元素周期表-完整版

人教版必修二《1.1.1元素周期表》同步练习及答案

第一章第一节第1课时 一、选择题 1 ?下列叙述不能作为元素周期表中元素排列顺序依据的是() A. 原子的核电荷数 B. 原子的中子数 C. 原子的质子数 D. 原子的核外电子数 答案:B 点拨:元素周期表中元素是按照原子序数由小到大的顺序排列的,而在原子中,原子序数=核电荷数=质子数=核外电子数,但是不一定等于中子数,所以不能用原子的中子数作为元素周期表中元素排列顺序的依据。 2. 在周期表中,第3、4、5、6周期元素的数目分别是() A. 8,18,32,32 B. 8,18,18,32 C. 8,18,18,18 D. 8,8,18,18 答案:B 点拨:元素周期表中1?6周期的元素种类数分别是2,8,8,18,18,32 ,故选B。 3. (2018 ?经典习题选萃)下列对于元素周期表结构的叙述中正确的是() A. 7个横行代表7个周期,18个纵行代表18个族 B. 副族元素中没有非金属元素 C. 除第1周期外,其他周期均有18种元素 D. 碱金属元素是指IA 族的所有元素 答案:B 点拨:在周期表中18个纵行代表16个族,即7个主族、7个副族、1个0族、1个第忸族,A项错误;副族元素全部是金属元素,B项正确;第2、3周期均为8种元素,第6周期有32种元素,C项错误;碱金属元素是指IA族除H以外的所有元素,D项错误。 4. (2018 ?试题调研)原子序数为Z的元素R,在周期表中位于A B、C、D四种元素的中间,A、B、C D 四种元素的原子序数之和为下列数据,其中不可能的是() n_C t A_ o A.4Z B. 4Z+ 10 C. 4Z+ 5 D. 4Z+ 14 答案:C 点拨:周期表中同一周期左右相邻原子序数差1;由题图中结构可知,C不可能在第1周期,故C与R或R

高中化学必修一第一节元素周期表

第一节元素周期表 第1课时元素周期表 多选 9.X、Y、Z均为短周期元素,在元素周期表中它们的相对位置如下表所示,已知3种元素的原子序数之和为31,下列有关叙述中正确的是()。 A. B.X的氧化物XO有毒 C.Y能与氢氧化钠溶液反应生成氢气 D.Z的氧化物只能与酸反应 10.下列叙述不正确 ...的是()。 A.除0族元素外,短周期元素的最高正化合价在数值上都等于该元素所属族的族序数B.除短周期外,其他周期均为18种元素 C.副族元素没有非金属元素 D.第ⅢB族中所含元素种类最多 12.下列各表为周期表的一部分(表中数字为原子序数),其中正确的是()。 A

B C D 13.A、B、C、D、E五种元素在元素周期表中的位置如图1-1-1所示,已知E的原子序数为x,则五种元素的原子序数之和不可能 ...为()。 图1-1-1 A.5x B.5x+10 C.5x+14 D.5x+25 14.已知115号元素原子有七个电子层,且最外层有5个电子,试判断115号元素在元素周期表中的位置是()。 A.第七周期第ⅢA族B.第七周期第ⅤA族 C.第五周期第ⅦA族D.第五周期第ⅢA族 15.目前人类已发现的非金属元素除稀有气体元素外,共有16种。下列对这16种非金属元素的相关判断()。 ①都是主族元素,最外层电子数都大于4;②单质在反应中都只能作氧化剂;③氢化物常温下都是气态,所以又都叫气态氢化物;④氧化物常温下都可以与水反应生成酸。 A.只有①②正确B.只有①③正确 C.只有③④正确D.①②③④均不正确 16.已知X、Y、Z、W是短周期中的四种非金属元素,它们的原子序数依次增大。X

元素周期表发展史

发展历史 元素周期律的发现是许多科学家共同努力的结果 1789年,安托万-洛朗·拉瓦锡出版的《化学大纲》中发表了人类历史上第一张《元素表》,在该表中,他将当时已知的33种元素分四类。1829年,德贝莱纳在对当时已知的54种元素进行了系统的分析研究之后,提出了元素的三元素组规则。他发现了几组元素,每组都有三个化学性质相似的成员。并且,在每组中,居中的元素的原子量,近似于两端元素原子量的平均值。 1850年,德国人培顿科弗宣布,性质相似的元素并不一定只有三个;性质相似的元素的原子量之差往往为8或8的倍数。 1862年,法国化学家尚古多创建了《螺旋图》,他创造性地将当时的62种元素,按各元素原子量的大小为序,标志着绕着圆柱一升的螺旋线上。他意外地发现,化学性质相似的元素,都出现在同一条母线上。 1863年,英国化学家欧德林发表了《原子量和元素符号表》,共列出49个元素,并留有9个空位。上述各位科学家以及他们所做的研究,在一定程度上只能说是一个前期的准备,但是这些准备工作是不可缺少的。而俄国化学家门捷列夫、德国化学家迈尔和英国化学家纽兰兹在元素周期律的发现过程中起了决定性的作用。 1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。纽兰兹称这一规律为“八音律”。这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。 门捷列夫出生于1834年,俄国西伯利亚的托博尔斯克市,他出生不久,父亲就因双目失明出外就医,失去了得以维持家人生活的教员职位。门捷列夫14岁那年,父亲逝世,接着火灾又吞没了他家中的所有财产,真是祸不单行。1850年,家境困顿的门捷列夫藉着微薄的助学金开始了他的大学生活,后来成了彼得堡大学的教授。 幸运的是,门捷列夫生活在化学界探索元素规律的卓绝时期。当时,各国化学家都在探索已知的几十种元素的内在联系规律。 1865年,英国化学家纽兰兹把当时已知的元素按原子量大小的顺序进行排列,发现无论从哪一个元素算起,每到第八个元素就和第一个元素的性质相近。这很像音乐上的八度音循环,因此,他干脆把元素的这种周期性叫做“八音律”,并据此画出了标示元素关系的“八音律”表。 显然,纽兰兹已经下意识地摸到了“真理女神”的裙角,差点就揭示元素周期律了。不过,条件限制了他作进一步的探索,因为当时原子量的测定值有错误,而且他也没有考虑到还有尚未发现的元素,只是机械地按当时的原子量大小将元素排列起来,所以他没能揭示出元素之间的内在规律。 可见,任何科学真理的发现,都不会是一帆风顺的,都会受到阻力,有些阻力甚至是人为的。当年,纽兰兹的“八音律”在英国化学学会上受到了嘲弄,主持人以不无讥讽的口吻问道:“你为什么不按元素的字母顺序排列?” 门捷列夫顾不了这么多,他以惊人的洞察力投入了艰苦的探索。直到1869年,他将当时已知的仍种元素的主要性质和原子量,写在一张张小卡片上,进行反复排列比较,才最后发现了元素周期规律,并依此制定了元素周期表。

