、增大电容的作用,不同的是,导体上出现感应电荷是其中自由电荷重新分布的结果,而电介质上下两截面中出现极化电荷,是其束缚电荷的微小移动造成的宏观效果.由于束缚电荷的活动不能超出原子范围,因此电介质上的极化电荷比导体上的感应电 荷在数量上要少得多.极化电荷在电介质上内产生的电场强度不能把外电场的场强全部抵消, 只能使得总场有所削弱.综上所述,导体板引起电容增大的原因在于自由电荷的重新分布,电 介质引起电容增大的原因在于束缚电荷的极化. 极化的微观机制:任何物质的分子或原子(统称分子)都是由带负电的电子和带正电的原子核组成的,整个分子中电荷的代数和为零,正、负电荷在分子中都不是集中于一点的,但在离开分子的距离比分子的线度大得多的地方,分子中全部负电荷对于这些地方的影响将和一个单独的负电荷等效,这个等效负点电荷的位置成为这个分子的负电荷“重心”.例如一个电子绕核做匀速圆周运动时,它的“重心”就在圆心,同样,每个分子的正电荷也有一个正电荷“重心”.电介质分成两类,一类是在外电场不存在时正负电荷的“重心”重合的,叫无极分子;另一类是在外电场不存在时,电介质的正负电荷“重心”也不重合,虽然分子的正负电荷代数和为零,但等量的正负电荷“重心”互相错开,形成一定的电偶极矩,这类分子叫有极分子.

陶瓷电容及其介质

贴片电容贴片电容(单片陶瓷电容器)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册。NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。 NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 封装DC=50V DC=100V 0805 0.5---1000pF 0.5---820pF 1206 0.5---1200pF 0.5---1800pF 1210 560---5600pF 560---2700pF 2225 1000pF---0.033μF 1000pF---0.018μF NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。 二X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。 封装DC=50V DC=100V 0805 330pF---0.056μF 330pF---0.012μF 1206 1000pF---0.15μF 1000pF---0.047μF 1210 1000pF---0.22μF 1000pF---0.1μF 2225 0.01μF---1μF 0.01μF---0.56μF 三Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U 电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下 Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。

电容器中电介质的作用

电容器中电介质的作用 山东省肥城市第一高级中学 于茂刚 271600 高中教材在提到电介质对平行板电容器的电容的影响时,只是通过演示实验就直接得出了结论:当两极板间充满同一种电介质时,电容变大为真空时的r ε倍,即kd S C r πε4= ,r ε 是一个常数,与电介质的性质有关,称为电介质的相对介电常数。学生只能记住结论,对电介质的特性和电介质对电容的影响机理产生疑惑,就此谈一下电容器中电介质的作用。 电介质不同于金属,电介质的电阻率一般都很 高,称为绝缘体,介质中没有(或几乎没有)能够自由 移动的电荷,这种电荷叫做束缚电荷。在电场中静 电平衡条件下,电介质的内部仍有电场存在。在外 电场作用下,电介质的表面将出现正负束缚电荷, 这就是电介质的极化现象。如图所示,由于极化, 在电介质中的极化电场 E ′(图中方向向左)削弱了没有电介质时的电场 E (图中方向向右)。由此可见,在两个极板之间的合电场强度的大小比 E 小。 实验和理论证明,在这种情况下,电介质内的合电场强度为E/r ε.如果极板之间充满相对介电常数为r ε的电介质,则极板之间的合电场强度为E/r ε ,这时的电 容器在容纳的电荷量一定的情况下,两极板之间的电势差比没有电介质时小,根据 U Q C =,知这时相当于电容器的电容增大了。两极板间如果不加电介质的话,两极板间会被空气占据,空气有一定的导电能力,因而电容器存储电荷的能力会弱一些,而加入电介质后,电容正负极板的绝缘性能就要比没有电介质时好,也

