高三复习:二项式定理-知识点、题型方法归纳

高三复习:二项式定理-知识点、题型方法归纳
高三复习:二项式定理-知识点、题型方法归纳

绵阳市开元中学高2014级高三复习

《二项式定理》 知识点、题型与方法归纳

制卷:王小凤 学生姓名:___________

一.知识梳理

1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *

)这个公式所表示的定

理叫二项式定理,右边的多项式叫(a +b )n

的二项展开式. 其中的系数

C r n (r =0,1,…,n )叫

二项式系数. 式中的C r n a n -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n a

n -r b r . 2.二项展开式形式上的特点 (1)项数为n +1.

(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .

(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .

(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .

3.二项式系数的性质

(1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r

n n C C -=

(2)增减性与最大值:二项式系数C k n

,当k <n +1

2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n

C 取得最大值;当n 是奇数时,中间两项

1122n n n

n

C

C

-+=取得最大值.

(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n

C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2

n -1

. 一个防范

运用二项式定理一定要牢记通项T r +1=C r n a

n -r b r

,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 一个定理

二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项

式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用

(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.

(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质

(1)对称性;(2)增减性;(3)各项二项式系数的和;

二.题型示例

【题型一】求()n x y +展开特定项

例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( )

A.6

B.7

C.8

D.9

解:由条件得

C 5n 35=C 6n 36,∴

n !

5!(n -5)!

n !6!(n -6)!

×3,

∴3(n -5)=6,n =7.故选B.

例2:(2014·大纲)? ????x

y

-y x 8的展开式中x 2y 2的系数为________.(用数字作答)

解:? ????x y -y x 8展开式的通项公式为T r +1=C r 8? ????x y 8-r ?

????-y x r =()33842281r r r r C x y ---,

令8-32r =2,解得r =4,此时32r -4=2,所以展开式中x 2y 2的系数为(-1)4C 4

8=70.故填70.

【题型二】求()()m n a b x y +++展开特定项

例1:在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) A .74

B .121

C .-74

D .-121

解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 3

8(-1)3=-121.

【题型三】求()()m n a b x y +?+展开特定项

例1:(2013·全国课标卷Ⅱ)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A.-4 B.-3 C.-2 D.-1

解:(1+ax )(1+x )5的展开式中x 2项为C 25x 2+ax ·

C 1

5x =10x 2+5ax 2=(10+5a )x 2.

∵x 2的系数为5, ∴10+5a =5,a =-1.故选D.

例2:(2014·浙江卷)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( ) A .45

B .60

C .120

D .210

解析 在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n

4,故f (m ,n )=C m 6·C n 4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,

所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,故选C.

例3:已知数列{}n a 是等差数列,且6710a a +=,则在1212()()

()x a x a x a ---的展开式中,

11

x 的系数为_______.

解:11x 的系数为121267()6()60a a a a a -++

+=-+=-。

【题型四】求()n x y z ++展开特定项 例1:求?

??

??x 2+1x +

25

(x >0)的展开式经整理后的常数项. 解法一:? ????x 2+1

x +

25

在x >0时可化为? ????x 2

+1x 10, 因而

T r +1=C r 10?

?

???1210-r ()x 10-2r ,则r =5时为常数项,即C 510·? ??

??125=6322.

解法二:所给的式子为三项式,采用两个计数原理求解.

分三类:①5个式子均取2,则C 5

5()25=42;

②取一个x 2,一个1x ,三个2,则C 15? ????12C 1

4()23=202;

③取两个x 2,两个1x ,一个2,则C 25? ????122C 23

2=

1522. 所以,常数项为42+202+1522=632

2.

点拨:三项式的展开式问题,通常可用解法一化为二项式问题,或用解法二化为计数问题. 例2:若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ).

A .11

B .33

C .55

D .66

解:展开后,每一项都形如a b c x y z ,其中10a b c ++=,该方程非负整数解的对数为

210266C +=。

例3:[2015·课标全国卷Ⅰ](x 2+x +y )5的展开式中,x 5y 2

的系数为( )

A .10

B .20

C .30

D .60

解析 易知T r +1=C r 5(x 2+x )5-r y r ,令r =2,则T 3=C 25(x 2

+x )3y 2,对于二项式(x 2+x )3,由T t +1=C t 3(x 2)3-t x t =C t 3x 6-t ,令t =1,所以x 5y 2的系数为C 25C 13=30.