元素周期表发现简介

元素周期表的发展 作者: (兰州城市学院化学与环境科学学院,甘肃兰州 730070) 摘要:本文通过讨论元素周期表的发展历史,介绍了随着科学的发展及认识的不断深化人们研制出许多种类型的元素周期表,通过对元素周期表进行了详细的解读,让人们更好的了解化学这门学科的发展历史。关键词:元素周期表;门捷列夫,元素 元素周期表的发展史含有丰富的化学史资源,“化学史是了解化学史上重大事件和重要人物,以及重要化学概念的形成、法则和原理的提出、化学理论的建立的重要途径”[1]。本文就通过讲述元素周期表的几个发展阶段介绍了有关元素周期表的内容。元素周期表是元素周期律的具体表现形式,随着科学的发展及认识的不断深化人们研制出许多种类型的元素周期表,使其进一步趋于合理化和科学化。 1 元素周期表的历史发展 1661年波义再提出元素的科学概念,化学确立为一门科学。随着采矿,冶金,化工等工业的发展,人们对元素的认识也逐渐丰富起来,到了十九世纪后半叶,已经发现了六十余种元素,这是为找寻元素问的规律提供了条件。1869年,俄国化学家捷列夫在总结前人经验的基础上发现著名的化学元素周期律,这是自然界中重要的规律之一。有了周期律,人们对元索性质变化的内在规律性有了比较系统的认识。门捷列夫根据他发现的元素周期律,把元素按原子量的大小排列起来;构成图表的形式,这就是第一比重元素周期表。门捷列夫还根据元素周期律正确的修改了铍,铟等七种元素的原子量,并预言了当时尚未发现的原子量为44(Sc ),68(Ga )和72 (G )等元素的存在和性质。1875至1886年之间,科学家在自然界发现了这3种素。这

无疑使门捷列夫成名垂青史的化学家。值得一提的是,德国化学家Meyer于1870年也独立作出了几乎相同于门捷列夫周期律的观点的结论。 从19世纪末20世纪初人们又发现了许多新元素,于是对门捷列夫周期表进行了一定的调整,最明显的是增加了一个竖行(族),即稀有气体,并以镧系元素系列取代了Ba和之间的一种元素2O世纪初元素总数已增85,在之后的25年中,又发现了铀等超重元素。后来,核裂变反应的实现导致了更多的超元素的发现。1964—1968年,苏联科学家首先合成了104号和105号元素,并在此基础上[2],合在了106号元素。20世纪80年代初,德国人合成了107,108,109等3种元素。1994年,德国研究中心首次合成1l0号元素,1个月之后,苏联和美国的科学家一道合成了110号元素的原子量为273的同位素。通过对110号元素进行分析,发现其性质与Ni,Pd,Pt相似,这有力地证明了目前元素周期表排列的科学家。1996年德国GSI实验室合成并确证了111和112号元素。上述新元素的合成都得益于元素周期表,又丰富和发展了元素周期表。 2.1、元素周期表的演化 2.1.1尚古多的“螺旋图” 1862年,法国矿物学教授尚古多创作了“螺旋图”。元素按原子量的大小围绕着圆柱体进行排布,让性质相似的元素排布在同一条垂线上,如Li—Na—K、Cl—Br—I等,由此提出元素的性质有周期性变化的规律。 由于原子量差值为16的元素之间的性质并非都类似,而且原子