就是存储电荷的能力提高了,所以电容也就升高了, 电容器中间的电介质起到了提高电容容量的作用。 例如:在两极板间相距为d 的平行板电容器中,(1)插入一块厚为d/2的金属大平板(此板与两极板平行),其电容变为原来的多少倍?(2)如果插入一块厚为d/2相对介电常数为r ε的电介质大平板,则又会如何?(3)如果插入一 块厚为d 相对介电常数为r ε的电介质大平板,则又会如何? 解析:(1)插入一块厚为d/2的金属大平板时,在电场作用下,在金属板处于静电平衡状态,内部电场强度处处为0,整个金属大平板是一个等势体,整个金属大平板上没有电压降,两极板之间的距离缩短为d/2,极板间的电场强度E 未变 (因为E ,Cd Q d U == , C 、d 成反比,C 、d 乘积不变,所以E 不变),所以两极板间的电压2'd E U ?=,所以根据电容的定义U Q C ==Ed Q 知,此时的电容器的电容变为原来的2倍。 (2)插入一块厚为d/2相对介电常数为r ε的电介质大平板时,两极板之间的 电压'U =r r r Ed d E d E εεε2122+?=?+?,所以所以根据电容的定义U Q C ==Ed Q 知, 此时的电容器的电容变为原来的r r εε+12倍。 (3)插入一块厚为d 相对介电常数为r ε的电介质大平板,两极板间充满了这种 电介质。两极板间的电压'U =d E r ?ε,所以所以根据电容的定义U Q C ==Ed Q 知, 此时的电容器的电容变为原来的r ε倍。 思考:为什么不采用插入金属板的方式来增大电容器的电容?因为电容器极板之间需要保持良好的绝缘性,所以只能采用插入电介质的方式来增大电容器的电容。

第13章电介质

第十三章 电介质 一、选择题 1、关于高斯定理,下列说法中哪一个是正确的 (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B) 高斯面的D 通量仅与面内自由电荷有关. (C) 高斯面上处处D 为零,则面内必不存在自由电荷. (D) 以上说法都不正确. [ B ] 2、关于静电场中的电位移线,下列说法中,哪一个是正确的 (A) 起自正电荷,止于负电荷,不形成闭合线,不中断. (B) 任何两条电位移线互相平行. (C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交. (D) 电位移线只出现在有电介质的空间. [ C ] 3、一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 (A) 0 E . (B) 0 r E . (C) r E . (D) (0 r -0)E . [ B ] 4、在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如 图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空 气中的场强0E 相比较,应有 (A) E = E 0,两者方向相同. (B) E > E 0,两者方向相同. (C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ C ] 5、设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2, U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为 (A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2. (C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ A ] 6、在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在 处为球心作一球形闭合面S ,则对此球形闭合面: (A) 高斯定理成立,且可用它求出闭合面上各点的场强. (B) 高斯定理成立,但不能用它求出闭合面上各点的场强. (C) 由于电介质不对称分布,高斯定理不成立. (D) 即使电介质对称分布,高斯定理也不成立. [ B ] 7、一平行板电容器中充满相对介电常量为r 的各向同性均匀电介质.已知介质表面极化电 荷面密度为±′,则极化电荷在电容器中产生的电场强度的大小为: E E 0 q S

高中物理竞赛第四阶段 第10讲 电容 电介质有答案

第 10 讲 电容 电介质 1. 电容器的基本原理。 2. 电容的决定因素。 3. 电场中的电介质。 本讲慢慢要开始从静电向电路过渡,物理的学习的过程就是更新认知的过程。重新从更 本质的角度理解带电,电 流等现象会经常让我们有恍然大悟的感觉。 引入: 1748 年的一个晴朗的日子,在巴黎圣母院前广场有一场大型“魔术” 表演,观众是法国国王路易 十五的王室成员和王公大臣们。魔术师诺莱特让 700 个传教士手牵手站一排,用手去触摸一根从玻璃 瓶中引出的导线,瓶子中另引了一根线与起电机相连。当最前面的传教士接触导线的一瞬间,所有的 传教士突然齐声大叫起来被震倒了。这个实验轰动一时,而那个瓶子,就是莱顿发明的第一个可以把 电荷“装起来”的电容,又叫莱顿瓶。 知识点睛 电容:顾名思义,电容器是储存电荷的装置.从莱顿开始,人类发明了各式各样的电容。下面我们分 别给与定义与介绍。 一.孤立导体的电容 附近没有其他导体和带电体的电容叫孤立电容。不难证明,孤立电容的电势与其电量成正比。我 们把其带电与电势的比叫做孤立电容器的电容值,简称电容,用字母 C 表示。记作: q C U 电容的单位为库伦每福特记作 C/V ,又叫法记作 F ,一般实用的单位为微法 μF ,或者皮法 pF 。 1F=106μF=1012pF 显然上述的表达式只能是电容的测量定义式,不是确定式。以下推到球形孤 知识模块 本讲提纲