【题型五】二项式展开逆向问题

例1:(2013·广州毕业班综合测试)若C 1n +3C 2n +32C 3n +…+3

n -2C n -1

n +3n -1=85,则n 的值为( )

A.3

B.4

C.5

D.6

解:由C 1n +3C 2n +…+3n -2C n -1n

+3n -1=13[(1+3)n -1]=85,解得n =4.故选B.

【题型六】赋值法求系数(和)问题

例1:已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.

求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7;

(3)a 0+a 2+a 4+a 6; (4)||a 0+||a 1+||a 2+…+||a 7. 解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.①

令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2.

(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1094.③ (3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1093.④

(4)∵(1-2x )7的展开式中,a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, ∴||a 0+||a 1+||a 2+…+||a 7=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7),

∴所求即为④-③(亦即②),其值为2187.

点拨:①“赋值法”普遍运用于恒等式,是一种处理二项式相关问题比较常用的方法.对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式各项系数之和,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可

.②若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之

和为a 0+a 2+a 4+…=f (1)+f (-1)

2

,偶数项系数之和为a 1+a 3+a 5+…=

f (1)-f (-1)

2

.

例2:设? ??

??22+x 2n

=a 0+a 1x +a 2x 2+…+a 2n x 2n ,则(a 0+a 2+a 4+…+a 2n )2-(a 1+a 3+a 5+…

+a 2n -1)2=_______________________.

解:设f (x )=? ????22+x 2n

,则(a 0+a 2+a 4+…+a 2n )2-(a 1+a 3+a 5+…+a 2n -1)2=(a 0+a 2+

a 4+…+a 2n -a 1-a 3-a 5-…-a 2n -1)(a 0+a 2+a 4+…+a 2n +a 1+a 3+a 5+…+a 2n -1)=f (-1)·f (1)

=? ????22-12n ·? ??

??22+12n =? ????-122n =? ????14n .

例3:已知(x +1)2(x +2)2014=a 0+a 1(x +2)+a 2(x +2)2+…+a 2016(x +2)2016,则a 12+a 222+a 3

23+…+a 2016

22016的值为______.

解:依题意令x =-32,得? ????-32+12? ????-32+22014=a 0+a 1? ????-32+2+a 2? ??

??-32+22

+…+

a 2016? ????-32+22016

,令x =-2得a 0=0,则a 12+a 222+a 323+…+a 201622016=? ????122016.

【题型七】平移后系数问题 例1:若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5, 其中a 0,a 1,a 2,…,a 5为实数,则a 3=____________.

解法一:令x +1=y ,(y -1)5=a 0+a 1y +a 2y 2+…+a 5y 5,故a 3=C 2

5(-1)2=10.

解法二:由等式两边对应项系数相等.即:?????a 5=1,C 4

5a 5+a 4=0,C 3

5a 5+C 34a 4+a 3=0,解得a 3=10.

解法三:对等式:f (x )=x 5=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5两边连续对x 求导三次得:60x 2=6a 3+24a 4(1+x )+60a 5(1+x )2,再运用赋值法,令x =-1得:60=6a 3,即a 3=10.

故填10.

【题型八】二项式系数、系数最大值问题

例1:? ?

???x +12x n 的展开式中第五项和第六项的二项式系数最大,则第四项为________.

解析 由已知条件第五项和第六项二项式系数最大,得n =9,? ?

???x +12x 9展开式的第四项

为T 4=C 39·(

x )6

·? ??

??12x 3=21

2. 例2:把(1-x )9的展开式按x 的升幂排列,系数最大的项是第________项

A .4

B .5

C .6

D .7

解析 (1-x )9展开式中第r +1项的系数为C r 9(-1)r

,易知当r =4时,系数最大,即第5

项系数最大,选B.

例3:(1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.

解:T 6=C 5n (2x )5,T 7=C 6n (2x )6,

依题意有C 5n ·25=C 6n ·26

,解得n =8.所以(1+2x )8的展开式中,二项式系数最大的项为T 5=C 48·(2x )4=1 120x 4

.

设第r +1项系数最大,则有?????C r 8·2r ≥C r -18·2r -1,

C r 8·2r ≥C r +18·2r +1,

解得5≤r ≤6.所以r =5或r =6,所以系数最大的项为T 6=1 792x 5或T 7=1 792x 6. 点拨:

(1)求二项式系数最大项:①如果n 是偶数,则中间一项? ??

??