元素周期表的发展史

元素周期表的发展史 化学发展到18世纪,由于化学元素的不断发现,种类越来越多,反应的性质越来越复杂.化学家开始对它们进行了整理、分类的研究,以寻求系统的元素分类体系. 首先在1789年,法国化学家拉瓦锡在他的专著《化学纲要》一书中,列出了世界上第一张元素表.他把已知的33种元素分成了气体元素、非金属、金属、能成盐之土质等四类.但他把一些物,如光、石灰、镁土都列入元素. 26年后,英国的威廉·普劳特提出:1、所有元素的原子量均为氢原子量的整数倍;2、氢是原始物质或“第一物质”, 他试图把所有元素都与氢联系起来作为结构单元。 到1829年,德国的化学家贝莱纳首先敏锐地察觉到已知元素所表露的这种内在关系的端倪:某三种化学性质相近的元素,如氯,溴,碘,不仅在颜色、化学活性等方面可以看出有定性规律变化,而且其原子量之间也有一定理的关系,即:中间元素的原子量为另两种元素原子量的算术平均值。这种情况,他一共找到了五组,他将其称之为"三元素族",即: 锂3 钠11 钾19 钙20 锶88 钡137 氯17 溴35 碘127 硫16 硒79 碲128 锰55 铬52 铁56 在化学家贝莱纳之后,法国的地质学家尚古多(Chancourtois,A.E.B.1820-1886)于1862年绘出了“螺旋图”.他将已知的62个元素按原子量的大小次序排列成一条围绕圆筒的螺线,性质相近的元素出现在一条坚线上 . 他最先提出元素性质和原子量之间有关系, 并初步提出了元素性质的周期性。螺旋图是向揭示周期律迈出了有力的第一步, 但缺乏精确

性。1864年英国人欧德林用46种元素排出了《元素表》。同年德国人迈尔依原子量大小排出《六元素》表。该表对元素进行了分族, 有了周期的雏型。之后在1865年,英国的化学家纽兰兹(Newlands,J.A.R.1837-1898)排出一个“八音律”.他把已知的性质有周期性重复,每第八个元素与第一个元素性质相似,就好象音乐中八音度的第八个音符有相似的重复一样. 八音律揭示了元素化学性质的重要特征, 但未能揭示出事物内在的规律性。 化学家绝不满意元素漫无秩序的状态。从《三素组》到《八音律》, 逐步对元素知识进行归纳和总结, 试图从中找出视律性的东西, 为发现周期律开辟了道路。由于科学资料积累, 元素数目增多, 终于在十九世纪后半期迈尔和门捷列夫同时发现了元素周期律。 在1867年俄国人门捷列夫对当时已发现的63种元素进行归纳、比较, 结果发现:元素及其化合物的性质是原子量的周期函数的关系, 这就是元素周期律。依据周期律排出了周期表, 根据周期表, 他修改了铍、铯原子量, 预言了三种新元素, 后来陆续被发现, 从而验证了门氏周期律的正确性, 迅速被化学家所接受。在周期律的指导下, 先后发现了稼、钪、锗、钋、镭、锕、镤、铼、锝、钫、砹等十一种元素同时还预言了稀有气体的存在, 并于1898年以后, 陆续发现了氖、氢、氙等元素, 因而在周期表中增加ⅧA族。到1944年自然界存在的92种元素全部被发现。 其实早在1860年门捷列夫在为著作《化学原理》一书考虑写作计划时,就深为无机化学的缺乏系统性所困扰.于是,他开始搜集每一个已知元素的性质资料和有关数据,把前人在实践中所得成果,凡能找到的都收集在一起.人类关于元素问题的长期实践和认识活动,为他提供了丰富的材料.他在研究前人所得成果的基础上,发现一些元素除有特性之外还有共性.例如,已知卤素元素的氟、氯、溴、碘,都具有相似的性质;碱金属元素锂、钠、钾暴露在空气中时,都很快就被氧化,因此都是只能以化合物形式存在于自然界中;有的金属例铜、银、金都能长久保持在空气中而不被腐蚀,正因为如此它们被称为贵金属.

化学元素周期表的发现与发展

化学元素周期表的发现与发展 摘要:化学元素周期表是人类研究化学的一个里程碑,揭示了化学元素间的内在联系。在元素周期律的指导下,利用元素之间的一些规律性知识来分类学习物质的性质,就使化学学习和研究变得有规律可循。现在,化学家们已经能利用各种先进的仪器和分析技术对化学世界进行微观的探索,并正在探索利用纳米技术制造出具有特定功能的产品,使化学在材料、能源、环境和生命科学等研究上发挥越来越重要的作用。 关键字:本文就化学元素周期表的起源,归路,意义,以及发展历史等角度全面的了解 化学元素周期表。这个化学史上重要的成就,同时帮助我们更好的学习化学,理解化学元素的本质联系。 1.起源简介 化学元素周期表现代化学的元素周期律是1869年俄国化学家德米特里·伊万诺维奇·门捷列夫首创的(周期表中101位元素“钔”由此而来)。门捷列夫将元素按照相对原子质量由大到小依次排列,并将化学性质相近的元素放在一个纵列,制出了第一张元素周期表,揭示了化学元素间的内在联系,使其构成了一个完整的体系,成为化学发展史上的重要里程碑之一。1913年英国科学家莫色勒利用阴极射线撞击金属产生X射线,发现原子序数越大,X射线的频率就越高,因此他认为原子核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序数)排列,经过多年 元素周期表修订后才成为当代的周期表。常见的元素周期表为长式元素周期表。在长式元素周期表中,元素是以元素的原子序数排列,最小的排行最先。表中一横行称为一个周期,一纵列称为一个族,最后有两个系。除长式元素周期表外,常见的还有短式元素周期表,螺旋元素周期表,三角元素周期表等。 道尔顿提出科学原子论后,随着各种元素的相对原子质量的数据日益精确和原子价(化合价)概念的提出,就使元素相对原子质量与性质(包括化合价)之间的联系显露出来。德国化学家德贝莱纳就提出了“三元素组”观点。他把当时已知的54种元素中的15种,分成5组,每组的三种元素性质相似,而且中间元素的相对原子质量等于较轻和较重的两个元素相对原子质量之和的一半。例如钙、锶、钡,性质相似,锶的相对原子质量大约是钙和钡的相对原子