E 立电容的决定式: KQ 如图:U = R Q R 所以有: C = = U K 可见:电容只与导体的几何因素和介质有关,与导体是否带电无关,是一个类似电阻一样的电器 参数。比如整个地球的电容约 C E 二.双极电容 ≈ 7 ?10-4 F (这么小…由此可见球电容的电容能力很小) 实际工作的电容大部分为双级电容,分别带等量异种电荷。此时电容器的电容为电容器一块极板 所带电荷 Q 与两极板电势差 U 的比值 .电容的电路符号为: 如图: C = Q = Q V A -V B U 其中:U = ?AB ?d l 双极电容的容值依然只与其几何参数以及两板间介质的种类有关,与是否带电以及带多少电无 关。下面我们推导几种典型的电容的容值决定式。不过首先我们来研究一下一般绝缘介质在电场中的 行为。 三.电介质的极化 由于分子结构的不同,电介质分为两类:一类介质分子的正负电荷中心重合,这样的分子称为 无极分子;一类介质分子的正负电荷中心不重合,形成一个电偶极子,这样的分子称为有极分子. 将电介质置于静电场中,无极分子正负电荷中心错开,沿外电场方向形成电偶极子;有极分子 的电偶极矩将趋于按外电场方向排列,两端面出现等量的异种电荷,这种现象叫电介质的极化,两端 面产生的电荷称为极化电荷或束缚电荷. 由于极化电荷产生的附加电场 E ' 跟外电场 E 0 反向,所以介质内的场强 E 的比外场强 E 0 小,我 E 0 们把 E 0 与 E 的比值称为电介质的相对介电常数: εr = (εr > 1) . E 电介质的相对介电常数与真空介电常数的乘积 ε = εr ε0 ,称为电介质的绝对介电常数,简称介电常 数.不考虑材料分子对称的因素,我们可以简单的把均匀介质中的静电规律在真空中公式中的 K 换成 K . εr 四.电容器电容的计算 根据电容的定义,我们不难总结出电容 决定式计算的步骤。 1. 设两极板分别带电±Q 2. 求两极板间的电场强度 E ,注意如果有电介质存在,场强要除以相对介电常数 .

电容器的主要参数有哪些

电容器的主要参数有哪些? 电容器的主要参数有标称容量(简称容量)、允许偏差、额定电压、漏电流、绝缘电阻、损耗因数、温度系数、频率特性等。 (一)标称容量 标称容量是指标注在电容器上的电容量。 电容量的基本单位是法拉(简称法),用字母“F”表示。比法拉小的单位还在毫法(mF)、微法(μF)、纳法(nF)、皮法(pF),它们之间的换算关系是: 1F=1000mF 1mF=1000μF 1μF=1000nF 1nF=1000pF 其中,微法(μF)和皮法(pF)两单位最常用。 在实际应用时,电容量在1万皮法以上电容量,通常用微法作单位,例如:0.047μF、0.1μF、2.2μF、47μF、330μF、4700μF等等。 电容量在1万皮法以下的电容器,通常用皮法作单位,例如:2pF、68 pF、100 pF、680 pF、5600 pF等等。 标称容量的标注方法有直标法、文字符号标注法和色标法等,具体的识别方法将在以后的内容中作详细介绍。 (二)允许偏差 允许偏差是指电容器的标称容量与实际容量之间的允许最大偏差范围。 电容器的容量偏差与电容器介质材料及容量大小有关。电解电容器的容量较大,误差范围大于±10%;而云母电容器、玻璃釉电容器、瓷介电容器及各种无极性高频在机薄膜介质电容器(如涤纶电容器、聚苯乙烯电容器、聚丙烯电容器

