等差数列通项公式及应用习题

等差数列通项公式及应用习题
等差数列通项公式及应用习题

等差数列的通项公式及应用习题

一、单选题(每道小题 3分共 63分 )

1. 已知等差数列{a n }中,a2=2,a5=8,则数列的第10项为

A.12 B.14 C.16 D.18

2. 已知等差数列前3项为-3,-1,1,则数列的第50项为

[ ] A.91 B.93 C.95 D.97

3. 已知等差数列首项为2,末项为62,公差为4,则这个数列共有

[ ] A.13项 B.14项 C.15项 D.16项

4. 已知等差数列的通项公式为a n=-3n+a,a为常数,则公差d=

[ ]

5. 已知等差数列{a n }中,a1=1,d=3,那么当a n=298时,项数n

等于

[ ] A.98 B.99 C.100 D.101

6. 在等差数列{a n }中,若a3=-4,a5=11,则 a11等于

[ ] A.56 B.18 C.15 D.45

7. 在等差数列{a n } 中,若a1+a2=-18,a5+a6=-2,则30是这个数列的

[ ] A.第22项 B.第21项 C.第20项 D.第19项

[ ] A.45 B.48 C.52 D.55

9. 已知等差数列{a n }中,a8比a3小10,则公差d的值为

[ ] A.2 B.-2 C.5 D.-5

10. 已知等差数列{a n }中,a6比a2大10个单位,则公差d的值为

[ ]

11. 已知数列a,-15,b,c,45是等差数列,则a+b+c的值是

[ ] A.-5 B.0 C.5 D.10

12. 已知等差数列{a n }中,a1+a2+a3=-15,a3+a4=-16,则a1=

[ ] A.-1 B.-3 C.-5 D.-7

13. 已知等差数列{a n}中,a10=-20,a20n=20,则这个数列的首项a1为

[ ] A.-56 B.-52 C.-48 D.-44

14. 已知等差数列{a n }满足a2+a7=2a3+a4,那么这个数列的首项是

[ ]

15. 已知等差数列{a n }中,a10=10,a12=16,则这个数列的首项是

[ ] A.-6 B.6 C.-17 D.17

16. 已知数列{a n }是等差数列,且a3+a11=40,则a6+a7+a8等于

[ ] A.84 B.72 C.60 D.43

17. 已知数列-30,x,y,30构成等差数列,则x+y=

[ ] A.20 B.10 C.0 D.40

18. 已知等差数列的首项a1和公差d是方程x2-2x-3=0的两根,且知d>a,则这个数列的第30项是

[ ] A.86 B.85 C.84 D.83

19. 已知等差数列{a n }中,a1+a3+a5=3,则a2+a4=

[ ] A.3 B.2 C.1 D.-1

20. 等差数列{a n }中,已知a5+a8=a,那么a2+a5+a8+a11的值为

[ ] A.a B.2a C.3a D.4a

[ ] A.第21项 B.第41项 C.第48项 D.第49项

二、填空题(每道小题 3分共 12分 )

1. 等差数列7,11,15,…,195,共有__________项.

2. 已知等差数列5,8,11,…,它的第21项为_________.

3. 已知等差数列-1,-4,-7,-10,…,则-301是这个数列的第______项.

4. 已知等差数列{a n }中,a4=10,a8=22,则a10=_____________.