第一节元素周期表主要知识点

第一节元素周期表 一、元素周期表概述 1、门捷列夫周期表 按相对原子质量由小到大依次排列,将化学性质相似的元素放在一个纵行,通过分类、归纳制出的第一张元素周期表。 2、现行常用元素周期表 ⑴周期表的编排原则 ①按原子序数递增的顺序从左到右排列 ②将电子层数相同的元素排成一个横行 ③把最外层电子数相同的元素(个别例外)按电子层数递增的顺序从上到下排成纵行 ⑵周期表的结构 七个横行;7个周期[三短(2、8、8)、三长(18、18、32)、一不完全] 18个纵行(列),16个族: 7个主族(ⅠA~ⅦA);(1、2、13~17列)7个副族(ⅠB~ⅦB);(3~12列) Ⅷ族:3个纵行;(8、9、10列)零族:稀有气体(18列) 周期表中有些族有特殊的名称: 第ⅠA族:碱金属元素(不包括氢元素)第ⅦA族:卤族元素0族:稀有气体元素3、元素周期表的结构与原子结构的关系 原子序数==核电荷数==质子数==核外电子数周期序数==原子的电子层数 主族序数==最外层电子数==最高正价数(O、F除外)==价电子数 非金属的负价的绝对值==8-主族序数(限ⅣA~ⅦA) 4、由原子序数确定元素位置的规律 ⑴主族元素:周期数==核外电子层数;主族的族序数==最外层电子数 ⑵确定族序数应先确定是主族还是副族,其方法是采用原子序数逐步减去各周期的元素种数,最后的差 值即可确定。 基本公式:原子序数-零族元素的序数(或各周期元素总数)== 差值 ①对于短周期元素: 若差值为0,则为相应周期的零族元素;若0<差值≤7,则元素在下一周期,差值即为主族序数。 ②对于长周期元素:

差值为1~7时,差值即为族序数,位于Ⅷ族左侧; 差值为8、9、10时,为Ⅷ族元素。 差值为11~17时,再减去10所得最后差值,即为Ⅷ族右侧的族序数。 若差值>17,再减14,按同上方法处理。 例:37号和114号元素的推导。 5、同主族元素上、下相邻元素原子序数推导规律: ⑴ⅠA、ⅡA族元素: 元素的原子序数==上一周期的元素的原子序数+上一周期的元素总数 ⑵ⅢA~ⅦA、0族元素: 元素的原子序数==上一周期的元素的原子序数+本周期的元素总数 例1:甲、乙是周期表中同一主族的两种元素,若甲的原子序数为x,则乙的原子序数不可能是 A. x+2 B. x+4 C. x+8 D. x+18 例2:X、Y、Z是周期表中相邻的三种短周期元素,X和Y同周期,Y和X同主族,三种元素原子的最外层电子数之和为17,核内质子数之和为31,则X、Y、Z分别是( ) A. Mg、Al、Si B. Li、Be、Mg C. N、O、S D. P、S、O 二、原子结构 1 A Z X 电量:Z==e- ⑴、构成原子的微粒数目的定量关系 符号X表示质子数为Z,质量数为A的一类原子。 ⑵、构成原子的各种微粒存在下列定量关系: ①核电荷数==质子数==核外电子数 ②质量数(A)==质子数(Z)+中子数(N) ③质量数(A)≈原子的相对原子质量 核外电子(e-) 带负电

门捷列夫的发现与现代的元素周期表的不同

现代的化学元素周期律是19世纪俄国人门捷列夫发现的。他将当时已知的63种元素以表的形式排列,把有相似化学性质的元素放在同一直行,这就是元素周期表的雏形。 门捷列夫通过顽强努力的探索,于1869年2月先后发表了关于元素周期律的图表和论文。在论文中,他指出: (1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性。 (2)原子量的大小决定元素的特征。 (3)应该预料到许多未知元素的发现,例如类似铝和硅的,原子量位于65 一75之间的元素。 (4)当我们知道了某些元素的同类元素后,有时可以修正该元素的原子量。这就是门捷列夫提出的周期律的最初内容。 门捷列夫深信自己的工作很重要,经过继续努力,1871年他发表了关于周期律的新的论文。文中他果断地修正了1869年发表的元素周期表。例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。同时他将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。在前表中,为尚未发现的元素留下4个空格,而新表中则留下了6个空格。由此可见,门捷列夫的研究有了重要的进展。 经受实践的验证 实践是检验真理的唯一标准。门捷列夫发现的元素周期律是否能站住脚,必须看它能否解决化学中的一些实际问题。门捷列夫以他的周期律为依据,大胆指出某些元素公认的原子量是不准确的,应重新测定,例如当时公认金的原子量为169.2,因此,在周期表中,金应排在饿。铱、铂(当时认为它们的原子量分别是198.6,196.7,196.7)的前面。而门捷列夫认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。重新测定的结果是:饿为190.9,铱为193.1,铂为195,2,金为197.2。实验证明了门捷列夫的意见是对的。又例如,当时铀公认的原子量是116,是三价元素。门捷列夫则根据铀的氧化物与铬、铂、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六价,原子量约为240。经测定,铀的原子量为238.07。再次证明门捷列夫的判断正确。基于同样的道理,门捷列夫还修正了铟、镧、钇、铒、铈、的原子量。事实验证了周期律的正确性。 根据元素周期律,门捷列夫还预言了一些当时尚未发现的元素的存在和它们的性质。他的预言与尔后实践的结果取得了惊人的一致。1875年法国化学家布瓦博德朗在分析比里牛斯山的闪锌矿时发现一种新元素,他命名为镓,并把测得的