等)的容量相对较小,误差范围小于±20%。 (三)额定电压 额定电压也称电容器的耐压值,是指电容器在规定的温度范围内,能够连续正常工作时所能承受的最高电压。 该额定电压值通常标注在电容器上。在实际应用时,电容器的工作电压应低于电容器上标注的额定电压值,否则会造成电容器因过压而击穿损坏。 (四)漏电流 电容器的介质材料不是绝艰绝缘体,宁在一定的工作温度及电压条件下,也会有电流通过,此电流即为漏电流。 一般电解电容器的漏电流略大一些,而其它类型电容器的漏电流较小。 (五)绝缘电阻 绝缘电阻也称漏电阻,它与电容器的漏电流成反比。漏电流越大,绝缘电阻越小。绝缘电阻越大,表明电容器的漏电流越小,质量也越好。 (六)损耗因数 损耗因数也称电容器的损耗角正切值,用来表示电容器能量损耗的大小。该值越小,说明电容器的质量越好。 (七)温度系数 温度系数是指在一定温度范围内,温度每变化1℃时,电容器容量的相对变化值。温度系数值越小,电容器的性能越好。 (八)频率特性 频率特性是指电容器对各种不同高低的频率所表现出的性能(即电容量等电参数随着电路工作频率的变化而变化的特性)。不同介质材料的电容器,其最高工作频率也不同,例如,容量较大的电容器(如电解电容器)只能在低频电路中正常工作,高频电路中只能使用容量较小的高频瓷介电容器或云母电容器等。 信息来源:慧聪电子 【我来说两句】【推荐给朋友】【关闭窗口】

各种电容器的分类及特点

各种电容器的分类及特点 电容器是电子设备中常用的电子元件,下面对几种常用电容器的结构和特点作以简要介绍,以供大家参考。 1.铝电解电容器: 它是由铝圆筒做负极、里面装有液体电解质,插人一片弯曲的铝带做正极制成。还需经直流电压处理,做正极的片上形成一层氧化膜做介质。其特点是容量大、但是漏电大、稳定性差、有正负极性,适于电源滤波或低频电路中,使用时,正、负极不要接反。 2.钽铌电解电容器: 它用金属钽或者铌做正极,用稀硫酸等配液做负极,用钽或铌表面生成的氧化膜做介质制成。其特点是:体积小、容量大、性能稳定、寿命长。绝缘电阻大。温度性能好,用在要求较高的设备中。 3.陶瓷电容器: 用陶瓷做介质。在陶瓷基体两面喷涂银层,然后烧成银质薄膜作极板制成。其特点是:体积小、耐热性好、损耗小、绝缘电阻高,但容量小,适用于高频电路。铁电陶瓷电容容量较大,但损耗和温度系数较大,适用于低频电路。 4.云母电容器: 用金属箔或在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成。其特点是:介质损耗小、绝缘电阻大。温度系数小,适用于高频电路。 5.薄膜电容器: 结构相同于纸介电容器,介质是涤纶或聚苯乙烯。涤纶薄膜电容,介质常数较高,体积小、容量大、稳定性较好,适宜做旁路电容。聚苯乙烯薄膜电容器,介质损耗小、绝缘电阻高,但温度系数大,可用于高频电路。 6.纸介电容器: 用两片金属箔做电极,夹在极薄的电容纸中,卷成圆柱形或者扁柱形芯子,然后密封在金属壳或者绝缘材料壳中制成。它的特点是体积较小,容量可以做得较大。但是固有电感和损耗比较大,适用于低频电路。 7、金属化纸介电容器: 结构基本相同于纸介电容器,它是在电容器纸上覆上一层金属膜来代金属箔,体积小、容里较大,一般用于低频电路。 8、油浸纸介电容器:

各向同性电介质中电容器电容计算的探讨

各向同性电介质中电容器电容计算的探讨 【摘要】在电磁学中,电容器的电容是一个很重要的物理量,而对于有电介质的电容器的电容的计算方法也不是唯一的,本文用三种方法讨论了大学物理学中常见的三种电容器平行板电容器、圆柱形电容器、球形电容器电容的计算,并对三种计算方法进行了比较分析。 【关键词】平行板电容器;圆柱形电容器;球形电容器;电介质;电容 电容器电容的计算是大学物理课程中最基本的内容之一,而各向同性电介质电容器电容的计算方法也是多样的,大学物理教材中主要从定义公式来介绍电容器的电容,学生在做课后习题时,不能举一反三,很少考虑到用其他方法来求解电容器的电容,本文介绍了用三种方法求解大学物理学中常见的电容器的电容,并对三种方法进行了讨论分析。 1 利用定义公式来计算各向同性电介质电容器的电容 这种方法是大学物理书上介绍的较多的也是学生比较熟悉的的一种求解方法,具体的解题步骤可归纳如下: (1)运用高斯定律求解电容器极板之间的电位移矢量D的大小。 (2)根据各向同性电介质中电位移D与电场强度E的关系E=■,求出两极板之间的电场强度E的大小。 (3)再利用电位差U与场强E的关系式U=■■.d■,求解两板之间电位差U。 (4)应用定义C=■,求解电容器的电容,其中公式中的Q表示一块极板所带的电量的大小。 [例1]平行板电容器两板之间的距离为d,极板面积为s,两板之间的电势差为U,左右两部分空间分别充满介电常数为ε1和ε2的电介质,ε1充满的空间的极板面积为s1,求电容器的电容C。 图1 平行板电容器示意图 [解]:直接应用定义[1] C=■=■+■这种方法比较容易,不做详细解答。 球形电容器和圆柱形电容器也能够采用此方法来求解电容器的电容,这种方法比较简单,本文不再具体讨论。 2 利用叠加法来计算各向同性电容器的电容

平行板电容器中介质的受力

平行板电容器中介质的受力分析 谢伟华 (中国科学技术大学物理学院1班) 引言:介质从平行板电容器中抽出要受到引力,我们用虚功原理很容易得到这个结论,但是平行板电容器产生的电场是与介质表面垂直的,那么这个力是如何产生的,我们就来讨论一下这个问题。 一、用静电能求静电力 设极板长为L,宽为a,面积为S,板间距离为d, 极板间电压为U恒定不变,电介质介电常数为ε 由虚功原理易得F=?W ?y =1 2 U2dC dy =(ε?ε0)a 2d U2

用这种方法无法看出这个力从何而来。所以我们采用下面的方法。 二、用库仑定律求受力 电介质在电场中极化成电偶极子,下面先求一个电偶极子在电场中受的力。 设负电荷处电场为为E(r),正电荷处电场为E(r+l),由于l远小于电介质的线度,所以用泰勒展开得: E r+l=E r+l x? ?x E r+l y? ?y E r+ l z? ?z E r=E(r)+(l·?)E(r) 所以电偶极子受到的合力为p·?E r 对于一个体积为V的电介质(下面的E都是总电场,因为体电荷元在自身处产生的电场为0) F=(P·?)E dV=(ε?ε0)(E·?)E dV =1 2 (ε?ε0)?E2dV X与Z方向均为0,所以可以变为 1 2(ε?ε0)j?E2 ?Y dV 在极板内部电场是均匀为U d ,外部电场为0,所以只需计算边缘那一部分,且上式积分号内部可化为: ΔE2ΔY ?V=ΔE2 ΔY ?X?Y?Z=?E2?X?Z=U2 d ?X?Z

则F=1 2(ε?ε0)j U2 d2 dXdZ=(ε?ε0)a 2d U2j 与用静电能求得结果一样。 结论:从计算过程中可以看出,这种力产生的原因是电场由U d 跃迁到0造成的,这是理想化模型的弊端,以致于我们想不明白这个力从何而来。实际中,电场不可能一下子变成零,边缘处也是有电场的。所以我们考虑问题应从实际出发,理论只是一个工具,不代表一切。 【参考文献】 【1】胡友秋,《电磁学与电动力学》,科学出版社,2014.6 【2】赵凯华,《电磁学》,高等教育出版社,2006.12