等差数列的通项公式及应用习题1答案

一、单选题

1. D

2. C

3. D

4. A

5. C

6. A

7. B

8. A

9. B

10. B

11. A

12. B

13. A

14. C

15. C

16. C

17. C

18. A

19. B

20. B

21. C

二、填空题

1. 48

2. 65

3. 101

4. 28

(完整版)等差数列的通项公式及应用习题

等差数列的通项公式及应用习题 1. 已知等差数列{a n }中,a2=2, a5=8,贝擞列的第10项为() A. 12 B . 14 C. 16 D. 18 2. 已知等差数列前3项为-3, -1, 1,则数列的第50项为() A . 91 B. 93 C. 95 D. 97 3. 已知等差数列首项为2,末项为62,公差为4,则这个数列共有 A . 13 项 B . 14 项C. 15 项D. 16 项 4. 已知等差数列的通项公式为a n=-3n+a, a为常数,则公差d=久一3 B, 3 C. 一三 D.- 2 2 5. 已知等差数列{a n }中,a1=1, d=3,那么当a n=298时,项数n等于 A. 98 B . 99 C . 100 D . 101 6. 在等差数列{a n }中,若a3=-4 , a5=11,则an等于 A. 56 B . 18 C . 15 D . 45 7. 在等差数列{a n}中,若a1+a2=-18 , a5+a6=-2,则30是这个数列的

A .第22项B.第21项C.第20项D.第19项 3,在数列中,若ai= 20, =-^ + 1),则时等于 -- A. 45 B. 48 C. 52 D. 55 11. 已知数列a, -15 , b, c, 45是等差数列,则a+b+c的值是 A. -5 B . 0 C . 5 D. 10 12. 已知等差数列{a n}中,a1+a2+a3=-15 , a3+a=-16,贝卩a二 A. -1 B . -3 C . -5 D . -7 13. 已知等差数列{a n }中,a10=-20 , a2°n=20,则这个数列的首 项a为 A. -56 B . -52 C . -48 D . -44 二、填空题 1. 等差数列7,11,15,…,195,共有____________ 项. 2. 已知等差数列5, 8, 11,…,它的第21项为____________ . 3. 已知等差数列-1 , -4 , -7, -10,…,则-301是这个数列的 第_____ .

高中数学复习——数列通项公式的十种求法及相应题目

高中数学复习——数列通项公式的十种求法及 相应题目 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出 3 1(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

高中数学必修五《等差数列的概念、等差数列的通项公式》优秀教学设计

2.2等差数列 2.2.1等差数列的概念、等差数列的通项公式 教学重点理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题 教学难点(1)等差数列的性质,等差数列“等差”特点的理解、把握和应用 (2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 三维目标 一、知识与技能 1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列 2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项 二、过程与方法 1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力; 2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性 三、情感态度与价值观 通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新 知的创新意识 教学过程 导入新课 师上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子 (1)0,5,10,15,20,25, (2)48,53,58,63, (3)18,15.5,13,10.5,8, (4)10 072,10 144,10 216,10 288,10 366, 请你们来写出上述四个数列的第7项 生第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为 师我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说 生这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为 师说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征 生1 每相邻两项的差相等,都等于同一个常数 师作差是否有顺序,谁与谁相减? 生1 作差的顺序是后项减前项,不能颠倒 师以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列 这就是我们这节课要研究的内容 推进新课 等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示

等差数列概念及通项公式经典教案

等差数列的概念及通项公式 【学习目标】 1. 准确理解等差数列、等差中项的概念,掌握等差数列通项公式的求解方法,能够熟练应用通项公式解 决等差数列的相关问题 2. 通项对等差数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生 对数学问题的观察、分析、概括和归纳的能力 3?激情参与、惜时高效,禾U 用数列知识解决具体问题,感受数列的应用价值 【重点】:等差数列的概念及等差数列通项公式的推导和应用 【难点】:对等差数列中“等差”特征的理解、把握和应用 【学法指导】 1.阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法 ; 2.完成教材助读设置的问题,然后结 合课本的基础知识和例题,完成预习自测; 3.将预习中不能解决的问题标出来,并写到后面“我的疑惑” 一、知识温故 1?数列有几种表示方法? 2?数列的项与项数有什么关系? 3函数与数列之间有什么关系? 教材助读 1?一般地,如果一个数列从第 ________ 项起,每一项与它的前一项的差等于 ____________ 常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的 ___________ ,公差通常用字母 ___________________________ 表示。 2.由三个数a 、A 、b 组成的 ___________ 数列可以看成最简单的等差数列。这时 A 叫做a 与b 的等差数列即 3. 如果数列{a n }是公差为d 的等差数列,则a 2 a 1 a 5 a 1 4.通项公式为a n =an+b (a,b 为常数)的数列都是等差数列吗?反之,成立吗? ,a 3 a 1 a 4 a 1 1. 等差数列a 2d , a ,a 2d ?' A . a n a (n 1)d B. C . a n a 2(n 2)d D. 2.已知数列{, a n } 的通项公式为 a n A . 2 B. 3 C. 2 3. 已知a 1 b - 1 ?的通项公式是( a (n 3)d a 2nd 2n ,则它的公差为( D. 3 ,则a 与b 的等差中项为 【预习自测】 a n a n