元素周期表的发现

一、元素周期表发现史 在化学教科书中,都附有一张“元素周期表”。这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。它的发明,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。看到这张表,人们便会想到它的最早发明者——门捷列夫。 德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活;只有学习,才能使人变得聪明。 门捷列夫在学校读书的时候,一位很有名的化学教师,经常给他们讲课。热情地向他们介绍当时由英国科学家道尔顿始创的新原子论。由于道尔顿新原子学说的问世,促进了化学的发展速度,一个一个的新元素被发现了。化学这一门科学正激动着人们的心。这位教师的讲授,使门捷列夫的思想更加开阔了,决心为化学这门科学献出一生。 门捷列夫在大学学习期间,表现出了坚韧、忘我的超人精神。疾病折磨着门捷列夫,由于丧失了无数血液,他一天一天的消瘦和苍白了。可是,在他贫血的手里总是握着一本化学教科书。那里面当时有很多没有弄明白的问题,缠绕着他的头脑,似乎在召呼他快去探索。他在用生命的代价,在科学的道路上攀登着。他说,我这样做“不是为了自己的光荣,而是为了俄国名字的光荣。”——过了一段时间以后,门捷列夫并没有死去,反而一天天好起来了。最后,才知道是医生诊断的错误,而他得的不过是气管出血症罢了。 由于门捷列夫学习刻苦和在学习期间进行了一些创造性的研究工作,一八五五年,他以优异成绩从学院毕业。毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。这期间,他一边教书,一边在极其简陋的条件下进行研究,写出了《论比容》的论文。文中指出了根据比容进行化合物的自然分组的途径。一八五七年一月,他被批准为彼得堡大学化学教研室副教授,当时年仅二十三岁。 攀登科学高峰的路,是一条艰苦而又曲折的路。门捷列夫在这条路上,也是吃尽了苦头。当他担任化学副教授以后,负责讲授《化学基础》课。在理论化学里应该指出自然界到底有多少元素?元素之间有什么异同和存在什么内部联系?新的元素应该怎样去发现?这些问题,当时的化学界正处在探索阶段。近五十多年来,各国的化学家们,为了打开这秘密的大门,进行了顽强的努力。虽然有些化学家如德贝莱纳和纽兰兹在一定深度和不同角度客观地

(第1.1.1 元素周期表)

绝密★启用前 人教版·必修2 第1章第1节课时1 元素周期表 一、选择题 1、下列关于元素周期表的说法中正确的是( )。 A.现行元素周期表是按照元素的相对原子质量大小排列而成的 B.元素周期表共有7个周期、16个族 C.第ⅠA族和过渡元素都是金属元素 D.最外层电子数相同的元素都在同一主族 2、在周期表中,第 3、 4、 5、6周期元素的数目分别是( ) A.8,18,32,32 B.8,18,18,32 C.8,18,18,18 D.8,8,18,18 3、在周期表中,所含元素种类最多的是( )。 A.第Ⅷ族 B.第ⅠA族 C.0族 D.第ⅢB族 3.下列关于元素周期表的说法中正确的是( )。 A.每个横行是一个周期,每个纵行是一个族 B.副族是完全由长周期元素构成的族 C.原子最外层电子数为2的元素全部在第ⅡA族和第ⅡB族 D.第ⅠA族又称碱金属元素,第ⅦA族又称卤族元素 4.下列关于元素周期表的叙述中不正确 ...的是( )。 A.第ⅡA族中无非金属元素 B.0族中无金属元素 C.第ⅠA族元素单质均能与水反应生成 H 2 D.金属元素的种类比非金属元素多 5.M+的结构示意图可表示为,则M元素在周期表中的位置是( )。 A.第三周期0族 B.第四周期ⅠA族 C.第三周期ⅠA族 D.第三周期ⅦA族 6.据国外有关资料报道,在独居石(一种共生矿,化学成分为Ce、La、Nb等的磷酸盐)中查明有尚未命名的116、124、126号元素。则可推测出116号元素应位于周期表中的( )。 A.第六周期ⅣA族 B.第七周期ⅥA族 C.第七周期ⅦA族 D.第八周期ⅥA族 8.若把长式元素周期表原先的主副族及族号取消,由左至右改为18列,如碱金属元素在第1列,稀有气体元素在第18列。按此规定,下列说法错误 ..的是( )。 A.第9列元素中没有非金属元素 B.只有第2列元素原子最外层有2个电子 C.只有第15列元素原子最外层有5个电子 D.在整个18列元素中,第3列的元素种类最多 9. 已知X、Y、Z三种元素在周期表中的相对位置如图所示,且X的原子序数为a,下列 说法中不正确 ...的是( )。 A.Y、Z的原子序数之和可能为2a B.Y的原子序数可能是a-17 C.Z的原子序数可能是a+31 D.X、Y、Z一定都是短周期元素 10.下列叙述不能作为元素周期表中元素排列顺序依据的是( ) A.原子的核电荷数 B.原子的中子数 C.原子的质子数 D.原子的核外电子数 11.下列对于元素周期表结构的叙述中正确的是( )