第n 2+1项的二项式系数最大;②

如果n 是奇数,则中间两项(第n +12项与第n +1

2+1项)的二项式系数相等并最大.(2)求展开式系数最大项:如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,列出不等

式组???A r ≥A r -1,A r ≥A r +1

,从而解出r ,即得展开式系数最大的项.

【题型九】两边求导法求特定数列和

例1:若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=________. 解析 原等式两边求导得5(2x -3)4·(2x -3)′=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4,令上式中x =1,得a 1+2a 2+3a 3+4a 4+5a 5=10. 【题型十】整除问题

例1:设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12 解析 512 012+a =(52-1)2 012+a

=C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011+C 2 0122 012·(-1)2 012+a , ∵C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011能被13整除. 且512 012+a 能被13整除,∴C 2 0122 012·(-1)

2 012+a =1+a 也能被13整除. 因此a 可取值12.

例2:已知m 是一个给定的正整数,如果两个整数a ,b 除以m 所得的余数相同,则称a 与b 对模m 同余,记作a ≡b (mod m ),例如:5≡13(mod 4).若22015≡r (mod 7),则r 可能等于( )

A.2013

B.2014

C.2015

D.2016

解:22015=22×23×671=4×8671=4(7+1)671=4(7671+C 16717670+…+C 6706717+1).因此2

2015

除以7的余数为4.经验证,只有2013除以7所得的余数为4.故选A.

三.自我检测

1、(2013·青岛一检)“n =5”是“?

?

????2x +13x n (n ∈N *)的展开式中含有常数项”的( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

2、已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n

n 等于( )

A .63

B .64

C .31

D .32

3、组合式C 0n -2C 1n +4C 2n -8C 3n +…+(-2)n C n n 的值等于 ( )

A .(-1)n

B .1

C .3n

D .3n -1

4、若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________.

5、已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=( ) A .-180

B .180

C .45

D .-45

6、(1+2x )3(1-x )4展开式中x 项的系数为 ( ) A .10

B .-10

C .2

D .-2

7、(1+x )8(1+y )4的展开式中x 2y 2的系数是________. 8、在3450(1)(1)(1)x x x ++++

++的展开式中,3x 的系数为( )

A. 351C

B. 450C

C. 451C

D. 4

47C

9、在(x +1)(2x +1)…(nx +1)(n ∈N *)的展开式中一次项系数为( )

A .C 2n

B .

C 2n +1 C .C n -1

n

D.12C 3

n +1

10、(2015·安徽合肥二检)(x 2-x +1)10展开式中x 3项的系数为________

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

二项式定理高考题(带答案)

年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则,所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为, % 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】 决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D.

【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为 __________. ' 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解: 的展开式为: ,当 ,时,,当 , 时,,据 此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 ¥ A .80- B .40- C .40 D .80 【答案】C

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

高三数学 二项式定理

二项式定理 1. 知识精讲: (1)二项式定理:()n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(* ∈N n ) 其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555 156b a C T T n n -+== 亦可写成:=+1r T r n r n a b a C )( ()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n x C x C x C x C x +++++=+-ΛΛ101(* ∈N n ) 其中,r n C ——二项式系数。而系数是字母前的常数。 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 解:设n n n n n n n C C C C S 13 21393-++++=Λ,于是: n n n n n n n C C C C S 333333 3221++++=Λ=133333 32210 -+++++n n n n n n n C C C C C Λ 故选D 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数解:(1)7 (12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7 (12)x +的展开式的第四项的系数是280. (2)∵9 1()x x -的展开式的通项是9921991 ()(1)r r r r r r r T C x C x x --+=-=-, ∴923r -=,3r =, ∴3x 的系数339(1)84C -=-,3 x 的二项式系数3984C =. (2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的 二项式系数相等,即ΛΛ,,,,22110k n n k n n n n n n n n n n C C C C C C C C ---==== ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果

二项式定理高考题含答案

二项式定理 高考真题 一、选择题 1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D ) (A )42 (B )35 (C )28 (D )21 2.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )10 3.(2012·天津高考理科·T5)在的二项展开式中,的系数为 ( D ) (A)10 (B)-10 (C)40 (D)-40 4.(2011.天津高考理科.T5)在6 的二项展开式中,2 x 的系数为 ( C ) (A )15 4- (B )15 4 (C )38- (D )3 8 5.(2012·重庆高考理科·T4)821?? ? ??+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A ) (A)270- (B)90- (C)90 (D)270 7. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D ) 8.(2011·新课标全国高考理科·T8)的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20 (D )40

9. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8 (D)9 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C ) (A )20- (B )15- (C )15 (D )20 二、填空题 11. (2013·天津高考理科·T10)6x ? ? 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11) 的展开式中含的项的系数为 17 . 13.(2011·全国高考理科·T13))20的二项展开式中,x 的系数与x 9的系数之差为 0 . 14.(2011·四川高考文科·T13) 91)x +(的展开式中3x 的系数是 84 (用数字作答). 15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=-Λ(,则 1110a a += 0 . 17.(2011·广东高考理科·T10)的展开式中, 的系数是___84___ (用数字作答) 18.(2011·山东高考理科·T14)若6 x ? ??的展开式的常数项为60,则常数a 的值为 4 . 19.(2012·大纲版全国卷高考理科·T15)若n x x )1 (+的展开式中第3项与第7项的二项式系数相等,则该展开式中2 1x 的系数为__56_____.

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

二项式定理知识点及典型题型总结

、基本知识点 n On 1n 1. 1 rnrr nn, 1、二项式疋理:(a b) Ca 6a b C.a b C n b (n N ) 2、几个基本概念 (1)二项展开式:右边的多项式叫做(a b)n的二项展开式 (2)项数:二项展开式中共有n 1项 (3)二项式系数:C n (r 0,1,2, ,n)叫做二项展开式中第r 1项的二项式系数 (4)通项:展开式的第r 1项,即T r 1 C;a n r b r (r 0,1, ,n) 3、展开式的特点 (1) 系数都是组合数,依次为c,,c:,c n,…,c n (2) 指数的特点①a的指数由厂0(降幕)。 ②b的指数由0 * n (升幕)。 ③a和b的指数和为n。 (3) 展开式是一个恒等式,a, b可取任意的复数,n为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等?即C m c:m (2)增减性与最值 二项式系数先增后减且在中间取得最大值 n 当n是偶数时,中间一项取得最大值c n2 n 1 n 1 当n是奇数时,中间两项相等且同时取得最大值=CF 二项式定理 c0 c1 c2 (3)二项式系数的和:Cn Cn Cn Cn C:奇数项的二项式系数的和等于偶数项的二项式系数和2n 即C0+Cn+L W + L =2n-1

二项式定理的常见题型 一、求二项展开式 1?“ (a b)n”型的展开式 例1?求(3 . x1 )4的展开式;a J x 2. “(a b)n”型的展开式 —1 例2?求)4的展开式; J V 3?二项式展开式的“逆用” 例3?计算 1 3C:9C2 27 C3 .... ( 1)勺匕:; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知(£.. X)9的展开式中x3的系数为9,常数a的值为_______________ x \ 2 4 2.确定二项展开式的常数项 例5. (-x 31 )10展开式中的常数项是_________________ 3' X

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

(完整版)二项式定理高考题(带答案)

1.2018年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则, 所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为 , 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】

决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D. 【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为__________. 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解:的展开式为:,当,时,,当,时,

,据此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 A .80- B .40- C .40 D .80 【答案】C 【解析】 8.【2017浙江,13】已知多项式() 1x +3 ()2x +2=5432112345x a x a x a x a x a +++++,则 4a =________,5a =________.

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结 知识点精讲 一、二项式定理 ()n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100+?++?++=+--( )* N n ∈. 展开式具有以下特点: (1)项数:共1+n 项. (2)二项式系数:依次为组合数n n n n n C C C C ,?,,,2 1 . (3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地, ()n n n n n n x C x C x C x +?+++=+22111. 二、二项式展开式的通项(第1+r 项) 二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ?=.其中r n C 的二项式系数.令变量(常用x )取1, 可得1+r T 的系数. 注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r r n r n b a C -是第1+r 项,而不是第r 项; ②在通项公式r r n r n r b a C T -+=1中,含n r b a C T r n r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的 情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指n n n n n C C C C ,?,,,2 1 而言,不包括字母b a ,所表示的式子中的系数.例如: ()n x +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而r x 的系数应该是 r n r n C -2(即含r x 项的系数). (2)二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即 22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=. ②二项展开式中间项的二项式系数最大. 如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2 最大;如果二项式的幂指数n 是奇数,中间项有两项,即为第21+n 项和第 12 1 ++n 项,它们的二项式系数21-n n C 和21 +n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和 011+12n n n n n n C C C ++?+==() .