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 112342421 {},1(1,2,3,)3 (1),,{}.(2)n n n n n n a n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求 1112 {},1(1,2,).:(1){ };(2)4n n n n n n n n a n S a a S n n S n S a +++== ==L 数列的前项和记为已知,证明数列是等比数列 *121 {}(1)()3 (1),; (2):{}. n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列 11211 {},,.2n n n n a a a a a n n +==++ 已知数列满足求 练习1 练习2 练习3 练习4

112{},,,.31n n n n n a a a a a n += =+ 已知数列满足求 1 11511{},,().632n n n n n a a a a a ++==+ 已知数列中,求 1 11{}:1,{}. 31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式 练习8 等比数列 {}n a 的前n 项和S n =2n -1,则 2 232221n a a a a ++++Λ 练习9 求和:5,55,555,5555,…,5(101)9n -,…; 练习5 练习6 练习7

练习10 求和: 111 1447(32)(31) n n +++ ??-?+ L 练习11 求和: 111 1 12123123n ++++= +++++++ L L 练习12 设{} n a 是等差数列, {} n b 是各项都为正数的等比数列,且11 1 a b == ,35 21 a b += , 5313 a b += (Ⅰ)求{} n a , {} n b 的通项公式;(Ⅱ)求数列 n n a b ?? ?? ??的前n项和n S.

等差数列及其通项公式公开课教案

《等差数列及其通项公式》公开课教案教学时间:2009年12月25日上午第四节 授课班级:08商外 授课地点:职三(3) 授课教师:郭玲 一、教学任务及职业背景分析: 商务外语班学生多数数学基础较差,对数学学习也不够重视。但数学作为基础学科,是培养学生分析问题、解决问题的能力及创造能力的载体,特别是本专业学生多数准备出国,更应该加强能力的培养,以适应国外激烈竞争的环境。所以在学习数学过程中,我更强调学习的过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受。在设计本节课时,我所考虑的不是简单告诉学生等差数列的定义和通项公式,而是通过分组分享法,创造一些数学情境,让学生自己去讨论、去发现,去分享,去体验成功。学生在课堂上的主体地位得到充分发挥,激发学习兴趣,培养团队精神,也提高他们提出问题、解决问题的能力和创造力。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。 二、教学目标: 1.知识目标:理解等差数列定义,掌握等差数列的通项公式,能根据通项公式解决 a n 、a 1 、d、n中的已知三个求另一个的问题。 2.能力目标:培养学生观察、推理、归纳能力,应用数学公式解决实际问题的能力。3.德育目标:体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。 三、教学重点:等差数列的定义理解和对通项公式的熟悉与应用 四、教学难点:对等差数列概念中“等差”特点的理解及通项公式的灵活运用 五、教学方法:分组分享法 六、教学手段:多媒体辅助教学 七、教学过程: 【雅思、托福考试常识】 美国、英国、澳大利亚等国家都要求申请留学人员应具备雅思、托福成绩。如果达不到,就需要在国外就读价格昂贵的语言学校。雅思、托福考试词汇量一般在8000个单词左右。 (1)雅思要求:考试科目为阅读、听力、口语、写作4科,每科满分为9分,成绩一般要求平均分5分以上,费用为1450元。(2)托福要求:考试科目也为是阅读、听力、口语、写作4科,每科满分30分,总分为120,成绩一般要求总分达80分以上,费用为1370元。 (一)复习回顾:数列的定义 引例:(1)莺生原来只会500个单词,她决定从今天起每天背记15个单词,那么从今天起她的单词量逐日依次递增为: 500,515,530,545,560,575,…… (2)靓靓目前会1000个单词,她打算从今天起不再背单词了,结果不知不觉每周忘掉20个单词,那么从今天起她的单词量逐周依次递减为:1000 ,980,960,940,920 ,900,…… 【说明】:通过两个具体的数列,复习数列的定义,为后面学习等差数列的定义和等差数列的通项公式建立基础。 (二)导入新课: 这节课我们将学习这一类有特点的数列: 1000,980,960,940,920 ,900 ……① 500, 515 ,530,545,560,575 ……② 问题1:观察这些数列有什么共同的特征?请同学们思考后作答。 共同特点:从第2项起,后一项与它的前一项的差都等于同一个常数。也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列, 我们把它叫做等差数列。 【说明】:通过例题(1)和(2)引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学 生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的 总结又培养学生由具体到抽象、由特殊到一般的认知能力。每相邻两项的 差相等——作差的顺序是后项减前项 问题2:请同学们分别用文字语言和数学语言描述等差数列的定义: 文字语言:一般的,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么,这个数列就叫等差数列,这个常数叫做等差数列的公 差,用字母d表示。 数学语言:a 2 – a 1 = a 3 - a 2 = a 4 - a 3 = ··· = d 即:a n - a n-1 = d (n∈N+且n≥2) 或a n= a n-1 +d (n∈N+且n≥2) 问题3:分组比赛抢答,观察下列数列是否为等差数列,如果是求出公差d (1)25,20,15,10,5……√d=-5