第一节元素周期表第1课时作业

必修2第一章物质结构元素周期律 第一节元素周期表 第1课时 2、据报道, Jl 二可有效地治疗肝癌,该原子核内的中子数与核外电子数之差为( ) 3、在"二;中,m n 、p 、q 表示X 的四个角码,若 X i 和X ?的q 均为1, m p 的值相等,则 X i 和X 2表示的可能是 A 、不同种元素的原子 B 、同种元素的不同种原子 C 同种元素不同种原子形成的离子 D 、不同元素的离子 4、某元素原子核内质子数为 m ,中子数为n ,则下列论断正确的是 A 、 不能由此确定该元素的相对原子质量 B 、 这种元素的相对原子质量为 m+n C 、 若12 C 原子质量为 Wg ,则此元素原子的质量为 (m+n )Wg D 、该元素原子核内中子的总质量小于质子的总质量 5、道尔顿的原子学说曾经起了很大的作用。他的学说中主要有下列三个论点:①原子是不 能再分的粒子;②同种元素的原子的各种性质和质量都相同; ③原子是微小的实心球体。从 现代原子一一分子学说的观点看,你认为不正确..的是 ( ) A .只有① B .只有② C .只有③ D .①②③ 6、 据报道,月球上有大量 3 He 存在,以下关于3 He 的说法正确的是 ( ) A 、是4He 的同素异形体 B 、比4He 多一个中子 C 、是4 He 的同位素 D 、比4 He 少一个质子 7、 1 mol D 2O 和1 mol H 2O 不相同的是 ( ) A .含氧原子的数目 B .质量 C. 含有质子的数目 D ?含有中子的数目 & n mol H 2与n mol T 2气体不同之处是 ( ) A ?物质的量 B ?原子数 C .质量 D .体积(相同状况) 78 80 9、Se 是人体必需微量元素,下列关于 34 Se 和34 Se 说法正确的是 ( ) 1、钛(Ti )金属常被称为未来钢铁。钛元素的同位素 中子数不可.能.为 A 、 28 B 、 30 C 、 26 姓名 ________ 46 47 Ti 48 Ti 22 li 、 22 Ti 、 22 Ti D 、24 成绩 _________ 49> Ti 、52Ti 中, ( ) A. 32 B.67 C.99 D.166 78 80 A . 34 Se 和34 Se 互为同素异形体 78 80 B . 34 Se 和34 Se 互为同位素

第一节元素周期表课时1元素周期表

第一节元素周期表课时1元素周期表 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.在元素周期表中横行的编排依据是() A.按元素的相对原子质量递增顺序从左到右排列 B.按元素的原子核外电子层数依次递增顺序从左到右排列 C.电子层相同的元素,按原子序数依次递增顺序从左到右排列 D.按元素的原子最外层电子数依次递增顺序从左到右排列 2.下列有关元素周期表中“族”的说法正确的是() A.元素周期表中共有七个主族、八个副族、一个0族 B.同一主族元素原子最外层的电子数目不一定相同 C.同一主族元素的化学性质相同 D.族序数后标注A的元素是主族元素 3.下列各组元素中,属于同一周期的是 A.Na、P B.N、Cl C.F、Mg D.O、S 4.下列叙述正确的是() A.ⅡA族某元素的原子序数为a,则原子序数为a+1的元素一定位于ⅢA族 B.除短周期外,其他周期均有32种元素 C.原子最外层只有2个电子的元素可能是金属元素,也可能是非金属元素 D.Ca是碱金属元素 5.下列选项能确定主族元素在元素周期表中所处位置的是() A.电子层数和最外层电子数 B.核内中子数 C.次外层电子数 D.相对原子质量 6.原子序数为83的元素位于:①第五周期;②第六周期;③ⅣA族;④ⅤA族;⑤ⅡB族,其中正确的组合是( ) A.①④B.②③C.②④D.①⑤ 7.关于元素周期表的说法中正确的是() A.元素周期表共7个周期、18个族B.38号元素位于第五周期第IIA族C.非金属元素均位于周期表右侧D.第六周期共计18种元素

1.1.1 元素周期表

第一节 元素周期表(第1课时) 学习目标: 1、知道原子序数的含义,明确原子序数与构成原子的粒子间的关系 2、明确掌握周期表的结构 知识梳理: 一、元素周期表 1. 原子序数: (1)含义:____________________________________________________________________ (2). 原子序数与构成原子的粒子之间的关系: 原子序数= ______________ = ___________________ = __________________ 2. 元素周期表的编排原则 (1)将___________________的元素按______________________的顺序从左到右排成横行 (2)把___________________的元素按______________________的顺序从上到下排成纵行 3. 周期表的结构 ⑴周期:元素周期表共有 个横行,每一横行称为一个 ,故元素周期表共有 个周期 ①周期序数与电子层数的关系: ②周期的分类 [思考]: 如果第七周期排满后,应有几种元素?__________________ ⑵族:元素周期表共有 个纵行,除了 三个纵行称为Ⅷ外,其余的每一个纵行称为一 个 ,故元素周期表共有 个族。族的序号一般用罗马数字表示。 ①族的分类 元素周期表中,我们把18个纵行共分为16个族,其中7个主族,7个副族,一个零族,一个第Ⅷ族。 a 、主族:由短周期元素和长周期元素共同构成的族,用A 表示:如:ⅠA、ⅡA、ⅢA、 ⅣA、ⅤA、ⅥA、ⅦA b 、副族:完全由长周期元素构成的族,用B 表示:ⅠB、ⅡB、ⅢB、ⅣB、ⅤB、ⅥB、ⅦB c 、第Ⅷ族: 三个纵行 (注意: 第Ⅷ族既不是主族也不是副族) d 、零族:第 __ _ 纵行,即稀有气体元素 ②主族序数与最外层电子数的关系: ③族的别称 如 ⅠA 称为 元素 ⅦA 称为 元素 零族称为 元素 [练习]画出具有下列原子序数的元素原子结构示意图,并指出其在周期表中的位置。 9、16、14、5、18 __________________________________________________________________________ 例1:已知元素周期表中前七周期排满后的元素如下所示: 分析元素周期数和元素种数的关系,然后预测第八周期最多可能含有的元素种数为( ) A. 18 B. 32 C. 50 D. 64 例2. 甲、乙是周期表中同一主族的两种元素,若甲的原子序数为X ,则乙的原子序数不可能是( ) A. x+2 B. x+14 C. x+8 D. x+18 二、元素的性质和原子结构 1、碱金属元素 (1)结构 请同学们阅读课本第5页,科学探究,并完成该表。由此可以得出的结论:从锂→铯 相同点: 最外层电子数均为_____________ 不同点: 随着核电荷数的增多,电子层数_____________, 原子半径_______________ (2)化学性质 注意:比较元素金属性强弱可以从其单质与水(或酸)反应置换出氢的难易程度,以及它们的最高价氧化 物的水化物-氢氧化物的碱性强弱来比较 (3)物理性质