第二十七单元电介质和电容器

第二十七单元 电介质和电容器 [课本内容] 马文蔚,第四版,上册 [6]-[40] [典型例题] 例27-1.A 、B 、C 是三块平行金属板,面积均为200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地(如图) ,设A 板带正电3.0×10-7C ,不计边缘效应 (1) 求B 板和C 板上的感应电荷,以及A 板的电势。 (2)若在A 、B 间充以相对介电常数εr =5的均匀电介质,再求B 板和C 板上的感应电荷,以及A 板的电势。 (1) q q q =+21 ① E AB = s q 01ε,E AC = s q 02εAC AB E E q q =?21 ② 又 U AB =U AC 即 E AB d AB =E AC d AC ∴AB E /AC E =1/2 ③ 解出 ﹣q 1=﹣1.07 10 -? C ,﹣q 2=2.07 10 -? C U AB =E AB d AB =V d S q AB 34 123 701103.210 2001085.8100.4100.1?=??????=----ε (2) q q q =+21 ① E AB =s q 011εε,E AC =s q 02ε ? 25 521===AB AC AC AB r d d E E q q ε ② 解出 ﹣q 1=﹣2.14710-?C , ﹣q 2=﹣0.867 10-? C V d S q d E U AB r AB AB AB 24123 70/107.910 2001085.85100.41014.2?=???????== =----εε 例27-2.一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D ,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质 时,电场强度为E ,电位移为D ,则 (A) r E E ε/0 =,0D D =. (B) 0E E =,0D D r ε=. (C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D =. [ B ] 例27-3.一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势

第13章电介质

第十三章 电介质 一、 选择题 1、关于高斯定理,下列说法中哪一个是正确的 (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B) 高斯面的D 通量仅与面内自由电荷有关. (C) 高斯面上处处D 为零,则面内必不存在自由电荷. (D) 以上说法都不正确. [ B ] 2、关于静电场中的电位移线,下列说法中,哪一个是正确的 (A) 起自正电荷,止于负电荷,不形成闭合线,不中断. (B) 任何两条电位移线互相平行. (C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交. (D) 电位移线只出现在有电介质的空间. [ C ] 3、一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 (A) 0 E . (B) 0 r E . (C) r E . (D) (0 r -0)E . [ B ] 4、在空气平行板电容器中,平行地插上一块各向同性均匀电介质板, 如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与 空气中的场强0E 相比较,应有 (A) E = E 0,两者方向相同. (B) E > E 0,两者方向相同. (C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ C ] 5、设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势 用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为 (A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2. (C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ A ] 6、在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷 所在处为球心作一球形闭合面S ,则对此球形闭合面: (A) 高斯定理成立,且可用它求出闭合面上各点的场强. (B) 高斯定理成立,但不能用它求出闭合面上各点的场强. (C) 由于电介质不对称分布,高斯定理不成立. (D) 即使电介质对称分布,高斯定理也不成立. [ B ] E E 0 q S

贴片电容COG、NPO、X7R、Y5V、X5R介质区别

贴片电容COG、NPO 、X7R、Y5V、X5R介质区别在我们选择无极性电容式,不知道大家是否有注意到电容的X5R,X7R,Y5V,COG等等看上去很奇怪的参数,有些摸不着头脑,本人特意为此查阅了相关的文献,现在翻译出来奉献给大家。 这个是按美国电工协会(EIA)标准,不同介质材料的MLCC按温度稳定性分成三类:超稳定级(工类)的介质材料为COG或NPO;稳定级(II类)的介质材料为X7R;能用级(Ⅲ)的介质材料Y5V。 这类参数描述了电容采用的电介质材料类别,温度特性以及误差等参数,不同的值也对应着一定的电容容量的范围。具体来说,就是:X7R常用于容量为3300pF~0.33uF的电容,这类电容适用于滤波,耦合等场合,电介质常数比较大,当温度从0°C变化为70°C时,电容容量的变化为±15%;Y5P与Y5V常用于容量为150pF~2nF的电容,温度范围比较宽,随着温度变化,电容容量变化范围为±10%或者+22%/-82%。对于其他的编码与温度特性的关系,大家可以参考表4-1。例如,X5R的意思就是该电容的正常工作温度为-55°C~+85°C,对应的电容容量变化为±15%。 下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册。NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。

电容不同介质之间的区别

贴片电容 COG,X7R,Y5V,X5R,NPO 介质区别这个是按美国电工协会 (EIA)标准,不同介质材料的MLCC按温度稳定性分成三类:超稳定级(工类)的介质材料为COG或NPO;稳定级( II类)的介质材料为X7R;能用级(Ⅲ)的介质材料Y5V。X7R电容器被称为温度稳定型的陶瓷电容器。当温度在55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现 为10年变化了约5%。X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。 COG,X7R,X5R,Y5V均是电容 的材质,几种材料的温度系数和工作范围是依次递减的,不同材质的频率特性也是不同的。NPOX7RZ5U 和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。一 NPO电容器NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3Δ C。NPO电容的漂移或滞后小于±0.05%,NPO(COG) 多层片式陶瓷电容器它只是一种电容 COGChip On Glass)即芯片被直接邦定在玻璃上。这种安装方式可以大大减小LCD模块的体积,且易于大批量生产,适用于消费类电子产品的LCD,:手机, PDA 等便携式产品, 这种安装方式, 在 IC 生产商的推动下, 将会是今后 IC 与 LCD 的主要连接方式。