(完整版)数列通项公式的习题

数列通项公式的练习 1、已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. (累加法) 2、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。(累加法) 3、设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2, 3,…),则它 的通项公式是n a =________.(累乘法) 4、n n n a a a a 求已知,2,211n ==+(累乘法) 5、已知数列{}n a 满足112,12n n n a a a a += =+,求数列{}n a 的通项公式。(倒数法) 6、n n n n a a a a a 求已知,1,1 311=+=+(倒数法) 7、已知数列}{n a 中, ,2121,211+==+n n a a a 求通项n a 。(构造法) 8、已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。(构造法) 9、n n n a a n a a 求已知,1,211 =+=+ 10、n n a a n a a 求已知,1,12211 n =-+=+ 11、已知数列{}n a 满足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式。 12、练习.数列{}n a 中,若2,821==a a ,且满足03412=+-++n n n a a a ,求n a . 13、n n n n a a a a 求已知,1,2211=+=+(用求指数幂的方法) 14、n n n n a a a a 求已知,1,33111=+=++(用求指数幂的方法)

等差数列通项公式

等差数列通项公式 教学目标 1.明确等差数列的定义. 2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题 3.培养学生观察、归纳能力. 教学重点 1.等差数列的概念; 2.等差数列的通项公式 教学难点 等差数列“等差”特点的理解、把握和应用 教学方法 启发式数学 教具准备 投影片1张(内容见下面) 教学过程 (I)复习回顾 师:上两节课我们共同学习了数列的定义及给出数列的两种方法――通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片) (Ⅱ)讲授新课 师:看这些数列有什么共同的特点? 1,2,3,4,5,6;① 10,8,6,4,2,…;② ③ 生:积极思考,找上述数列共同特点。 对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1) (n≥2) 对于数列③(n≥1) (n≥2) 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。 师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。 一、定义: 等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个 常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。 如:上述3个数列都是等差数列,它们的公差依次是1,-2,。 二、等差数列的通项公式 师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差 是d,则据其定义可得: 若将这n-1个等式相加,则可得: 即:即:即:…… 由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求 得其通项。 如数列①(1≤n≤6) 数列②:(n≥1) 数列③:(n≥1) 由上述关系还可得:即:则:=如:三、例题讲解 例1:(1)求等差数列8,5,2…的第20项 (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