2019年高中化学-★第一节元素周期表1-1

第一章物质结构元素周期律 第一节元素周期表学案 门捷列夫简介 门捷列夫(1834-1907)俄国化学家。1834年2月7日生于西伯利亚托博尔斯克,1907年2月2日卒于彼得堡(今列宁格勒)。1850年入彼得堡师范学院学习化学,1855年毕业后任敖德萨中学教师。1857年任彼得堡大学副教授。1859年他到德国海德堡大学深造。1860年参加了在卡尔斯鲁厄召开的国际化学家代表大会。1861年回彼得堡从事科学著述工作。1863年任工艺学院教授,1865年获化学博士学位。1866年任彼得堡大学普通化学教授,1867年任化学教研室主任。1893年起,任度量衡局局长。1890年当选为英国皇家学会外国会员。门捷列夫的最大贡献是发现了化学元素周期律。他在前人的基础上,总结出一条规律:元素(以及由它所形成的单质和化合物)的性质随着原子量(相对原子质量)的递增而呈周期性的变化,这就是元素周期律。他根据元素周期律于1869年编制了第一个元素周期表,把已经发现的63种元素全部列入表里,从而初步完成了使元素系统化的任务。元素周期律的发现激起了人们发现新元素和研究无机化学理论的热潮,元素周期律的发现在化学发展史上是一个重要的里程碑,人们为了纪念他的功绩,就把元素周期律和周期表称为门捷列夫元素周期律和门捷列夫元素周期表。1955年科学家们为了纪念元素周期律的发现者门捷列夫,将101号元素命名为钔。 一、元素周期表 原子序数:按元素核电荷数由小到大的顺序给元素的编号。如:氢元素的原子序数为1,镁元素的原子序数为12。则: 对任意元素的原子:原子序数核电荷数质子数核外电子数 对任意元素的阳离子:原子序数核电荷数质子数核外电子数对任意元素的阴离子:原子序数核电荷数质子数核外电子数思考:1.画出1——2、3——10、11——18各元素的原子结构示意图,分别有什么相同之处?领会它们在元素周期表中的位置与它们原子结构的关系。 2.元素周期性表中第一列元素的原子结构示意图(见教材P5)有什么异同,领会它们在元素周期表中的位置与它们原子结构的关系。 一)、元素周期表编排原则: 1、把相同的元素按原子序数递增的顺序由左到右排成一个横行。 2、把相同的元素按电子层数递增的顺序由上到下排成纵行。 二)、元素周期表的结构: 1、周期:具有而又按照由左往右

化学元素周期表的发展史

化学元素周期表的发展史 (海南大学) 科技是人类社会发展的动力,科学技术的发展史无疑是世界上最伟大的历史。选修了《文明通史—科技史源流》这门课,我了解到许多科学技术在千万年历史中的发展轨迹,科学的探索是个艰难的过程,无数的科学家,实践家为此付诸了毕生的精力。就像对于元素周期表,人们往往将它的发现完全归功于俄国化学家门捷列夫,然而,研究元素周期律的科学家不止门捷列夫一人,在这一百年间有许多科学家都做出了贡献。我们不了解他们,但是他们却在元素周期表发展过程中占据着不可或缺的位置,可以说,没有他们,就没有元素周期表。 门捷列夫发现了元素周期律和元素周期表后,在元素周期律的指导下,利用元素之间的一些规律性知识来分类学习物质的性质,就使化学学习和研究变得有规律可循。现在,化学家们已经能利用各种先进的仪器和分析技术对化学世界进行微观的探索,并正在探索利用纳米技术制造出具有特定功能的产品,使化学在材料、能源、环境和生命科学等研究上发挥越来越重要的作用。 一.元素周期表的诞生 对元素之间的关系进行考察研究的科学家,当首推法国人拉瓦锡。1789 年,拉瓦锡曾运用分类比较法,就当时他所确认的33 种元素(部分为单质和化合物)进行过分类研究,提出了世界上第一张元素表,开创了元素分类研究的先河。 1803 年,英国物理化学家道尔顿在创立近代原子论的同时,提出了原子量概念和测定工作。然而,由于测量方法的不同和选择相对标准上的差异,原子量曾一度出现长时间的混乱现象。 1829 年,德贝莱纳对元素的原子量与化学性质之间的关系进行了分类比较研究。