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

(完整word版)二项式定理历年高考试题荟萃

圆梦教育中心二项式定理历年高考试题 一、填空题 ( 本大题共 24 题, 共计 120 分) 1、 (1+2x)5的展开式中x2的系数是。(用数字作答) 2、的展开式中的第5项为常数项,那么正整数的值是 . 3、已知,则(的值等 于。 4、(1+2x2)(1+)8的展开式中常数项为。(用数字作答) 5、展开式中含的整数次幂的项的系数之和为。(用数字作答) 6、(1+2x2)(x-)8的展开式中常数项为。(用数字作答) 7、的二项展开式中常数项是。(用数字作答). 8、 (x2+)6的展开式中常数项是。(用数字作答) 9、若的二项展开式中的系数为,则。(用数字作答) 10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等于。 11、(x+)9展开式中x3的系数是。(用数字作答)

12、若展开式的各项系数之和为32,则n= 。其展开式中的常数项为。(用数字作答) 13、的展开式中的系数为。(用数字作答) 14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= 。 15、(1+2x)3(1-x)4展开式中x2的系数为 . 16、的展开式中常数项为 ; 各项系数之和为.(用数字作答) 17、 (x)5的二项展开式中x2的系数是____________.(用数字作答) 18、 (1+x3)(x+)6展开式中的常数项为_____________. 19、若x>0,则(2+)(2-)-4(x-)=______________. 20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________. 21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= . 22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答) 23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________. 24、展开式中x的系数为.

二项式定理知识点及典型题型总结

二项式定理 一、基本知识点 1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n 2、几个基本概念 (1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项 (3)二项式系数:),,2,1,0(n r C r n =叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T r r n r n r ==-+ 3、展开式的特点 (1)系数 都是组合数,依次为C 1n ,C 2n ,C n n ,…,C n n (2)指数的特点①a 的指数 由n 0( 降幂)。 ②b 的指数由0 n (升幂)。 ③a 和b 的指数和为n 。 (3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值 二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C (3)二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和.即 m n n m n C C -=n n n k n n n n C C C C C 2 210=+???++???+++∴0213 n-1 n n n n C +C +=C +C + =2

二项式定理的常见题型 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式;a 2. “n b a )(-”型的展开式 例2.求4)13(x x -的展开式; 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2(x x a -的展开式中3x 的系数为4 9 ,常数a 的值为 2.确定二项展开式的常数项

二项式定理高考试题及其答案总

二项式定理历年高考试题荟萃(一) 一、选择题 ( 本大题共 58 题) 1、二项式的展开式中系数为有理数的项共有………() A.6项 B.7项 C.8项 D.9项 2、对于二项式(+x3)n(n∈N),四位同学作出了四种判断:…() ①存在n∈N,展开式中有常数项; ②对任意n∈N,展开式中没有常数项; ③对任意n∈N,展开式中没有x的一次项; ④存在n∈N,展开式中有x的一次项. 上述判断中正确的是 (A)①与③(B)②与③(C)②与④(D)④与① 3、在(+x2)6的展开式中,x3的系数和常数项依次是…………() (A)20,20 (B)15,20(C)20,15 (D)15,15 4、(2x3-)7的展开式中常数项是……………………………………………………… () A.14 B.- 14 C.42 D.-42 5、已知(x-)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是……………………………………………………………() (A)28 (B)38 (C)1或 38 (D)1或28

6.若(+)n展开式中存在常数项,则n的值可以是…………() A.8 B.9 C.10 D.12 7 .(2x+)4的展开式中x3的系数是……………………………………() A.6 B.12 C.24 D.48 8、(-)6的展开式中的常数项为…………………………………() A.15 B.- 15 C.20 D.-20 9、(2x3-)7的展开式中常数项是…………………………………………() A.14 B.- 14 C.42 D.-42 10、若(+)n展开式中存在常数项,则n的值可以是………………() A.8 B.9 C.10 D.12 11、若展开式中含项的系数与含项的系数之比为-5,则n等 于 A.4 B.6 C.8 D.10 12、的展开式中,含x的正整数次幂的项共有() A.4项 B.3项 C.2项 D.1项

二项式定理常见题型

二项式定理 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项增到n ,是升幂排列。各项的次数和 等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L L L 令则①令则024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=L L ②①②得奇数项的系数和①②得偶数项的系数和 ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n n C -,12n n C +同时取得最 大值。 ⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别 为121,,,n A A A +???,设第1r +项系数最大,应有112 r r r r A A A A +++≥??≥?,从而解出r 来。

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

(完整word版)高考数学二项式定理专题复习专题训练)