等差数列定义与通项公式计算

一.等差数列定义与通项公式计算 1.等差数列{a n}中,已知a1=,a2+a5=4,a n=33,则n的值为( ). A.50B.49C.48D.47 2.等差数列{a n}中,a2+a6=8,a3+a4=3,那么它的公差是( ). A.4B.5C.6D.7 3.在等差数列3,7,11,…中,第5项为( ). A.15B.18C.19D.23 4.已知等差数列的首项为,若此数列从第项开始小于,则公差的取值范围____________ 5.等差数列满足,。 (1)求数列的通项公式; (2)求。 二.等差数列性质 1.已知数列为等差数列,若,则 A.B.C.D. 2.设等差数列的前项和记为,若,则等于() A.60B.45C.36D.18 3.在等差数列{}中,已知,则() A.12B.16C.20D.24 4.已知成等差数列、成等比数列,则的最小的值是() A.0B.1C.2D.4 5.等差数列中,,若在每相邻两项之间各插入一个数,使之成为等差数列,那么新的等差数列的公差是 . 6.设等差数列的前n项和为,若,则=______________.

三.等差数列前n项和公式及性质 1.已知等差数列的前项和为,若,则() A.B.C.D. 2.等差数列的前项和,满足,则下列结论中准确的是() A.是中的最大值B.是中的最小值 C.D. 3.在等差数列{a n}中,a2=1,a4=5,则{a n}的前5项和S5=() A.7B.15C.20D.25 4.已知等差数列{a n}的前n项和为S n,S4=40,=210,=130,则n=( ). A.12B.14C.16D.18 5.设等差数列的前n项和为,若,则=______________. 6.在等差数列中,,公差为,前项和为,当且仅当时取最大值,则的取值范围_________. 7.已知等差数列{a n}的前n项的和记为S n.如果a4=-12,a8=-4. (1)求数列{a n}的通项公式; (2)求S n的最小值及其相对应的n的值; 8.设等差数列的前n项的和为S n ,且S 4 =-62, S 6 =-75,求: (1)的通项公式a n及前n项的和S n; (2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |. 9.(本小题12分)设等差数列{a n}的前n项和为S n,已知S3=a6,S8=S5+21. (1)求S n的表达式; (2)求证:.

等差数列的通项公式

2.2.2 等差数列的通项公式 2.2.2 等差数列的通项公式 (共 1 课时) 一、知识与技能 1.明确等差中项的概念 2.进一步熟练掌握等差数列的通项公式及推导公式,能通过通项公式与图象认识等差数列的性质 3.能用图象与通项公式的关系解决某些问题 二、过程与方法 1.通过等差数列的图象的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想 2.发挥学生的主体作用,讲练相结合,作好探究性学习 3.理论联系实际,激发学生的学习积极性 三、情感态度与价值观 1.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点 2.通过体验等差数列的性质的奥秘,激发学生的学习兴趣 教学重点等差数列的定义、通项公式、性质的理解与应用 一些相关问题 导入新课 师同学们,上一节课我们学习了等差数列的定义,等差数列的通项公式,哪位同学能回忆一下什么样的数列叫等差数列? 生我回答,一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即a n-a n-1=d(n≥2,n∈N*),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(通常用字母“d”表示