1850年,培顿科弗认识到相似元素组不应限于3 个元素,而且发现组内各元素的原子量之差常为8 或其倍数。1853 年,格拉斯顿提出同组元素在原子量上有3 种不同类型。 1854年,库克将元素分为6 系。 1859年,杜马鉴于同系有机化合物分子量之间都有一个公差,从而联想到性质相似的同系元素的原子量之间也应有一个公差,但所得数值与实验值却有相当大的出入。因此,这些工作同德贝莱纳一样,仍然只局限在部分元素的分类研究上,尚未发现其本质规律。 1862 年,法国化学家尚古多进一步对原子量与元素性质之间的变化关系进行分类比较和数理分析。他将当时已知的62 个元素,按原子量的大小循环标记在绕着圆柱体上升的螺旋线上,从而创造了一个“螺旋图”,从科学认识的角度来分析,尚古多是第一个从整体上考虑元素性质与原子量之间关系的化学家,他的归纳与见解向元素周期律迈出了有力的一步。 1857 年,欧德林以当量为基础,发表了一篇论文,其中附有一个“元素表”,将元素分为13 类。1864 年,他修改了以前的元素表,以“原子量和元素符号”为题重新发表了他的第二张元素表,这张元素表还隐显出元素性质随原子量周期性变化的规律。 1865 年,纽兰兹把元素按原子量大小顺序排列后,发现“从任何一个元素起,每隔8 个元素就与第一个元素的性质相似”。这类似于八度音程,纽兰兹称其为“八音律”。为了符合八音律,他机械地依当时的原子量大小将元素排列成每列具有8 个元素的“八音律表”,整个表显得相当混乱。这种机械的研究方法无法找出元素之间的本质规律。 1864 年,迈耶尔在《现代化学理论》一书中刊出了一个“六元素表”,已经具有了周期表的雏型。1868 年,迈耶尔发表了《原子体积周期性图解》,该图充分显示出原子量与原子体积之间的周期性关系。第二年,他又制作成了他的第二张化学元素周期表,指出元素性质是原子体积的函数。

门捷列夫与元素周期表的小故事

门捷列夫与元素周期表不得不说的故事 宇宙万物是由什么组成的?古希腊人以为是水、土、火、气四种元素,古代中国则相信金、木、水、火、土五种元素之说。到了近代,人们才渐渐明白:元素多种多样,决不止于四五种。18世纪,科学家已探知的元素有30多种,如金、银、铁、氧、磷、硫等,到19世纪,已发现的元素已达54种。 人们自然会问,没有发现的元素还有多少种?元素之间是孤零零地存在,还是彼此间有着某种联系呢? 门捷列夫发现元素周期律,揭开了这个奥秘。 原来,元素不是一群乌合之众,而是像一支训练有素的军队,按照严格的命令井然有序地排列着,怎么排列的呢?门捷列夫发现:元素的原子量相等或相近的,性质相似相近;而且,元素的性质和它们的原子量呈周期性的变化。 门捷列夫激动不已。他把当时已发现的60多种元素按其原子量和性质排列成一张表,结果发现,从任何一种元素算起,每数到8个就和第一个元素的性质相近,他把这个规律称为“八音律”。 门捷列夫是怎样发现元素周期律的呢? 1834年2月7日,伊万诺维奇〃门捷列夫诞生于西伯利亚的托波尔斯克,父亲是中学校长。16岁时,进入圣彼得堡师范学院自然科学教育系学习。毕业后,门捷列夫去德国深造,集中精力研究物理化学。1861年回国,任圣彼得堡大学教授。 在编写无机化学讲义时,门捷列夫发现这门学科的俄语教材都已陈旧,外文教科书也无法适应新的教学要求,因而迫切需要有一本新的、能够反映当代化学发展水平的无机化学教科书。 这种想法激励着年轻的门捷列夫。当门捷列夫编写有关化学元素及其化合物性质的章节时,他遇到了难题。按照什么次序排列它们的位置呢?当时化学界发现的化学元索已达63种。为了寻找元素的科学分类方法,他不得不研究有关元素之间的内在联系。研究某一学科的历史,是把握该学科发展进程的最好方法。门捷列夫深刻地了解这一点,他迈进了圣彼得堡大学的图书馆,在数不尽的卷帙中逐一整理以往人们研究化学元素分类的原始资料…… 门捷列夫抓住了化学家研究元素分类的历史脉络,夜以继日地分析思考,简直着了迷。夜深人静,圣彼得堡大学主楼左侧的的门捷列夫的居室仍然亮着灯光,仆人为了安全起见,推开了门捷列夫书房的门。 “安东!”门捷列夫站起来对仆人说:“到实验室去找几张厚纸,把筐也一起拿来。” 安东是门捷列夫教授家的忠实仆人。他走出房门,莫名其妙地耸耸肩膀,很快就拿来一卷厚纸。“帮我把它剪开。” 门捷列夫一边吩咐仆人,一边动手在厚纸上画出格子。 “所有的卡片都要像这个格于一样大小。开始剪吧,我要在上面写字。” 门捷列大不知疲倦地工作着。他在每一张卡片上都写上了元素名称、原于量、化合物的化学式和主要性质。筐里逐渐装满了卡片。门捷列夫把它们分成几类,然后摆放在一个宽大的实验台上。接下来的日子,门捷列夫把元素卡片进行系统地整理。门捷列夫的家人看到一向珍惜时间的教授突然热衷于“纸牌”感到奇怪。门捷列夫旁若无人,每天手拿元素卡片像玩纸牌那样,收起、摆开,再收起、再摆开,皱着眉头地玩“牌”……冬去春来。门捷列夫没有在杂乱无章的元素卡片中找到内在的规律。有一天,他又坐到桌前摆弄起“纸牌”来了,摆着,摆着,门捷列夫像触电似的站了起来,在他面前出现了完全没有料到的现象,每一行元素的性质都是按照原子量的增大而从上到下地逐渐变

相关文档
最新文档