二项式定理 1.二项式定理:)*()(011111100N n b a C b a C b a C b a C b a n n n n n n n n n n n ∈++???++=+---. 2.二项式定理的说明: (1)()n a b +的二项展开式是严格按照a 的降次幂(指数从n 逐项减到0)、 b 的升次幂(数从0逐项减到n )排列的,其顺序不能更改,且各项关于a 、b 的指数之和等于n 。所以()n a b +与()n b a +的二项展开式是不同的。 (3)二项式项数共有(1)n +项,是关于a 与b 的齐次多项式。 (4)二项式系数:展开式中各项的系数为1-r n C ,1,...,3,2,1+=n r . (5)二项式通项:展开式中的第r 项记作r T , )(1,...,3,2,11 11+==--+-n r b a C T r r n r n r ,共有(1)n +项。 (6)正确区分二项式系数与项的系数:二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ?????? 项的系数是a 与b 的系数(包括二项式系数)。 如:n n r r n n n n n n n n b C b a C b a C b a C a C b a )()()()()(----n r 2221110+???++???+++=---的 第2项的二次项系数为1n C ,而第2项的系数为1 n C -. (7)常见二项式: 令1,,a b x ==)*()1(111100N n x C x C x C x C x n n n n n n n n n ∈++???++=+--; 令1,,a b x ==-)*()1()1(221100N n x C x C x C x C x n n n n n n n n ∈-+???++-=-. 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等: 即k n n k n n n n n n n C C C C C C --=???==,,,110 .

高三数学-二项式定理

10.3二项式定理强化训练 【基础精练】 1.在二项式(x 2-1 x )5的展开式中,含x 4的项的系数是 ( ) A .-10 B .10 C .-5 D .5 2.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( ) A .45 B .55 C .70 D .80 3.在( 1x + 51 x 3 )n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数 是 ( ) A .330 B .462 C .682 D .792 4.如果? ?? ?? 3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为 ( ) A .10 B .6 C .5 D .3 5.在? ? ??? 2x -y 25的展开式中,系数大于-1的项共有 ( ) A .3项 B .4项 C .5项 D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( ) A .第2n +1项 B .第2n +2项 C .第2n 项 D .第2n +1项和第2n +2项 7.若(x 2+1 x 3)n 展开式的各项系数之和为32,则其展开式中的常数项是________. 8.( x +2 x 2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用 数字作答) 9.若? ? ? ??2x - 229 的展开式的第7项为214,则x =________. 10.已知(x - 124 x )n 的展开式中,前三项系数的绝对值依次成等差数列.

(1)证明:展开式中没有常数项; (2)求展开式中所有有理项. 11.设(2x-1)5=a0+a1x+a2x2+…+a5x5,求: (1)a0+a1+a2+a3+a4; (2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|; (3)a1+a3+a5; (4)(a0+a2+a4)2-(a1+a3+a5)2. 【拓展提高】 1.在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.

高三复习:二项式定理-知识点、题型方法归纳

绵阳市开元中学高2014级高三复习 《二项式定理》 知识点、题型与方法归纳 制卷:王小凤 学生姓名:___________ 一.知识梳理 1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N * )这个公式所表示的定 理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式. 其中的系数 C r n (r =0,1,…,n )叫 二项式系数. 式中的C r n a n -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n a n -r b r . 2.二项展开式形式上的特点 (1)项数为n +1. (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n . 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项 1122n n n n C C -+=取得最大值. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1 . 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 一个定理 二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项 式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例 【题型一】求()n x y +展开特定项 例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) A.6 B.7 C.8 D.9 解:由条件得 C 5n 35=C 6n 36,∴ n ! 5!(n -5)! = n !6!(n -6)! ×3, ∴3(n -5)=6,n =7.故选B. 例2:(2014·大纲)? ????x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 解:? ????x y -y x 8展开式的通项公式为T r +1=C r 8? ????x y 8-r ? ????-y x r =()33842281r r r r C x y ---, 令8-32r =2,解得r =4,此时32r -4=2,所以展开式中x 2y 2的系数为(-1)4C 4 8=70.故填70. 【题型二】求()()m n a b x y +++展开特定项 例1:在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) A .74 B .121 C .-74 D .-121 解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 3 8(-1)3=-121. 【题型三】求()()m n a b x y +?+展开特定项 例1:(2013·全国课标卷Ⅱ)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A.-4 B.-3 C.-2 D.-1 解:(1+ax )(1+x )5的展开式中x 2项为C 25x 2+ax · C 1 5x =10x 2+5ax 2=(10+5a )x 2.

相关文档
最新文档