师 对,我再找同学说一说等差数列{a n }的通项公式的内容是什么? 生1 等差数列{a n }的通项公式应是a n =a 1+(n -1)d 生2 等差数列{a n }还有两种通项公式:a n =a m +(n -m)d 或a n =p n +q(p 、q 是常数 师 好!刚才两位同学说得很好,由上面的两个公式我们还可以得到下面几种计算公差d 的公式:①d =a n -a n -1;②11--=n a a d n ;③m n a a d m n --=.你能理解与记忆它们吗? 生3 公式②11--= n a a d n 与③m n a a d m n --=记忆规律是项的值的差比上项数之间的差(下标之差 [合作探究] 探究内容:如果我们在数a 与数b 中间插入一个数A ,使三个数a ,A ,b 成等差数列,那么数A 应满足什么样的条件呢? 师 本题在这里要求的是什么 生 当然是要用a ,b 来表示数A 师 对,但你能根据什么知识求?如何求?谁能回答 生 由定义可得A -a =b -A ,即2 b a A += 反之,若2b a A += ,则A -a =b -A 由此可以得?+=2 b a A a ,A , b 成等差数列 推进新课 我们来给出等差中项的概念:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 根据我们前面的探究不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中5是3与7的等差中项,也是1和9的等差中项 9是7和11的等差中项,也是5和13的等差中项 [方法引导] 等差中项及其应用问题的解法关键在于抓住a ,A ,b 成等差数列A =a +b ,

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

(完整word版)等差数列通项公式

等差数列通项公式: 1、 等差数列{}n a ,375,7a a ==,求546,,a a a 2、 等差数列{}n a ,385,9a a ==,求457,,,n a a a a 3、 在等差数列{}n a 中,47104561417,77a a a a a a a ++=+++ +=,若13k a =,则 ?k = 4、 在等差数列{}n a 中,357911100a a a a a ++++=,则9133?a a -= 5、 已知等差数列{}n a 中,11 25 a = ,第10项是第一个比1大的项,则公差d 的范围? 6、 在等差数列{}n a 中,34567250a a a a a ++++=,则5a ?28a a +? 7、 已知等差数列{}n a ,18a a 与45a a 大小?18a a +与45a a +大小? 8、 已知数列{}n a ,32a =,71a =,又1n a ?? ? ??? 是等差数列,则11a 9、 已知数列{}n a 满足,()112 323 n n n a n N a a a *+=?? ∈?=?+? ,求{}n a 的通项公式。 10、 已知数列{}n a 满足,()111 2 222n n n n a n a a a a --=?≥? -=?,求{}n a 的通项公式。 11、 已知数列{}n a 满足,()122 123n n a n N a a * +=?∈?=+?,求{}n a 的通项公式。 12、 已知数列{}n a 满足,()112 2332n n a n a a -=?≥?=+?,求使得20n n a a +<的n 范围。 13、 已知数列{}n a 满足,)113n a n N a * +=??∈?=??,求{}n a 的通项公式。 14、 已知数列{}n a 满足,()111212n n n a n N a a a *+?=?? ∈??= +?? ,求{}n a 的通项公式。 15、 已知2 2 2 ,,a b c 成等差,求证 111 ,,b c a c a b +++成等差? 16、 若x y ≠,且两个数列12,,,x a a y 和123,,,,x b b b y 等差,则 21 21 a a b b -=-?

数列通项公式练习题(含解析)

例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数 列{}n a 的通项公式. 例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公 式。 类型1 递推公式为)(1n f a a n n +=+ 1. 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 类型2 (1)递推公式为n n a n f a )(1=+ 2.1. 已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 (2)递推式:()n f pa a n n +=+1 2.2.设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a . 类型3 递推公式为q pa a n n +=+1(其中p ,q 均为常数)。 3. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 类型4递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 4. 已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+= ++,求n a 。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 5. 已知数列{}n a 前n 项和221 4---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a .