电容器介质损耗及电容量测量

(一) 电容器介质损耗及电容量测量 一、实验背景 电容器是电路中三个最基本的元器件之一。在电路中,作为设计者常需要精确了解电容器的容量和损耗角的大小。测量电容器的电容量和介质损耗通常有多种方法,本实验采用施加交流电信号,通过与一个标准电容器上的电信号比较,测量出被测电容器上容量大小和损耗角。该方法还可用于材料、石油、电力以及化工等领域相关参数的测量。 二、实验目的 1、了解电容器的交流特性参数 2、了解比较法测量方法 3、了解智能化测量仪器的基础 三、实验原理 (一)介质损耗测量的基本理论 一个实际的元件,如电阻器、电容器和电感器,都不可能是理想的,存在着寄生电容、寄生电感和损耗等。也就是说,一个实际的R、L、C元件都含有三个参量:电阻、电感、电容。以电容为例,图1给出了电容器的等效模型。 图1 电容器等效模型

图(a)为理想电容器,阻抗;图(b)为考虑泄漏和介质损耗时的电容器,阻抗 ;图(c)为高频时考虑泄漏、引线电阻和电感时的电容器,阻抗 。本 实验中使用的模型为(b)。 通常用品质因数Q来衡量电感器、电容器以及谐振电路的质量,定义为: (1) 则对图(b)的电容器等效模型而言,其等效导纳为,品质因数为: (2) 上式中的和分别为电容器两端正弦电压的有效值和周期。对电容器而言,常用损耗角和损耗因数来衡量其 质量。把导纳画在复平面上,如图2所示,损耗角的正切为: (3)

图2 电容器介损示意图 损耗因数定义为: (4) 当损耗较小时,即较小时,有: (5) (二)介质损耗测试仪的工作原理 如图3所示,微处理器控制下的标准信号提供了待测电容和标准电容的激励信号,进而得到了标准介质信号 和待测介损信号,更换不同介损的电容器,可得到不同角度的信号。两路信号经放大、滤波、整形后,可得 到标准方波和待测方波两个信号,由处理器采集并计算两路信号的相位差。图中的选择器负责将标准信号和待测信号分时切换到上行测量支路,起到了电路相位自校准作用,得到了电路初始相角差。 待测信号经放大、滤波后分支出一支路送入转换电路和转换器TLC2543中,负责测量电容值。

电容器和电介质

第五章 电容器和电介质习题 1.A 、B 两点之间的电势差为30伏。 a.每一只电容器上电量是多大? b.这纲络的等价电容是多大? 因Q=CV ,在求电量时,就必须知道任一只电容器的电势差。 首先以文字表达这个电路的接法是串联、并联还是混联的。 答案 2.C 1的电势差是多大?C 2、C 3串联后的电势差是多大? 答案 3.C 1带的电量Q 1是多大?用库仑表示。 答案 4.右边是电容器的带电情况假设不发生跳火。问哪些电荷是由外界因素(例如一个电池)引起的?哪些电荷是由感应引起的? 答案 5.串联电容C 2、C 3中,有Q 2=Q 3=Q ‘,其中Q ‘是传递到这对电容器上的电荷。因为串联 接法的电压遵循加法法则, )(3233221130C C Q C Q C Q +'=+= 伏。 用一个公分母来写出)(3211C C +。(将由此得出一个非常有用的算式,值得记住。) 答案 6.传递给串联电容器的电量有多少? Q ‘= 库。 可以从框格5,)/()(323230C C C C Q +'=伏求出。 答案 7.知道了传递给电路和的电量,现在可以求出等价电容。我们把它设想成图25-11那样, 总电量 等于Q 1(=30×10-6库)加上Q ‘(=36×10-6库) ,这些电荷传递给“电容器”后,使