例1.解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =, 即)8()2(1121d a a d a +=+d a d 12=? ∵0≠d , ∴d a =1………………………………① ∵255a S = ∴211)4(2 455d a d a +=??+…………② 由①②得:5 31=a ,53=d ∴n n a n 5 353)1(53=?-+= 例2.解:由1121111=?-==a a S a 当时,有 ……, 经验证11=a 也满足上式,所以])1(2[3 212---+=n n n a 点评:利用公式???≥???????-=????????????????=-211n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并. 1.解:由条件知:1 11)1(1121+-=+=+=-+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-= 所以n a a n 111-=- 211=a ,n n a n 1231121-=-+=∴ 2≥n ,)1(2)(211n n n n n n a a S S a -?+-=-=--1122(1), n n n a a --∴=+?-,)1(22221----?+=n n n a a . 2212-=a a 11221 122(1)2(1)2(1)n n n n n a a ----∴=+?-+?-++?-].)1(2[3 23 ])2(1[2)1(2)]2()2()2[()1(2 1211211--------+=----=-++-+--+=n n n n n n n n n

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

等差数列及通项公式

等差数列及通项公式教案 一、教学目标 1.理解等差数列的概念,掌握其通项公式及实质并会熟练运用。 2.通过对等差数列概念及通项公式归纳、抽象和概括,体验等差数列概念的形成过程,培养学生的概括、抽象能力。 3培养从特殊到一般,再从一般到特殊的数学思想,并锻炼学生归纳、猜想、论证的能力。 二、教学重、难点 1.教学重点:等差数列的概念及通向公式。 2.教学难点:概括通项公式推导过程中体现的数学思想方法,等差数列的性质及应用。 三、教学方法 启发探究式教学法、情景教学法。 四、教学过程 (一)等差数列的概念教学 T:我们在中学的时候学习了实数研究了它的一些运算与性质(如加、减、乘、除运算,能被3,5,7整除的数的特征等)。现在,我们面对一列数,能不能也像研究实数一样,研究它的项与项之间的关系,运算与性质呢?为此,我们从一些特殊数列入手来研究这些问题。在现实生活中,我们会遇到下面的特殊数列。(1)我们经常这样数数,从0开始,每隔5数一次,可以得到数列: 0,5,??????,??????,??????,??????,………………………..; (2)水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m): 18,?????,?????,?????,?????,5.5; (3)有一堆桃子共100个,此时有20个猴子,每个猴子分得5个桃子,每个猴子所的桃子个数组成的数列为: 5,????,????,????,????,????,…………………..,5:;

等差数列概念及通项公式经典教案

等差数列的概念及通项公式 【学习目标】 1.准确理解等差数列、等差中项的概念,掌握等差数列通项公式的求解方法,能够熟练应用通项公式解决等差数列的相关问题. 2.通项对等差数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生对数学问题的观察、分析、概括和归纳的能力. 3.激情参与、惜时高效,利用数列知识解决具体问题,感受数列的应用价值. 【重点】:等差数列的概念及等差数列通项公式的推导和应用. 【难点】:对等差数列中“等差”特征的理解、把握和应用. 【学法指导】 1. 阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法; 2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测; 3. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处. 一、知识温故 1.数列有几种表示方法? 2.数列的项与项数有什么关系? 3函数与数列之间有什么关系? 教材助读 1.一般地,如果一个数列从第 项起,每一项与它的前一项的差等于 常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的 ,公差通常用字母_______________ 表示。 2. 由三个数a 、A 、b 组成的 数列可以看成最简单的等差数列。这时A 叫做a 与b 的等差数列即 3.如果数列{n a } 是公差为d 的等差数列,则+=12a a ,+=13a a , +=14a a +=15a a +=1a a ,......,n 4.通项公式为n a =an+b (a,b 为常数)的数列都是等差数列吗?反之,成立吗? 【预习自测】 1. 等差数列d a 2-,a ,d a 2+…….的通项公式是( ) A .d n a a n )1(-+= B. d n a a n )3(-+= C .d n a a n )2(2-+= D. nd a a n 2+= 2.已知数列{n a } 的通项公式为n a n 23-=,则它的公差为( ) A .2 B.3 C. -2 D. -3 3.已知231+= a ,2 31 -=b ,则a 与b 的等差中项为