A 、 B 两点之间的电势差等于30伏。于是 ==V Q C 总 微法。 求出数值解。 答案 8.让我们验证上面框格的解答,先看C 2、C 3组成的等价电容。在框格5中我们得方程 =伏30[3211C C + ]Q ' 这可写成 =伏30[323 2C C C C +]Q ' 如果代入标准形式、 V Q C /=, 那么 =23C 。 (用C 2、C 3的代数式表达) 答案 9.上述的结论是从两只串联电容器得出的。如习题中的C 2和C 3,有一等价电容23C ,它等于各个值的“积除以和”。对于C 2=2.0微法和C 3=3.0微法,则 =23C 微法。 注意:这法则只适用于两只电容器。 答案 10.积除以和的法则与下列公式一致,只是偶然的。 3223 111C C C +=。 而这一公式却对任何只数的串联电容器都运用。 上图中以等价电容C 23代替C 2和C 3。 a.这个电路的接法是(串联/并联)的。

陶瓷介质电容器

第一类陶瓷介质电容器的温度性质 按照美国标准EIA-198-D,在用字母或数字表示的陶瓷电容器的温度性质有三部分:第一部分为(如字母 C)温度系数的有效数字;第二部分是有效数字的倍乘;第三部分为随温度变化的容差。三部分字母与数 字所表达的意义如下表 第一类陶瓷介质电容温度特性(EIA-198-D) 温度系数α的有效数字倍乘随温度变化的容差 C=0.0 S=3.3 0=1 5=+1 G=±30 L=±500 M=1.0 T=4.7 1=-10 6=+10 H=±60 M=±1000 P=1.6 U=7.5 2=-100 7=+100 J=±120 N =±2500 R=2.2 3=-1000 8=+1000 K=±1250 (1)α的额定值和伴随值的限制误差用-20~+85℃间的电容变化来定义,(2)温度系数为0和 限制偏差为±30ppm/℃的电容字码为C0G(类别为1B) 例如C0G(NP0)=±30ppm/℃,C0H=±60ppm/℃,S2H=(3.3*100)±60ppm/℃第一类陶瓷介质电容器的容量几乎不随温度变化,以C0G为例,±30ppm/℃,实际上温度系数只有一半 ,在-55℃到+125℃间,电容量变化为0.3%,其损耗因素在40℃到60℃时最小,绝缘电阻随温度上升而 下降,-40℃时为10000s(ohm*F),+125℃时为200s多一点,电容量基本不因频率变化而改变。 第二类陶瓷介质电容器的温度性质 按照美标EIA-198-D,第一部分为最低工作温度,第二部分有效数字为最高工作温度,第

三部分为随温度 变化的容差,三部分字母与数字表达意义如下表 第二类陶瓷介质电容温度特性 最低温度最高温度随温度变化的容值偏差 Z=-10℃4=+65℃ 7=+125℃ A=±1.0 D=±3.3 P=±10 T=+22%/-32% Y=-30℃5=+85℃ 8=+15℃ B=±1.5 E=±4.7 R=±15 U=+22%/-56 % X=-55 ℃ 6=+105℃ C=±2.2 F=±7.5 S=±22 V=+22%/-82% 例子X7R:-55 ℃,+125 ℃,±15%容差;Z5U:+10 ℃,+85 ℃,T=+22%/-32%容差;Y5V:-30 ℃,+85 ℃, T=+22%/-56%容差 几种常见的陶瓷介质温度系数如下表 温度特性温度范围容量变化或温度系数工作温度范围类别 SL -55℃~+85℃+350~1000ppm/℃-55℃~+125℃ 1 C0G -55℃~+125℃ 0±30ppm/℃ -55℃~+125℃ 1 C0H -55℃~+125℃ 0±60ppm/℃ -55℃~+125℃ 1 P2H -55℃~+85℃-150±60ppm/℃-55℃~+125℃ 1 S2H -55℃~+85℃-220±60ppm/℃-55℃~+125℃ 1 T2H -55℃~+85℃ -470±60ppm/℃-55℃~+125℃ 1 U2J -55℃~+85℃ -750±60ppm/℃ -55℃~+125℃ 1 B -25℃~+85℃ ±10% -25℃~+85℃ 2 Z5U -10℃~+85℃ +22%/-56% -10℃~

相关文档
最新文档