等差数列通项公式及应用习题

等差数列的通项公式及应用习题 一、单选题(每道小题 3分共 63分 ) 1. 已知等差数列{a n }中,a2=2,a5=8,则数列的第10项为 A.12 B.14 C.16 D.18 2. 已知等差数列前3项为-3,-1,1,则数列的第50项为 [ ] A.91 B.93 C.95 D.97 3. 已知等差数列首项为2,末项为62,公差为4,则这个数列共有 [ ] A.13项 B.14项 C.15项 D.16项 4. 已知等差数列的通项公式为a n=-3n+a,a为常数,则公差d= [ ] 5. 已知等差数列{a n }中,a1=1,d=3,那么当a n=298时,项数n 等于

[ ] A.98 B.99 C.100 D.101 6. 在等差数列{a n }中,若a3=-4,a5=11,则 a11等于 [ ] A.56 B.18 C.15 D.45 7. 在等差数列{a n } 中,若a1+a2=-18,a5+a6=-2,则30是这个数列的 [ ] A.第22项 B.第21项 C.第20项 D.第19项 [ ] A.45 B.48 C.52 D.55 9. 已知等差数列{a n }中,a8比a3小10,则公差d的值为 [ ] A.2 B.-2 C.5 D.-5

10. 已知等差数列{a n }中,a6比a2大10个单位,则公差d的值为 [ ] 11. 已知数列a,-15,b,c,45是等差数列,则a+b+c的值是 [ ] A.-5 B.0 C.5 D.10 12. 已知等差数列{a n }中,a1+a2+a3=-15,a3+a4=-16,则a1= [ ] A.-1 B.-3 C.-5 D.-7 13. 已知等差数列{a n}中,a10=-20,a20n=20,则这个数列的首项a1为 [ ] A.-56 B.-52 C.-48 D.-44 14. 已知等差数列{a n }满足a2+a7=2a3+a4,那么这个数列的首项是 [ ]

二阶等差数列及其通项公式

二阶等差数列及其通项公式 李清振 青岛城市管理职业学校 一、引子: 在《数列》知识的学习中有一种求数列通项公式类型的题目。如,试求出下列数列的通项公式: ⑴ 21、32、43、54、6 5,… ⑵ - 1、21、31-、41、51 -,… ⑶ 211 ?、321?、431?、5 41?,… 上述数列,都易于通过观察、分析,而总结推断出其通项公式,分别为 1 +=n n a n ,n n n a 1)1(-=,)1(1+=n n a n . 再如等差数列、等比数列,教材中已分别介绍过其通项公式。但有数列,如: ⑷ 1,2,4,7,11,16,22,… ⑸ 1,3,6,10,15,21,28,… ⑹ 1,3,7,13,21,31,43,… 通过观察分析,也能发现上面三个数列有其内在规律与特点,但若想轻易写出通项公式却有难处。

本文旨在由等差数列推导出如⑷、⑸、⑹这样的一类数列的通项公式,并给出一个相关定义。 二、预备知识: 1、等差数列的定义:如果一个数列 a1,a2,a3,…,a n,…, 从第二项起,每一项与它的前一项的差都等于同一个常数d,即a2 - a1 = a3 - a2=… = a n - a n-1 = d,则称此数列为等差数列,常数d叫等差数列的公差。 2、等差数列的通项公式:a n =a1 + ( n - 1 ) d, 公差: d = a2 - a1. 三、二阶等差数列的定义及其通项公式: a)定义:如果一个数列 a1,a2,a3,…,a n,…,(★) 从第二项起,每一项与它的前一项的差按照前后次序排成新的数列,即 a2 - a1,a3 - a2,a4 - a3,…, a n - a n-1,…成为一个等差数列,则称数列(★)为二阶等差数列。 相应地,d =(a3 - a2) - (a2 - a1)= a3 + a1 - 2a2称为二阶等差数列的二阶公差。 显然,依此定义可以判断,⑷、⑸、⑹均是二阶等差数列。 其二阶公差分别为1、1、2. 说明:⑴、为区别于二阶等差数列,可把通常定义的等差数列称为一阶等差数列.

相关文档
最新文档